Properties

Label 4212.2.a.m
Level $4212$
Weight $2$
Character orbit 4212.a
Self dual yes
Analytic conductor $33.633$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4212,2,Mod(1,4212)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4212, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4212.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4212 = 2^{2} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4212.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,1,0,0,0,0,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.6329893314\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.35342001.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 8x^{4} + 12x^{3} + 15x^{2} - 15x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 468)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{5} + (\beta_{3} - \beta_1) q^{7} + (\beta_{5} + \beta_{3} - \beta_1) q^{11} - q^{13} + ( - \beta_{5} - \beta_{4} + \beta_{3} + \cdots + 1) q^{17} + (\beta_{4} + \beta_{3}) q^{19} + ( - \beta_{5} - \beta_{2} + 1) q^{23}+ \cdots + ( - 4 \beta_{5} + 2 \beta_{4} + \cdots - 2) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{5} - q^{11} - 6 q^{13} + 6 q^{17} + 3 q^{19} + 7 q^{23} + 3 q^{25} + 10 q^{29} - 12 q^{31} + 13 q^{35} - 9 q^{37} + 12 q^{41} + 3 q^{43} + 17 q^{47} + 12 q^{49} + 24 q^{53} + 3 q^{55} + q^{59}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 8x^{4} + 12x^{3} + 15x^{2} - 15x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{5} - 3\nu^{4} - 17\nu^{3} + 15\nu^{2} + 36\nu - 13 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{5} - 3\nu^{4} - 18\nu^{3} + 17\nu^{2} + 39\nu - 17 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 3\nu^{5} - 5\nu^{4} - 25\nu^{3} + 26\nu^{2} + 51\nu - 22 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -3\nu^{5} + 5\nu^{4} + 26\nu^{3} - 27\nu^{2} - 57\nu + 24 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{5} - \beta_{4} - \beta_{3} + \beta_{2} + \beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} - \beta_{4} - 2\beta_{3} + 2\beta_{2} + 3\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} - \beta_{4} + 3\beta_{2} + 8\beta _1 + 17 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{5} - 4\beta_{4} - 11\beta_{3} + 16\beta_{2} + 24\beta _1 + 29 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.335792
2.02803
−2.07603
2.92333
0.439707
−1.65083
0 0 0 −2.94030 0 0.188839 0 0 0
1.2 0 0 0 −1.82377 0 −1.37569 0 0 0
1.3 0 0 0 −0.697259 0 2.19680 0 0 0
1.4 0 0 0 0.0520874 0 −5.04236 0 0 0
1.5 0 0 0 3.18901 0 4.63253 0 0 0
1.6 0 0 0 3.22022 0 −0.600114 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4212.2.a.m 6
3.b odd 2 1 4212.2.a.k 6
9.c even 3 2 468.2.i.c 12
9.d odd 6 2 1404.2.i.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
468.2.i.c 12 9.c even 3 2
1404.2.i.c 12 9.d odd 6 2
4212.2.a.k 6 3.b odd 2 1
4212.2.a.m 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4212))\):

\( T_{5}^{6} - T_{5}^{5} - 16T_{5}^{4} + 5T_{5}^{3} + 65T_{5}^{2} + 35T_{5} - 2 \) Copy content Toggle raw display
\( T_{11}^{6} + T_{11}^{5} - 37T_{11}^{4} + 10T_{11}^{3} + 335T_{11}^{2} - 473T_{11} + 172 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - T^{5} - 16 T^{4} + \cdots - 2 \) Copy content Toggle raw display
$7$ \( T^{6} - 27 T^{4} + \cdots - 8 \) Copy content Toggle raw display
$11$ \( T^{6} + T^{5} + \cdots + 172 \) Copy content Toggle raw display
$13$ \( (T + 1)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} - 6 T^{5} + \cdots + 1917 \) Copy content Toggle raw display
$19$ \( T^{6} - 3 T^{5} + \cdots + 216 \) Copy content Toggle raw display
$23$ \( T^{6} - 7 T^{5} + \cdots + 151 \) Copy content Toggle raw display
$29$ \( T^{6} - 10 T^{5} + \cdots - 146 \) Copy content Toggle raw display
$31$ \( T^{6} + 12 T^{5} + \cdots + 5686 \) Copy content Toggle raw display
$37$ \( T^{6} + 9 T^{5} + \cdots - 8046 \) Copy content Toggle raw display
$41$ \( T^{6} - 12 T^{5} + \cdots + 1350 \) Copy content Toggle raw display
$43$ \( T^{6} - 3 T^{5} + \cdots - 5237 \) Copy content Toggle raw display
$47$ \( T^{6} - 17 T^{5} + \cdots - 24062 \) Copy content Toggle raw display
$53$ \( T^{6} - 24 T^{5} + \cdots + 63477 \) Copy content Toggle raw display
$59$ \( T^{6} - T^{5} + \cdots + 3466 \) Copy content Toggle raw display
$61$ \( T^{6} - 6 T^{5} + \cdots - 102089 \) Copy content Toggle raw display
$67$ \( T^{6} - 6 T^{5} + \cdots - 448652 \) Copy content Toggle raw display
$71$ \( T^{6} - 17 T^{5} + \cdots + 268 \) Copy content Toggle raw display
$73$ \( T^{6} - 3 T^{5} + \cdots - 15206 \) Copy content Toggle raw display
$79$ \( T^{6} + 6 T^{5} + \cdots - 156017 \) Copy content Toggle raw display
$83$ \( T^{6} + 6 T^{5} + \cdots - 138186 \) Copy content Toggle raw display
$89$ \( T^{6} - 21 T^{5} + \cdots + 37584 \) Copy content Toggle raw display
$97$ \( T^{6} + 12 T^{5} + \cdots + 298300 \) Copy content Toggle raw display
show more
show less