Properties

Label 2-4212-1.1-c1-0-31
Degree $2$
Conductor $4212$
Sign $1$
Analytic cond. $33.6329$
Root an. cond. $5.79939$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.18·5-s + 4.63·7-s + 0.696·11-s − 13-s + 6.37·17-s + 5.01·19-s + 0.730·23-s + 5.16·25-s − 0.919·29-s − 6.95·31-s + 14.7·35-s − 6.56·37-s − 11.0·41-s + 3.64·43-s + 12.6·47-s + 14.4·49-s + 2.98·53-s + 2.22·55-s − 1.76·59-s + 7.39·61-s − 3.18·65-s − 14.9·67-s − 0.353·71-s − 7.28·73-s + 3.22·77-s − 8.26·79-s − 13.7·83-s + ⋯
L(s)  = 1  + 1.42·5-s + 1.75·7-s + 0.210·11-s − 0.277·13-s + 1.54·17-s + 1.15·19-s + 0.152·23-s + 1.03·25-s − 0.170·29-s − 1.24·31-s + 2.49·35-s − 1.07·37-s − 1.72·41-s + 0.556·43-s + 1.85·47-s + 2.06·49-s + 0.409·53-s + 0.299·55-s − 0.229·59-s + 0.946·61-s − 0.395·65-s − 1.82·67-s − 0.0419·71-s − 0.852·73-s + 0.367·77-s − 0.929·79-s − 1.51·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4212 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4212 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4212\)    =    \(2^{2} \cdot 3^{4} \cdot 13\)
Sign: $1$
Analytic conductor: \(33.6329\)
Root analytic conductor: \(5.79939\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4212,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.542171835\)
\(L(\frac12)\) \(\approx\) \(3.542171835\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 3.18T + 5T^{2} \)
7 \( 1 - 4.63T + 7T^{2} \)
11 \( 1 - 0.696T + 11T^{2} \)
17 \( 1 - 6.37T + 17T^{2} \)
19 \( 1 - 5.01T + 19T^{2} \)
23 \( 1 - 0.730T + 23T^{2} \)
29 \( 1 + 0.919T + 29T^{2} \)
31 \( 1 + 6.95T + 31T^{2} \)
37 \( 1 + 6.56T + 37T^{2} \)
41 \( 1 + 11.0T + 41T^{2} \)
43 \( 1 - 3.64T + 43T^{2} \)
47 \( 1 - 12.6T + 47T^{2} \)
53 \( 1 - 2.98T + 53T^{2} \)
59 \( 1 + 1.76T + 59T^{2} \)
61 \( 1 - 7.39T + 61T^{2} \)
67 \( 1 + 14.9T + 67T^{2} \)
71 \( 1 + 0.353T + 71T^{2} \)
73 \( 1 + 7.28T + 73T^{2} \)
79 \( 1 + 8.26T + 79T^{2} \)
83 \( 1 + 13.7T + 83T^{2} \)
89 \( 1 - 5.80T + 89T^{2} \)
97 \( 1 + 3.03T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.523264694836916433170639871550, −7.49606670227361202814551334059, −7.21293526901288906758431494281, −5.86716189256541314756674914550, −5.43122533616596492058148250426, −4.98439481841823682389794356626, −3.84315791774256468425346223111, −2.75723122824214002390874458275, −1.72074231355937591556154142214, −1.27298693074698225144399946877, 1.27298693074698225144399946877, 1.72074231355937591556154142214, 2.75723122824214002390874458275, 3.84315791774256468425346223111, 4.98439481841823682389794356626, 5.43122533616596492058148250426, 5.86716189256541314756674914550, 7.21293526901288906758431494281, 7.49606670227361202814551334059, 8.523264694836916433170639871550

Graph of the $Z$-function along the critical line