Properties

Label 420.2.bv.c.317.5
Level $420$
Weight $2$
Character 420.317
Analytic conductor $3.354$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [420,2,Mod(53,420)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(420, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 9, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("420.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 420.bv (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.35371688489\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 317.5
Character \(\chi\) \(=\) 420.317
Dual form 420.2.bv.c.53.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.795708 + 1.53846i) q^{3} +(0.746108 + 2.10792i) q^{5} +(-2.40557 + 1.10146i) q^{7} +(-1.73370 - 2.44833i) q^{9} +(-2.63993 + 1.52416i) q^{11} +(0.512041 - 0.512041i) q^{13} +(-3.83663 - 0.529433i) q^{15} +(3.88873 + 1.04198i) q^{17} +(-5.78739 - 3.34135i) q^{19} +(0.219587 - 4.57731i) q^{21} +(2.29376 - 0.614611i) q^{23} +(-3.88664 + 3.14547i) q^{25} +(5.14616 - 0.719065i) q^{27} -8.51556 q^{29} +(0.921008 + 1.59523i) q^{31} +(-0.244246 - 5.27420i) q^{33} +(-4.11661 - 4.24895i) q^{35} +(2.78938 - 0.747413i) q^{37} +(0.380318 + 1.19519i) q^{39} +8.91355i q^{41} +(-7.54399 + 7.54399i) q^{43} +(3.86735 - 5.48121i) q^{45} +(1.95084 + 7.28063i) q^{47} +(4.57357 - 5.29929i) q^{49} +(-4.69734 + 5.15352i) q^{51} +(-2.81412 + 10.5024i) q^{53} +(-5.18248 - 4.42756i) q^{55} +(9.74561 - 6.24491i) q^{57} +(-1.06765 - 1.84923i) q^{59} +(7.12318 - 12.3377i) q^{61} +(6.86727 + 3.98003i) q^{63} +(1.46138 + 0.697303i) q^{65} +(1.03593 - 3.86614i) q^{67} +(-0.879611 + 4.01790i) q^{69} +3.41895i q^{71} +(11.0196 + 2.95269i) q^{73} +(-1.74654 - 8.48231i) q^{75} +(4.67173 - 6.57426i) q^{77} +(12.1569 + 7.01879i) q^{79} +(-2.98859 + 8.48931i) q^{81} +(0.995323 + 0.995323i) q^{83} +(0.705000 + 8.97455i) q^{85} +(6.77590 - 13.1008i) q^{87} +(0.706248 - 1.22326i) q^{89} +(-0.667760 + 1.79575i) q^{91} +(-3.18705 + 0.147591i) q^{93} +(2.72528 - 14.6924i) q^{95} +(-0.556234 - 0.556234i) q^{97} +(8.30847 + 3.82096i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{3} - 8 q^{7} + 32 q^{13} - 16 q^{21} + 16 q^{25} - 32 q^{27} - 64 q^{31} + 34 q^{33} - 40 q^{37} - 24 q^{43} + 30 q^{45} + 36 q^{51} + 92 q^{57} - 18 q^{63} + 28 q^{67} - 8 q^{73} - 38 q^{75}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/420\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(241\) \(281\) \(337\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.795708 + 1.53846i −0.459402 + 0.888228i
\(4\) 0 0
\(5\) 0.746108 + 2.10792i 0.333670 + 0.942690i
\(6\) 0 0
\(7\) −2.40557 + 1.10146i −0.909221 + 0.416313i
\(8\) 0 0
\(9\) −1.73370 2.44833i −0.577899 0.816108i
\(10\) 0 0
\(11\) −2.63993 + 1.52416i −0.795968 + 0.459552i −0.842059 0.539385i \(-0.818657\pi\)
0.0460916 + 0.998937i \(0.485323\pi\)
\(12\) 0 0
\(13\) 0.512041 0.512041i 0.142015 0.142015i −0.632525 0.774540i \(-0.717982\pi\)
0.774540 + 0.632525i \(0.217982\pi\)
\(14\) 0 0
\(15\) −3.83663 0.529433i −0.990613 0.136699i
\(16\) 0 0
\(17\) 3.88873 + 1.04198i 0.943155 + 0.252718i 0.697455 0.716628i \(-0.254316\pi\)
0.245700 + 0.969346i \(0.420982\pi\)
\(18\) 0 0
\(19\) −5.78739 3.34135i −1.32772 0.766559i −0.342773 0.939418i \(-0.611366\pi\)
−0.984947 + 0.172859i \(0.944699\pi\)
\(20\) 0 0
\(21\) 0.219587 4.57731i 0.0479178 0.998851i
\(22\) 0 0
\(23\) 2.29376 0.614611i 0.478282 0.128155i −0.0116206 0.999932i \(-0.503699\pi\)
0.489902 + 0.871777i \(0.337032\pi\)
\(24\) 0 0
\(25\) −3.88664 + 3.14547i −0.777329 + 0.629094i
\(26\) 0 0
\(27\) 5.14616 0.719065i 0.990379 0.138384i
\(28\) 0 0
\(29\) −8.51556 −1.58130 −0.790650 0.612269i \(-0.790257\pi\)
−0.790650 + 0.612269i \(0.790257\pi\)
\(30\) 0 0
\(31\) 0.921008 + 1.59523i 0.165418 + 0.286512i 0.936804 0.349856i \(-0.113769\pi\)
−0.771386 + 0.636368i \(0.780436\pi\)
\(32\) 0 0
\(33\) −0.244246 5.27420i −0.0425178 0.918120i
\(34\) 0 0
\(35\) −4.11661 4.24895i −0.695834 0.718203i
\(36\) 0 0
\(37\) 2.78938 0.747413i 0.458572 0.122874i −0.0221357 0.999755i \(-0.507047\pi\)
0.480707 + 0.876881i \(0.340380\pi\)
\(38\) 0 0
\(39\) 0.380318 + 1.19519i 0.0608996 + 0.191383i
\(40\) 0 0
\(41\) 8.91355i 1.39206i 0.718012 + 0.696031i \(0.245052\pi\)
−0.718012 + 0.696031i \(0.754948\pi\)
\(42\) 0 0
\(43\) −7.54399 + 7.54399i −1.15045 + 1.15045i −0.163984 + 0.986463i \(0.552435\pi\)
−0.986463 + 0.163984i \(0.947565\pi\)
\(44\) 0 0
\(45\) 3.86735 5.48121i 0.576510 0.817090i
\(46\) 0 0
\(47\) 1.95084 + 7.28063i 0.284559 + 1.06199i 0.949161 + 0.314791i \(0.101934\pi\)
−0.664602 + 0.747198i \(0.731399\pi\)
\(48\) 0 0
\(49\) 4.57357 5.29929i 0.653367 0.757041i
\(50\) 0 0
\(51\) −4.69734 + 5.15352i −0.657759 + 0.721638i
\(52\) 0 0
\(53\) −2.81412 + 10.5024i −0.386549 + 1.44262i 0.449161 + 0.893451i \(0.351723\pi\)
−0.835710 + 0.549171i \(0.814944\pi\)
\(54\) 0 0
\(55\) −5.18248 4.42756i −0.698806 0.597012i
\(56\) 0 0
\(57\) 9.74561 6.24491i 1.29084 0.827159i
\(58\) 0 0
\(59\) −1.06765 1.84923i −0.138996 0.240749i 0.788121 0.615521i \(-0.211054\pi\)
−0.927117 + 0.374772i \(0.877721\pi\)
\(60\) 0 0
\(61\) 7.12318 12.3377i 0.912029 1.57968i 0.100836 0.994903i \(-0.467848\pi\)
0.811193 0.584778i \(-0.198818\pi\)
\(62\) 0 0
\(63\) 6.86727 + 3.98003i 0.865194 + 0.501437i
\(64\) 0 0
\(65\) 1.46138 + 0.697303i 0.181262 + 0.0864898i
\(66\) 0 0
\(67\) 1.03593 3.86614i 0.126559 0.472325i −0.873331 0.487126i \(-0.838045\pi\)
0.999890 + 0.0148018i \(0.00471174\pi\)
\(68\) 0 0
\(69\) −0.879611 + 4.01790i −0.105893 + 0.483698i
\(70\) 0 0
\(71\) 3.41895i 0.405755i 0.979204 + 0.202878i \(0.0650293\pi\)
−0.979204 + 0.202878i \(0.934971\pi\)
\(72\) 0 0
\(73\) 11.0196 + 2.95269i 1.28975 + 0.345586i 0.837564 0.546340i \(-0.183979\pi\)
0.452182 + 0.891926i \(0.350646\pi\)
\(74\) 0 0
\(75\) −1.74654 8.48231i −0.201673 0.979453i
\(76\) 0 0
\(77\) 4.67173 6.57426i 0.532393 0.749206i
\(78\) 0 0
\(79\) 12.1569 + 7.01879i 1.36776 + 0.789675i 0.990641 0.136490i \(-0.0435823\pi\)
0.377117 + 0.926166i \(0.376916\pi\)
\(80\) 0 0
\(81\) −2.98859 + 8.48931i −0.332066 + 0.943256i
\(82\) 0 0
\(83\) 0.995323 + 0.995323i 0.109251 + 0.109251i 0.759619 0.650368i \(-0.225385\pi\)
−0.650368 + 0.759619i \(0.725385\pi\)
\(84\) 0 0
\(85\) 0.705000 + 8.97455i 0.0764680 + 0.973427i
\(86\) 0 0
\(87\) 6.77590 13.1008i 0.726453 1.40456i
\(88\) 0 0
\(89\) 0.706248 1.22326i 0.0748622 0.129665i −0.826164 0.563429i \(-0.809482\pi\)
0.901026 + 0.433764i \(0.142815\pi\)
\(90\) 0 0
\(91\) −0.667760 + 1.79575i −0.0700003 + 0.188245i
\(92\) 0 0
\(93\) −3.18705 + 0.147591i −0.330482 + 0.0153045i
\(94\) 0 0
\(95\) 2.72528 14.6924i 0.279608 1.50741i
\(96\) 0 0
\(97\) −0.556234 0.556234i −0.0564770 0.0564770i 0.678304 0.734781i \(-0.262715\pi\)
−0.734781 + 0.678304i \(0.762715\pi\)
\(98\) 0 0
\(99\) 8.30847 + 3.82096i 0.835033 + 0.384021i
\(100\) 0 0
\(101\) −2.90475 + 1.67706i −0.289034 + 0.166874i −0.637506 0.770445i \(-0.720034\pi\)
0.348472 + 0.937319i \(0.386701\pi\)
\(102\) 0 0
\(103\) 0.448028 + 1.67206i 0.0441456 + 0.164753i 0.984480 0.175499i \(-0.0561540\pi\)
−0.940334 + 0.340253i \(0.889487\pi\)
\(104\) 0 0
\(105\) 9.81244 2.95230i 0.957596 0.288115i
\(106\) 0 0
\(107\) 2.06095 + 7.69158i 0.199240 + 0.743573i 0.991128 + 0.132908i \(0.0424313\pi\)
−0.791889 + 0.610666i \(0.790902\pi\)
\(108\) 0 0
\(109\) 2.12083 1.22446i 0.203138 0.117282i −0.394980 0.918690i \(-0.629249\pi\)
0.598119 + 0.801408i \(0.295915\pi\)
\(110\) 0 0
\(111\) −1.06967 + 4.88607i −0.101529 + 0.463765i
\(112\) 0 0
\(113\) 5.01803 + 5.01803i 0.472056 + 0.472056i 0.902580 0.430523i \(-0.141671\pi\)
−0.430523 + 0.902580i \(0.641671\pi\)
\(114\) 0 0
\(115\) 3.00694 + 4.37649i 0.280399 + 0.408110i
\(116\) 0 0
\(117\) −2.14137 0.365919i −0.197969 0.0338292i
\(118\) 0 0
\(119\) −10.5023 + 1.77671i −0.962746 + 0.162871i
\(120\) 0 0
\(121\) −0.853861 + 1.47893i −0.0776237 + 0.134448i
\(122\) 0 0
\(123\) −13.7131 7.09258i −1.23647 0.639517i
\(124\) 0 0
\(125\) −9.53026 5.84587i −0.852412 0.522870i
\(126\) 0 0
\(127\) −5.74490 5.74490i −0.509777 0.509777i 0.404681 0.914458i \(-0.367383\pi\)
−0.914458 + 0.404681i \(0.867383\pi\)
\(128\) 0 0
\(129\) −5.60328 17.6089i −0.493342 1.55038i
\(130\) 0 0
\(131\) 1.12384 + 0.648847i 0.0981900 + 0.0566900i 0.548291 0.836288i \(-0.315279\pi\)
−0.450101 + 0.892978i \(0.648612\pi\)
\(132\) 0 0
\(133\) 17.6024 + 1.66329i 1.52632 + 0.144226i
\(134\) 0 0
\(135\) 5.35532 + 10.3112i 0.460913 + 0.887445i
\(136\) 0 0
\(137\) 0.507990 + 0.136116i 0.0434006 + 0.0116291i 0.280454 0.959867i \(-0.409515\pi\)
−0.237053 + 0.971497i \(0.576182\pi\)
\(138\) 0 0
\(139\) 17.6744i 1.49912i 0.661936 + 0.749561i \(0.269735\pi\)
−0.661936 + 0.749561i \(0.730265\pi\)
\(140\) 0 0
\(141\) −12.7532 2.79198i −1.07402 0.235127i
\(142\) 0 0
\(143\) −0.571317 + 2.13218i −0.0477759 + 0.178302i
\(144\) 0 0
\(145\) −6.35353 17.9501i −0.527632 1.49068i
\(146\) 0 0
\(147\) 4.51349 + 11.2529i 0.372267 + 0.928126i
\(148\) 0 0
\(149\) 10.3981 18.0100i 0.851842 1.47543i −0.0277017 0.999616i \(-0.508819\pi\)
0.879544 0.475818i \(-0.157848\pi\)
\(150\) 0 0
\(151\) −5.44655 9.43371i −0.443234 0.767704i 0.554693 0.832055i \(-0.312836\pi\)
−0.997927 + 0.0643508i \(0.979502\pi\)
\(152\) 0 0
\(153\) −4.19077 11.3273i −0.338803 0.915762i
\(154\) 0 0
\(155\) −2.67545 + 3.13163i −0.214897 + 0.251538i
\(156\) 0 0
\(157\) −2.58508 + 9.64763i −0.206312 + 0.769965i 0.782734 + 0.622356i \(0.213824\pi\)
−0.989046 + 0.147609i \(0.952842\pi\)
\(158\) 0 0
\(159\) −13.9183 12.6863i −1.10380 1.00609i
\(160\) 0 0
\(161\) −4.84084 + 4.00498i −0.381511 + 0.315636i
\(162\) 0 0
\(163\) −0.883109 3.29581i −0.0691705 0.258148i 0.922678 0.385572i \(-0.125996\pi\)
−0.991848 + 0.127424i \(0.959329\pi\)
\(164\) 0 0
\(165\) 10.9354 4.44998i 0.851316 0.346430i
\(166\) 0 0
\(167\) 10.6613 10.6613i 0.824994 0.824994i −0.161825 0.986819i \(-0.551738\pi\)
0.986819 + 0.161825i \(0.0517381\pi\)
\(168\) 0 0
\(169\) 12.4756i 0.959664i
\(170\) 0 0
\(171\) 1.85287 + 19.9623i 0.141692 + 1.52656i
\(172\) 0 0
\(173\) −16.7718 + 4.49399i −1.27514 + 0.341672i −0.831996 0.554781i \(-0.812802\pi\)
−0.443140 + 0.896453i \(0.646135\pi\)
\(174\) 0 0
\(175\) 5.88500 11.8476i 0.444864 0.895598i
\(176\) 0 0
\(177\) 3.69450 0.171091i 0.277695 0.0128600i
\(178\) 0 0
\(179\) 7.14090 + 12.3684i 0.533736 + 0.924458i 0.999223 + 0.0394031i \(0.0125456\pi\)
−0.465488 + 0.885054i \(0.654121\pi\)
\(180\) 0 0
\(181\) −5.90010 −0.438551 −0.219275 0.975663i \(-0.570369\pi\)
−0.219275 + 0.975663i \(0.570369\pi\)
\(182\) 0 0
\(183\) 13.3130 + 20.7759i 0.984129 + 1.53580i
\(184\) 0 0
\(185\) 3.65667 + 5.32214i 0.268844 + 0.391292i
\(186\) 0 0
\(187\) −11.8541 + 3.17630i −0.866858 + 0.232274i
\(188\) 0 0
\(189\) −11.5874 + 7.39805i −0.842863 + 0.538129i
\(190\) 0 0
\(191\) −9.55692 5.51769i −0.691514 0.399246i 0.112665 0.993633i \(-0.464061\pi\)
−0.804179 + 0.594387i \(0.797395\pi\)
\(192\) 0 0
\(193\) −13.6035 3.64505i −0.979203 0.262377i −0.266494 0.963837i \(-0.585865\pi\)
−0.712709 + 0.701460i \(0.752532\pi\)
\(194\) 0 0
\(195\) −2.23560 + 1.69342i −0.160095 + 0.121268i
\(196\) 0 0
\(197\) −1.63139 + 1.63139i −0.116232 + 0.116232i −0.762830 0.646599i \(-0.776191\pi\)
0.646599 + 0.762830i \(0.276191\pi\)
\(198\) 0 0
\(199\) 9.65354 5.57347i 0.684321 0.395093i −0.117160 0.993113i \(-0.537379\pi\)
0.801481 + 0.598020i \(0.204046\pi\)
\(200\) 0 0
\(201\) 5.12360 + 4.67006i 0.361391 + 0.329400i
\(202\) 0 0
\(203\) 20.4848 9.37955i 1.43775 0.658315i
\(204\) 0 0
\(205\) −18.7890 + 6.65047i −1.31228 + 0.464489i
\(206\) 0 0
\(207\) −5.48145 4.55032i −0.380987 0.316269i
\(208\) 0 0
\(209\) 20.3711 1.40910
\(210\) 0 0
\(211\) 2.72171 0.187370 0.0936852 0.995602i \(-0.470135\pi\)
0.0936852 + 0.995602i \(0.470135\pi\)
\(212\) 0 0
\(213\) −5.25991 2.72049i −0.360403 0.186405i
\(214\) 0 0
\(215\) −21.5307 10.2735i −1.46838 0.700646i
\(216\) 0 0
\(217\) −3.97264 2.82300i −0.269680 0.191638i
\(218\) 0 0
\(219\) −13.3110 + 14.6037i −0.899472 + 0.986825i
\(220\) 0 0
\(221\) 2.52473 1.45765i 0.169831 0.0980522i
\(222\) 0 0
\(223\) 13.0957 13.0957i 0.876950 0.876950i −0.116268 0.993218i \(-0.537093\pi\)
0.993218 + 0.116268i \(0.0370931\pi\)
\(224\) 0 0
\(225\) 14.4394 + 4.06247i 0.962627 + 0.270832i
\(226\) 0 0
\(227\) 13.2362 + 3.54662i 0.878515 + 0.235397i 0.669766 0.742572i \(-0.266394\pi\)
0.208748 + 0.977969i \(0.433061\pi\)
\(228\) 0 0
\(229\) −10.3326 5.96554i −0.682799 0.394214i 0.118110 0.993001i \(-0.462316\pi\)
−0.800909 + 0.598787i \(0.795650\pi\)
\(230\) 0 0
\(231\) 6.39687 + 12.4184i 0.420883 + 0.817074i
\(232\) 0 0
\(233\) −9.76217 + 2.61577i −0.639541 + 0.171365i −0.563996 0.825778i \(-0.690736\pi\)
−0.0755455 + 0.997142i \(0.524070\pi\)
\(234\) 0 0
\(235\) −13.8914 + 9.54435i −0.906177 + 0.622605i
\(236\) 0 0
\(237\) −20.4714 + 13.1180i −1.32976 + 0.852103i
\(238\) 0 0
\(239\) −21.4204 −1.38557 −0.692784 0.721145i \(-0.743616\pi\)
−0.692784 + 0.721145i \(0.743616\pi\)
\(240\) 0 0
\(241\) −5.02811 8.70894i −0.323889 0.560992i 0.657398 0.753544i \(-0.271657\pi\)
−0.981287 + 0.192552i \(0.938324\pi\)
\(242\) 0 0
\(243\) −10.6824 11.3528i −0.685275 0.728284i
\(244\) 0 0
\(245\) 14.5828 + 5.68688i 0.931664 + 0.363321i
\(246\) 0 0
\(247\) −4.67429 + 1.25247i −0.297418 + 0.0796930i
\(248\) 0 0
\(249\) −2.32325 + 0.739275i −0.147230 + 0.0468496i
\(250\) 0 0
\(251\) 5.13237i 0.323952i −0.986795 0.161976i \(-0.948213\pi\)
0.986795 0.161976i \(-0.0517867\pi\)
\(252\) 0 0
\(253\) −5.11859 + 5.11859i −0.321803 + 0.321803i
\(254\) 0 0
\(255\) −14.3679 6.05651i −0.899755 0.379274i
\(256\) 0 0
\(257\) 2.90270 + 10.8330i 0.181065 + 0.675745i 0.995439 + 0.0954037i \(0.0304142\pi\)
−0.814373 + 0.580341i \(0.802919\pi\)
\(258\) 0 0
\(259\) −5.88682 + 4.87035i −0.365789 + 0.302629i
\(260\) 0 0
\(261\) 14.7634 + 20.8489i 0.913831 + 1.29051i
\(262\) 0 0
\(263\) 3.68895 13.7673i 0.227470 0.848931i −0.753930 0.656955i \(-0.771844\pi\)
0.981400 0.191975i \(-0.0614893\pi\)
\(264\) 0 0
\(265\) −24.2379 + 1.90402i −1.48893 + 0.116963i
\(266\) 0 0
\(267\) 1.31996 + 2.05989i 0.0807803 + 0.126063i
\(268\) 0 0
\(269\) 7.17746 + 12.4317i 0.437618 + 0.757976i 0.997505 0.0705927i \(-0.0224891\pi\)
−0.559888 + 0.828568i \(0.689156\pi\)
\(270\) 0 0
\(271\) 0.840888 1.45646i 0.0510803 0.0884737i −0.839355 0.543584i \(-0.817067\pi\)
0.890435 + 0.455110i \(0.150400\pi\)
\(272\) 0 0
\(273\) −2.23133 2.45621i −0.135046 0.148657i
\(274\) 0 0
\(275\) 5.46624 14.2277i 0.329627 0.857962i
\(276\) 0 0
\(277\) −2.03258 + 7.58569i −0.122126 + 0.455780i −0.999721 0.0236225i \(-0.992480\pi\)
0.877595 + 0.479403i \(0.159147\pi\)
\(278\) 0 0
\(279\) 2.30890 5.02058i 0.138230 0.300574i
\(280\) 0 0
\(281\) 8.01304i 0.478018i −0.971017 0.239009i \(-0.923177\pi\)
0.971017 0.239009i \(-0.0768225\pi\)
\(282\) 0 0
\(283\) 1.35822 + 0.363933i 0.0807376 + 0.0216336i 0.298962 0.954265i \(-0.403360\pi\)
−0.218224 + 0.975899i \(0.570026\pi\)
\(284\) 0 0
\(285\) 20.4350 + 15.8836i 1.21047 + 0.940861i
\(286\) 0 0
\(287\) −9.81791 21.4422i −0.579533 1.26569i
\(288\) 0 0
\(289\) −0.685955 0.396036i −0.0403503 0.0232963i
\(290\) 0 0
\(291\) 1.29834 0.413142i 0.0761102 0.0242188i
\(292\) 0 0
\(293\) −3.47074 3.47074i −0.202763 0.202763i 0.598420 0.801183i \(-0.295795\pi\)
−0.801183 + 0.598420i \(0.795795\pi\)
\(294\) 0 0
\(295\) 3.10144 3.63025i 0.180573 0.211361i
\(296\) 0 0
\(297\) −12.4895 + 9.74186i −0.724715 + 0.565280i
\(298\) 0 0
\(299\) 0.859793 1.48920i 0.0497231 0.0861229i
\(300\) 0 0
\(301\) 9.83822 26.4570i 0.567066 1.52496i
\(302\) 0 0
\(303\) −0.268748 5.80329i −0.0154392 0.333390i
\(304\) 0 0
\(305\) 31.3215 + 5.80981i 1.79347 + 0.332669i
\(306\) 0 0
\(307\) 19.7303 + 19.7303i 1.12607 + 1.12607i 0.990811 + 0.135254i \(0.0431852\pi\)
0.135254 + 0.990811i \(0.456815\pi\)
\(308\) 0 0
\(309\) −2.92890 0.641204i −0.166619 0.0364768i
\(310\) 0 0
\(311\) 23.7702 13.7238i 1.34789 0.778203i 0.359937 0.932977i \(-0.382798\pi\)
0.987950 + 0.154774i \(0.0494649\pi\)
\(312\) 0 0
\(313\) 6.10435 + 22.7817i 0.345038 + 1.28770i 0.892568 + 0.450913i \(0.148902\pi\)
−0.547530 + 0.836786i \(0.684432\pi\)
\(314\) 0 0
\(315\) −3.26585 + 17.4452i −0.184010 + 0.982924i
\(316\) 0 0
\(317\) −8.31005 31.0135i −0.466739 1.74189i −0.651059 0.759027i \(-0.725675\pi\)
0.184320 0.982866i \(-0.440992\pi\)
\(318\) 0 0
\(319\) 22.4804 12.9791i 1.25866 0.726690i
\(320\) 0 0
\(321\) −13.4731 2.94957i −0.751994 0.164629i
\(322\) 0 0
\(323\) −19.0240 19.0240i −1.05852 1.05852i
\(324\) 0 0
\(325\) −0.379511 + 3.60073i −0.0210515 + 0.199733i
\(326\) 0 0
\(327\) 0.196219 + 4.23711i 0.0108509 + 0.234313i
\(328\) 0 0
\(329\) −12.7122 15.3653i −0.700847 0.847117i
\(330\) 0 0
\(331\) 13.9114 24.0952i 0.764637 1.32439i −0.175801 0.984426i \(-0.556252\pi\)
0.940438 0.339965i \(-0.110415\pi\)
\(332\) 0 0
\(333\) −6.66585 5.53353i −0.365287 0.303236i
\(334\) 0 0
\(335\) 8.92243 0.700906i 0.487485 0.0382946i
\(336\) 0 0
\(337\) −5.16934 5.16934i −0.281592 0.281592i 0.552152 0.833744i \(-0.313807\pi\)
−0.833744 + 0.552152i \(0.813807\pi\)
\(338\) 0 0
\(339\) −11.7129 + 3.72713i −0.636158 + 0.202430i
\(340\) 0 0
\(341\) −4.86279 2.80753i −0.263335 0.152036i
\(342\) 0 0
\(343\) −5.16511 + 17.7854i −0.278890 + 0.960323i
\(344\) 0 0
\(345\) −9.12569 + 1.14364i −0.491311 + 0.0615715i
\(346\) 0 0
\(347\) −24.8906 6.66941i −1.33620 0.358033i −0.481175 0.876625i \(-0.659790\pi\)
−0.855022 + 0.518592i \(0.826457\pi\)
\(348\) 0 0
\(349\) 18.4866i 0.989563i −0.869017 0.494782i \(-0.835248\pi\)
0.869017 0.494782i \(-0.164752\pi\)
\(350\) 0 0
\(351\) 2.26685 3.00323i 0.120996 0.160301i
\(352\) 0 0
\(353\) −6.80767 + 25.4066i −0.362336 + 1.35226i 0.508661 + 0.860967i \(0.330141\pi\)
−0.870997 + 0.491289i \(0.836526\pi\)
\(354\) 0 0
\(355\) −7.20688 + 2.55091i −0.382501 + 0.135388i
\(356\) 0 0
\(357\) 5.62339 17.5711i 0.297621 0.929962i
\(358\) 0 0
\(359\) 4.69610 8.13389i 0.247851 0.429290i −0.715078 0.699044i \(-0.753609\pi\)
0.962929 + 0.269754i \(0.0869424\pi\)
\(360\) 0 0
\(361\) 12.8293 + 22.2210i 0.675226 + 1.16953i
\(362\) 0 0
\(363\) −1.59585 2.49043i −0.0837602 0.130713i
\(364\) 0 0
\(365\) 1.99778 + 25.4314i 0.104568 + 1.33114i
\(366\) 0 0
\(367\) 3.54474 13.2291i 0.185034 0.690555i −0.809590 0.586996i \(-0.800310\pi\)
0.994623 0.103559i \(-0.0330231\pi\)
\(368\) 0 0
\(369\) 21.8233 15.4534i 1.13607 0.804471i
\(370\) 0 0
\(371\) −4.79845 28.3641i −0.249123 1.47259i
\(372\) 0 0
\(373\) 7.60558 + 28.3844i 0.393802 + 1.46969i 0.823811 + 0.566865i \(0.191844\pi\)
−0.430008 + 0.902825i \(0.641489\pi\)
\(374\) 0 0
\(375\) 16.5769 10.0103i 0.856028 0.516929i
\(376\) 0 0
\(377\) −4.36032 + 4.36032i −0.224568 + 0.224568i
\(378\) 0 0
\(379\) 0.342505i 0.0175933i −0.999961 0.00879664i \(-0.997200\pi\)
0.999961 0.00879664i \(-0.00280009\pi\)
\(380\) 0 0
\(381\) 13.4095 4.26701i 0.686991 0.218606i
\(382\) 0 0
\(383\) 25.0334 6.70768i 1.27915 0.342746i 0.445618 0.895223i \(-0.352984\pi\)
0.833528 + 0.552477i \(0.186317\pi\)
\(384\) 0 0
\(385\) 17.3436 + 4.94253i 0.883913 + 0.251895i
\(386\) 0 0
\(387\) 31.5491 + 5.39115i 1.60373 + 0.274047i
\(388\) 0 0
\(389\) 14.6458 + 25.3673i 0.742572 + 1.28617i 0.951321 + 0.308203i \(0.0997275\pi\)
−0.208749 + 0.977969i \(0.566939\pi\)
\(390\) 0 0
\(391\) 9.56022 0.483481
\(392\) 0 0
\(393\) −1.89247 + 1.21268i −0.0954624 + 0.0611716i
\(394\) 0 0
\(395\) −5.72467 + 30.8625i −0.288040 + 1.55286i
\(396\) 0 0
\(397\) 27.5081 7.37078i 1.38059 0.369929i 0.509257 0.860615i \(-0.329920\pi\)
0.871337 + 0.490686i \(0.163254\pi\)
\(398\) 0 0
\(399\) −16.5653 + 25.7570i −0.829300 + 1.28946i
\(400\) 0 0
\(401\) 22.3395 + 12.8977i 1.11558 + 0.644081i 0.940269 0.340432i \(-0.110573\pi\)
0.175311 + 0.984513i \(0.443907\pi\)
\(402\) 0 0
\(403\) 1.28842 + 0.345231i 0.0641807 + 0.0171972i
\(404\) 0 0
\(405\) −20.1246 + 0.0342349i −0.999999 + 0.00170114i
\(406\) 0 0
\(407\) −6.22459 + 6.22459i −0.308541 + 0.308541i
\(408\) 0 0
\(409\) 25.1282 14.5078i 1.24251 0.717364i 0.272905 0.962041i \(-0.412015\pi\)
0.969605 + 0.244677i \(0.0786820\pi\)
\(410\) 0 0
\(411\) −0.613620 + 0.673213i −0.0302677 + 0.0332071i
\(412\) 0 0
\(413\) 4.60517 + 3.27248i 0.226605 + 0.161028i
\(414\) 0 0
\(415\) −1.35544 + 2.84068i −0.0665360 + 0.139443i
\(416\) 0 0
\(417\) −27.1913 14.0636i −1.33156 0.688700i
\(418\) 0 0
\(419\) 20.0060 0.977359 0.488679 0.872463i \(-0.337479\pi\)
0.488679 + 0.872463i \(0.337479\pi\)
\(420\) 0 0
\(421\) −0.405902 −0.0197825 −0.00989124 0.999951i \(-0.503149\pi\)
−0.00989124 + 0.999951i \(0.503149\pi\)
\(422\) 0 0
\(423\) 14.4432 17.3987i 0.702252 0.845953i
\(424\) 0 0
\(425\) −18.3916 + 8.18207i −0.892125 + 0.396889i
\(426\) 0 0
\(427\) −3.54584 + 37.5251i −0.171595 + 1.81597i
\(428\) 0 0
\(429\) −2.82567 2.57554i −0.136425 0.124348i
\(430\) 0 0
\(431\) −34.8654 + 20.1295i −1.67940 + 0.969605i −0.717364 + 0.696698i \(0.754652\pi\)
−0.962041 + 0.272907i \(0.912015\pi\)
\(432\) 0 0
\(433\) −9.70713 + 9.70713i −0.466495 + 0.466495i −0.900777 0.434282i \(-0.857002\pi\)
0.434282 + 0.900777i \(0.357002\pi\)
\(434\) 0 0
\(435\) 32.6710 + 4.50842i 1.56646 + 0.216162i
\(436\) 0 0
\(437\) −15.3285 4.10727i −0.733263 0.196477i
\(438\) 0 0
\(439\) 10.6016 + 6.12083i 0.505987 + 0.292131i 0.731182 0.682182i \(-0.238969\pi\)
−0.225196 + 0.974314i \(0.572302\pi\)
\(440\) 0 0
\(441\) −20.9036 2.01023i −0.995408 0.0957255i
\(442\) 0 0
\(443\) 10.5633 2.83043i 0.501879 0.134478i 0.00100695 0.999999i \(-0.499679\pi\)
0.500872 + 0.865521i \(0.333013\pi\)
\(444\) 0 0
\(445\) 3.10547 + 0.576031i 0.147213 + 0.0273065i
\(446\) 0 0
\(447\) 19.4337 + 30.3276i 0.919184 + 1.43445i
\(448\) 0 0
\(449\) −22.4970 −1.06170 −0.530849 0.847467i \(-0.678127\pi\)
−0.530849 + 0.847467i \(0.678127\pi\)
\(450\) 0 0
\(451\) −13.5857 23.5311i −0.639725 1.10804i
\(452\) 0 0
\(453\) 18.8472 0.872807i 0.885520 0.0410080i
\(454\) 0 0
\(455\) −4.28351 0.0677631i −0.200814 0.00317678i
\(456\) 0 0
\(457\) −17.9896 + 4.82030i −0.841517 + 0.225484i −0.653732 0.756726i \(-0.726798\pi\)
−0.187785 + 0.982210i \(0.560131\pi\)
\(458\) 0 0
\(459\) 20.7613 + 2.56596i 0.969053 + 0.119769i
\(460\) 0 0
\(461\) 5.92233i 0.275830i −0.990444 0.137915i \(-0.955960\pi\)
0.990444 0.137915i \(-0.0440402\pi\)
\(462\) 0 0
\(463\) 26.3657 26.3657i 1.22532 1.22532i 0.259605 0.965715i \(-0.416408\pi\)
0.965715 0.259605i \(-0.0835922\pi\)
\(464\) 0 0
\(465\) −2.68899 6.60792i −0.124699 0.306435i
\(466\) 0 0
\(467\) 10.4566 + 39.0245i 0.483873 + 1.80584i 0.585083 + 0.810973i \(0.301062\pi\)
−0.101210 + 0.994865i \(0.532271\pi\)
\(468\) 0 0
\(469\) 1.76640 + 10.4413i 0.0815646 + 0.482136i
\(470\) 0 0
\(471\) −12.7855 11.6537i −0.589125 0.536975i
\(472\) 0 0
\(473\) 8.41731 31.4138i 0.387028 1.44441i
\(474\) 0 0
\(475\) 33.0037 5.21743i 1.51431 0.239392i
\(476\) 0 0
\(477\) 30.5922 11.3182i 1.40072 0.518224i
\(478\) 0 0
\(479\) 0.363532 + 0.629656i 0.0166102 + 0.0287697i 0.874211 0.485546i \(-0.161379\pi\)
−0.857601 + 0.514316i \(0.828046\pi\)
\(480\) 0 0
\(481\) 1.04557 1.81098i 0.0476740 0.0825738i
\(482\) 0 0
\(483\) −2.30959 10.6342i −0.105090 0.483873i
\(484\) 0 0
\(485\) 0.757485 1.58751i 0.0343956 0.0720850i
\(486\) 0 0
\(487\) 4.72938 17.6503i 0.214309 0.799812i −0.772100 0.635501i \(-0.780793\pi\)
0.986409 0.164310i \(-0.0525398\pi\)
\(488\) 0 0
\(489\) 5.77316 + 1.26388i 0.261071 + 0.0571545i
\(490\) 0 0
\(491\) 37.6269i 1.69808i −0.528330 0.849039i \(-0.677182\pi\)
0.528330 0.849039i \(-0.322818\pi\)
\(492\) 0 0
\(493\) −33.1147 8.87305i −1.49141 0.399622i
\(494\) 0 0
\(495\) −1.85526 + 20.3644i −0.0833875 + 0.915314i
\(496\) 0 0
\(497\) −3.76584 8.22455i −0.168921 0.368921i
\(498\) 0 0
\(499\) 3.10886 + 1.79490i 0.139172 + 0.0803509i 0.567969 0.823050i \(-0.307729\pi\)
−0.428797 + 0.903401i \(0.641063\pi\)
\(500\) 0 0
\(501\) 7.91864 + 24.8852i 0.353779 + 1.11179i
\(502\) 0 0
\(503\) −11.0730 11.0730i −0.493722 0.493722i 0.415754 0.909477i \(-0.363518\pi\)
−0.909477 + 0.415754i \(0.863518\pi\)
\(504\) 0 0
\(505\) −5.70237 4.87172i −0.253752 0.216789i
\(506\) 0 0
\(507\) −19.1932 9.92696i −0.852400 0.440872i
\(508\) 0 0
\(509\) 17.1754 29.7487i 0.761287 1.31859i −0.180900 0.983502i \(-0.557901\pi\)
0.942187 0.335087i \(-0.108766\pi\)
\(510\) 0 0
\(511\) −29.7607 + 5.03472i −1.31654 + 0.222723i
\(512\) 0 0
\(513\) −32.1855 13.0336i −1.42102 0.575449i
\(514\) 0 0
\(515\) −3.19030 + 2.19195i −0.140581 + 0.0965888i
\(516\) 0 0
\(517\) −16.2469 16.2469i −0.714539 0.714539i
\(518\) 0 0
\(519\) 6.43165 29.3786i 0.282318 1.28958i
\(520\) 0 0
\(521\) 23.1158 13.3459i 1.01272 0.584696i 0.100736 0.994913i \(-0.467880\pi\)
0.911988 + 0.410217i \(0.134547\pi\)
\(522\) 0 0
\(523\) 6.89247 + 25.7231i 0.301387 + 1.12479i 0.936011 + 0.351970i \(0.114488\pi\)
−0.634625 + 0.772821i \(0.718845\pi\)
\(524\) 0 0
\(525\) 13.5443 + 18.4811i 0.591124 + 0.806581i
\(526\) 0 0
\(527\) 1.91935 + 7.16310i 0.0836080 + 0.312029i
\(528\) 0 0
\(529\) −15.0350 + 8.68046i −0.653696 + 0.377411i
\(530\) 0 0
\(531\) −2.67653 + 5.81996i −0.116151 + 0.252565i
\(532\) 0 0
\(533\) 4.56410 + 4.56410i 0.197693 + 0.197693i
\(534\) 0 0
\(535\) −14.6755 + 10.0831i −0.634479 + 0.435929i
\(536\) 0 0
\(537\) −24.7103 + 1.14432i −1.06633 + 0.0493812i
\(538\) 0 0
\(539\) −3.99692 + 20.9606i −0.172160 + 0.902836i
\(540\) 0 0
\(541\) 4.10742 7.11425i 0.176592 0.305866i −0.764119 0.645075i \(-0.776826\pi\)
0.940711 + 0.339209i \(0.110159\pi\)
\(542\) 0 0
\(543\) 4.69475 9.07704i 0.201471 0.389533i
\(544\) 0 0
\(545\) 4.16343 + 3.55695i 0.178342 + 0.152363i
\(546\) 0 0
\(547\) −22.4125 22.4125i −0.958288 0.958288i 0.0408761 0.999164i \(-0.486985\pi\)
−0.999164 + 0.0408761i \(0.986985\pi\)
\(548\) 0 0
\(549\) −42.5561 + 3.94998i −1.81625 + 0.168581i
\(550\) 0 0
\(551\) 49.2829 + 28.4535i 2.09952 + 1.21216i
\(552\) 0 0
\(553\) −36.9752 3.49388i −1.57235 0.148575i
\(554\) 0 0
\(555\) −11.0975 + 1.39075i −0.471064 + 0.0590341i
\(556\) 0 0
\(557\) −35.9630 9.63625i −1.52380 0.408301i −0.602809 0.797886i \(-0.705952\pi\)
−0.920991 + 0.389585i \(0.872618\pi\)
\(558\) 0 0
\(559\) 7.72566i 0.326761i
\(560\) 0 0
\(561\) 4.54581 20.7644i 0.191924 0.876675i
\(562\) 0 0
\(563\) 5.68038 21.1995i 0.239399 0.893450i −0.736717 0.676201i \(-0.763625\pi\)
0.976116 0.217249i \(-0.0697084\pi\)
\(564\) 0 0
\(565\) −6.83360 + 14.3216i −0.287492 + 0.602514i
\(566\) 0 0
\(567\) −2.16135 23.7135i −0.0907683 0.995872i
\(568\) 0 0
\(569\) −13.0396 + 22.5852i −0.546648 + 0.946821i 0.451854 + 0.892092i \(0.350763\pi\)
−0.998501 + 0.0547292i \(0.982570\pi\)
\(570\) 0 0
\(571\) 0.341798 + 0.592011i 0.0143038 + 0.0247749i 0.873089 0.487561i \(-0.162113\pi\)
−0.858785 + 0.512336i \(0.828780\pi\)
\(572\) 0 0
\(573\) 16.0932 10.3124i 0.672305 0.430808i
\(574\) 0 0
\(575\) −6.98178 + 9.60373i −0.291161 + 0.400503i
\(576\) 0 0
\(577\) −7.48627 + 27.9391i −0.311657 + 1.16312i 0.615404 + 0.788212i \(0.288993\pi\)
−0.927061 + 0.374910i \(0.877674\pi\)
\(578\) 0 0
\(579\) 16.4322 18.0280i 0.682898 0.749219i
\(580\) 0 0
\(581\) −3.49063 1.29801i −0.144816 0.0538507i
\(582\) 0 0
\(583\) −8.57836 32.0149i −0.355279 1.32592i
\(584\) 0 0
\(585\) −0.826364 4.78684i −0.0341660 0.197912i
\(586\) 0 0
\(587\) −32.5547 + 32.5547i −1.34367 + 1.34367i −0.451304 + 0.892370i \(0.649041\pi\)
−0.892370 + 0.451304i \(0.850959\pi\)
\(588\) 0 0
\(589\) 12.3097i 0.507211i
\(590\) 0 0
\(591\) −1.21171 3.80793i −0.0498431 0.156637i
\(592\) 0 0
\(593\) −35.3500 + 9.47201i −1.45165 + 0.388969i −0.896598 0.442846i \(-0.853969\pi\)
−0.555053 + 0.831815i \(0.687302\pi\)
\(594\) 0 0
\(595\) −11.5810 20.8124i −0.474776 0.853226i
\(596\) 0 0
\(597\) 0.893145 + 19.2864i 0.0365540 + 0.789340i
\(598\) 0 0
\(599\) 16.8528 + 29.1898i 0.688585 + 1.19266i 0.972296 + 0.233754i \(0.0751010\pi\)
−0.283711 + 0.958910i \(0.591566\pi\)
\(600\) 0 0
\(601\) 7.76968 0.316932 0.158466 0.987364i \(-0.449345\pi\)
0.158466 + 0.987364i \(0.449345\pi\)
\(602\) 0 0
\(603\) −11.2616 + 4.16643i −0.458606 + 0.169670i
\(604\) 0 0
\(605\) −3.75454 0.696427i −0.152644 0.0283138i
\(606\) 0 0
\(607\) 0.00880159 0.00235838i 0.000357246 9.57237e-5i −0.258640 0.965974i \(-0.583274\pi\)
0.258998 + 0.965878i \(0.416608\pi\)
\(608\) 0 0
\(609\) −1.86990 + 38.9784i −0.0757724 + 1.57948i
\(610\) 0 0
\(611\) 4.72689 + 2.72907i 0.191229 + 0.110406i
\(612\) 0 0
\(613\) 36.9113 + 9.89035i 1.49083 + 0.399467i 0.910018 0.414568i \(-0.136067\pi\)
0.580815 + 0.814036i \(0.302734\pi\)
\(614\) 0 0
\(615\) 4.71913 34.1979i 0.190294 1.37899i
\(616\) 0 0
\(617\) −13.3739 + 13.3739i −0.538413 + 0.538413i −0.923063 0.384650i \(-0.874322\pi\)
0.384650 + 0.923063i \(0.374322\pi\)
\(618\) 0 0
\(619\) −35.2461 + 20.3493i −1.41666 + 0.817908i −0.996004 0.0893126i \(-0.971533\pi\)
−0.420655 + 0.907221i \(0.638200\pi\)
\(620\) 0 0
\(621\) 11.3621 4.81225i 0.455945 0.193109i
\(622\) 0 0
\(623\) −0.351563 + 3.72054i −0.0140851 + 0.149060i
\(624\) 0 0
\(625\) 5.21201 24.4507i 0.208480 0.978027i
\(626\) 0 0
\(627\) −16.2094 + 31.3400i −0.647342 + 1.25160i
\(628\) 0 0
\(629\) 11.6259 0.463557
\(630\) 0 0
\(631\) 12.9314 0.514789 0.257395 0.966306i \(-0.417136\pi\)
0.257395 + 0.966306i \(0.417136\pi\)
\(632\) 0 0
\(633\) −2.16569 + 4.18724i −0.0860784 + 0.166428i
\(634\) 0 0
\(635\) 7.82346 16.3961i 0.310465 0.650659i
\(636\) 0 0
\(637\) −0.371596 5.05531i −0.0147232 0.200299i
\(638\) 0 0
\(639\) 8.37071 5.92743i 0.331140 0.234485i
\(640\) 0 0
\(641\) −1.71838 + 0.992107i −0.0678719 + 0.0391859i −0.533552 0.845767i \(-0.679143\pi\)
0.465680 + 0.884953i \(0.345810\pi\)
\(642\) 0 0
\(643\) −3.02169 + 3.02169i −0.119164 + 0.119164i −0.764174 0.645010i \(-0.776853\pi\)
0.645010 + 0.764174i \(0.276853\pi\)
\(644\) 0 0
\(645\) 32.9375 24.9494i 1.29691 0.982383i
\(646\) 0 0
\(647\) 20.3963 + 5.46518i 0.801862 + 0.214858i 0.636401 0.771358i \(-0.280422\pi\)
0.165461 + 0.986216i \(0.447089\pi\)
\(648\) 0 0
\(649\) 5.63704 + 3.25455i 0.221273 + 0.127752i
\(650\) 0 0
\(651\) 7.50412 3.86545i 0.294110 0.151499i
\(652\) 0 0
\(653\) 1.47134 0.394244i 0.0575779 0.0154279i −0.229915 0.973211i \(-0.573845\pi\)
0.287493 + 0.957783i \(0.407178\pi\)
\(654\) 0 0
\(655\) −0.529213 + 2.85306i −0.0206781 + 0.111478i
\(656\) 0 0
\(657\) −11.8755 32.0986i −0.463307 1.25229i
\(658\) 0 0
\(659\) −28.8543 −1.12400 −0.562002 0.827136i \(-0.689969\pi\)
−0.562002 + 0.827136i \(0.689969\pi\)
\(660\) 0 0
\(661\) −5.34839 9.26369i −0.208028 0.360316i 0.743065 0.669219i \(-0.233371\pi\)
−0.951093 + 0.308903i \(0.900038\pi\)
\(662\) 0 0
\(663\) 0.233588 + 5.04405i 0.00907179 + 0.195894i
\(664\) 0 0
\(665\) 9.62720 + 38.3454i 0.373327 + 1.48697i
\(666\) 0 0
\(667\) −19.5326 + 5.23376i −0.756307 + 0.202652i
\(668\) 0 0
\(669\) 9.72678 + 30.5674i 0.376059 + 1.18180i
\(670\) 0 0
\(671\) 43.4275i 1.67650i
\(672\) 0 0
\(673\) 25.9024 25.9024i 0.998464 0.998464i −0.00153521 0.999999i \(-0.500489\pi\)
0.999999 + 0.00153521i \(0.000488674\pi\)
\(674\) 0 0
\(675\) −17.7395 + 18.9818i −0.682793 + 0.730612i
\(676\) 0 0
\(677\) −3.01599 11.2558i −0.115914 0.432597i 0.883440 0.468545i \(-0.155222\pi\)
−0.999354 + 0.0359478i \(0.988555\pi\)
\(678\) 0 0
\(679\) 1.95073 + 0.725393i 0.0748622 + 0.0278380i
\(680\) 0 0
\(681\) −15.9884 + 17.5412i −0.612678 + 0.672179i
\(682\) 0 0
\(683\) −4.94076 + 18.4392i −0.189053 + 0.705556i 0.804673 + 0.593718i \(0.202340\pi\)
−0.993726 + 0.111838i \(0.964326\pi\)
\(684\) 0 0
\(685\) 0.0920952 + 1.17236i 0.00351878 + 0.0447936i
\(686\) 0 0
\(687\) 17.3995 11.1495i 0.663831 0.425378i
\(688\) 0 0
\(689\) 3.93674 + 6.81863i 0.149978 + 0.259769i
\(690\) 0 0
\(691\) −21.0814 + 36.5141i −0.801976 + 1.38906i 0.116338 + 0.993210i \(0.462885\pi\)
−0.918314 + 0.395854i \(0.870449\pi\)
\(692\) 0 0
\(693\) −24.1953 0.0401546i −0.919103 0.00152535i
\(694\) 0 0
\(695\) −37.2562 + 13.1870i −1.41321 + 0.500211i
\(696\) 0 0
\(697\) −9.28775 + 34.6624i −0.351799 + 1.31293i
\(698\) 0 0
\(699\) 3.74360 17.1001i 0.141596 0.646784i
\(700\) 0 0
\(701\) 0.0274102i 0.00103527i 1.00000 0.000517635i \(0.000164768\pi\)
−1.00000 0.000517635i \(0.999835\pi\)
\(702\) 0 0
\(703\) −18.6406 4.99474i −0.703045 0.188380i
\(704\) 0 0
\(705\) −3.63003 28.9659i −0.136715 1.09092i
\(706\) 0 0
\(707\) 5.14039 7.23376i 0.193324 0.272054i
\(708\) 0 0
\(709\) −24.5893 14.1966i −0.923471 0.533166i −0.0387299 0.999250i \(-0.512331\pi\)
−0.884741 + 0.466084i \(0.845665\pi\)
\(710\) 0 0
\(711\) −3.89210 41.9325i −0.145965 1.57259i
\(712\) 0 0
\(713\) 3.09302 + 3.09302i 0.115834 + 0.115834i
\(714\) 0 0
\(715\) −4.92074 + 0.386550i −0.184025 + 0.0144562i
\(716\) 0 0
\(717\) 17.0444 32.9543i 0.636533 1.23070i
\(718\) 0 0
\(719\) −6.78490 + 11.7518i −0.253034 + 0.438268i −0.964360 0.264595i \(-0.914762\pi\)
0.711326 + 0.702863i \(0.248095\pi\)
\(720\) 0 0
\(721\) −2.91948 3.52879i −0.108727 0.131419i
\(722\) 0 0
\(723\) 17.3992 0.805751i 0.647084 0.0299662i
\(724\) 0 0
\(725\) 33.0970 26.7855i 1.22919 0.994787i
\(726\) 0 0
\(727\) −11.5270 11.5270i −0.427515 0.427515i 0.460266 0.887781i \(-0.347754\pi\)
−0.887781 + 0.460266i \(0.847754\pi\)
\(728\) 0 0
\(729\) 25.9659 7.40084i 0.961700 0.274105i
\(730\) 0 0
\(731\) −37.1972 + 21.4758i −1.37579 + 0.794312i
\(732\) 0 0
\(733\) 3.45107 + 12.8796i 0.127468 + 0.475718i 0.999916 0.0129901i \(-0.00413499\pi\)
−0.872447 + 0.488708i \(0.837468\pi\)
\(734\) 0 0
\(735\) −20.3527 + 17.9100i −0.750721 + 0.660620i
\(736\) 0 0
\(737\) 3.15785 + 11.7853i 0.116321 + 0.434116i
\(738\) 0 0
\(739\) 25.3089 14.6121i 0.931003 0.537515i 0.0438740 0.999037i \(-0.486030\pi\)
0.887129 + 0.461522i \(0.152697\pi\)
\(740\) 0 0
\(741\) 1.79250 8.18780i 0.0658491 0.300786i
\(742\) 0 0
\(743\) 12.8645 + 12.8645i 0.471952 + 0.471952i 0.902546 0.430594i \(-0.141696\pi\)
−0.430594 + 0.902546i \(0.641696\pi\)
\(744\) 0 0
\(745\) 45.7216 + 8.48088i 1.67511 + 0.310715i
\(746\) 0 0
\(747\) 0.711286 4.16246i 0.0260246 0.152297i
\(748\) 0 0
\(749\) −13.4297 16.2326i −0.490712 0.593127i
\(750\) 0 0
\(751\) −10.6527 + 18.4510i −0.388721 + 0.673285i −0.992278 0.124035i \(-0.960416\pi\)
0.603556 + 0.797320i \(0.293750\pi\)
\(752\) 0 0
\(753\) 7.89592 + 4.08387i 0.287743 + 0.148824i
\(754\) 0 0
\(755\) 15.8218 18.5195i 0.575813 0.673992i
\(756\) 0 0
\(757\) 18.4939 + 18.4939i 0.672174 + 0.672174i 0.958217 0.286043i \(-0.0923401\pi\)
−0.286043 + 0.958217i \(0.592340\pi\)
\(758\) 0 0
\(759\) −3.80182 11.9476i −0.137997 0.433671i
\(760\) 0 0
\(761\) 29.7628 + 17.1835i 1.07890 + 0.622903i 0.930599 0.366039i \(-0.119286\pi\)
0.148300 + 0.988942i \(0.452620\pi\)
\(762\) 0 0
\(763\) −3.75311 + 5.28153i −0.135872 + 0.191204i
\(764\) 0 0
\(765\) 20.7504 17.2852i 0.750231 0.624949i
\(766\) 0 0
\(767\) −1.49356 0.400199i −0.0539294 0.0144503i
\(768\) 0 0
\(769\) 8.44100i 0.304390i −0.988350 0.152195i \(-0.951366\pi\)
0.988350 0.152195i \(-0.0486342\pi\)
\(770\) 0 0
\(771\) −18.9758 4.15425i −0.683398 0.149612i
\(772\) 0 0
\(773\) −6.28472 + 23.4549i −0.226046 + 0.843614i 0.755937 + 0.654644i \(0.227182\pi\)
−0.981983 + 0.188970i \(0.939485\pi\)
\(774\) 0 0
\(775\) −8.59739 3.30310i −0.308827 0.118651i
\(776\) 0 0
\(777\) −2.80863 12.9320i −0.100759 0.463933i
\(778\) 0 0
\(779\) 29.7833 51.5862i 1.06710 1.84827i
\(780\) 0 0
\(781\) −5.21104 9.02578i −0.186466 0.322968i
\(782\) 0 0
\(783\) −43.8224 + 6.12324i −1.56609 + 0.218827i
\(784\) 0 0
\(785\) −22.2652 + 1.74905i −0.794678 + 0.0624263i
\(786\) 0 0
\(787\) 0.522746 1.95091i 0.0186339 0.0695426i −0.955983 0.293423i \(-0.905206\pi\)
0.974617 + 0.223880i \(0.0718724\pi\)
\(788\) 0 0
\(789\) 18.2451 + 16.6301i 0.649544 + 0.592046i
\(790\) 0 0
\(791\) −17.5984 6.54408i −0.625727 0.232681i
\(792\) 0 0
\(793\) −2.67005 9.96477i −0.0948163 0.353859i
\(794\) 0 0
\(795\) 16.3571 38.8041i 0.580126 1.37624i
\(796\) 0 0
\(797\) −10.5999 + 10.5999i −0.375468 + 0.375468i −0.869464 0.493996i \(-0.835536\pi\)
0.493996 + 0.869464i \(0.335536\pi\)
\(798\) 0 0
\(799\) 30.3451i 1.07353i
\(800\) 0 0
\(801\) −4.21935 + 0.391633i −0.149084 + 0.0138377i
\(802\) 0 0
\(803\) −33.5913 + 9.00076i −1.18541 + 0.317630i
\(804\) 0 0
\(805\) −12.0540 7.21595i −0.424846 0.254329i
\(806\) 0 0
\(807\) −24.8368 + 1.15018i −0.874298 + 0.0404884i
\(808\) 0 0
\(809\) −2.50317 4.33563i −0.0880069 0.152432i 0.818662 0.574276i \(-0.194716\pi\)
−0.906669 + 0.421844i \(0.861383\pi\)
\(810\) 0 0
\(811\) 6.45712 0.226740 0.113370 0.993553i \(-0.463835\pi\)
0.113370 + 0.993553i \(0.463835\pi\)
\(812\) 0 0
\(813\) 1.57160 + 2.45259i 0.0551184 + 0.0860160i
\(814\) 0 0
\(815\) 6.28840 4.32055i 0.220273 0.151342i
\(816\) 0 0
\(817\) 68.8672 18.4529i 2.40936 0.645585i
\(818\) 0 0
\(819\) 5.55426 1.47838i 0.194082 0.0516589i
\(820\) 0 0
\(821\) −7.96631 4.59935i −0.278026 0.160518i 0.354503 0.935055i \(-0.384650\pi\)
−0.632530 + 0.774536i \(0.717983\pi\)
\(822\) 0 0
\(823\) 12.6038 + 3.37717i 0.439340 + 0.117721i 0.471707 0.881755i \(-0.343638\pi\)
−0.0323671 + 0.999476i \(0.510305\pi\)
\(824\) 0 0
\(825\) 17.5391 + 19.7307i 0.610635 + 0.686934i
\(826\) 0 0
\(827\) 8.73603 8.73603i 0.303782 0.303782i −0.538710 0.842491i \(-0.681088\pi\)
0.842491 + 0.538710i \(0.181088\pi\)
\(828\) 0 0
\(829\) −23.6216 + 13.6379i −0.820411 + 0.473665i −0.850558 0.525881i \(-0.823736\pi\)
0.0301471 + 0.999545i \(0.490402\pi\)
\(830\) 0 0
\(831\) −10.0529 9.16304i −0.348732 0.317862i
\(832\) 0 0
\(833\) 23.3071 15.8419i 0.807544 0.548889i
\(834\) 0 0
\(835\) 30.4276 + 14.5186i 1.05299 + 0.502438i
\(836\) 0 0
\(837\) 5.88673 + 7.54706i 0.203475 + 0.260864i
\(838\) 0 0
\(839\) −22.7675 −0.786022 −0.393011 0.919534i \(-0.628567\pi\)
−0.393011 + 0.919534i \(0.628567\pi\)
\(840\) 0 0
\(841\) 43.5147 1.50051
\(842\) 0 0
\(843\) 12.3277 + 6.37604i 0.424589 + 0.219602i
\(844\) 0 0
\(845\) −26.2976 + 9.30817i −0.904665 + 0.320211i
\(846\) 0 0
\(847\) 0.425043 4.49817i 0.0146046 0.154559i
\(848\) 0 0
\(849\) −1.64064 + 1.79997i −0.0563066 + 0.0617749i
\(850\) 0 0
\(851\) 5.93881 3.42877i 0.203580 0.117537i
\(852\) 0 0
\(853\) 7.75252 7.75252i 0.265441 0.265441i −0.561819 0.827260i \(-0.689898\pi\)
0.827260 + 0.561819i \(0.189898\pi\)
\(854\) 0 0
\(855\) −40.6965 + 18.7997i −1.39179 + 0.642938i
\(856\) 0 0
\(857\) 54.0758 + 14.4896i 1.84719 + 0.494954i 0.999376 0.0353310i \(-0.0112485\pi\)
0.847819 + 0.530285i \(0.177915\pi\)
\(858\) 0 0
\(859\) 14.4633 + 8.35040i 0.493482 + 0.284912i 0.726018 0.687676i \(-0.241369\pi\)
−0.232536 + 0.972588i \(0.574702\pi\)
\(860\) 0 0
\(861\) 40.8001 + 1.95730i 1.39046 + 0.0667045i
\(862\) 0 0
\(863\) 35.0073 9.38019i 1.19166 0.319305i 0.392121 0.919914i \(-0.371742\pi\)
0.799543 + 0.600609i \(0.205075\pi\)
\(864\) 0 0
\(865\) −21.9865 32.0006i −0.747565 1.08805i
\(866\) 0 0
\(867\) 1.15511 0.740183i 0.0392294 0.0251379i
\(868\) 0 0
\(869\) −42.7911 −1.45159
\(870\) 0 0
\(871\) −1.44919 2.51006i −0.0491038 0.0850502i
\(872\) 0 0
\(873\) −0.397501 + 2.32618i −0.0134534 + 0.0787294i
\(874\) 0 0
\(875\) 29.3647 + 3.56547i 0.992709 + 0.120535i
\(876\) 0 0
\(877\) 36.2427 9.71119i 1.22383 0.327924i 0.411654 0.911340i \(-0.364951\pi\)
0.812173 + 0.583416i \(0.198284\pi\)
\(878\) 0 0
\(879\) 8.10128 2.57788i 0.273249 0.0869499i
\(880\) 0 0
\(881\) 38.3229i 1.29113i −0.763704 0.645566i \(-0.776621\pi\)
0.763704 0.645566i \(-0.223379\pi\)
\(882\) 0 0
\(883\) 14.7904 14.7904i 0.497735 0.497735i −0.412997 0.910732i \(-0.635518\pi\)
0.910732 + 0.412997i \(0.135518\pi\)
\(884\) 0 0
\(885\) 3.11714 + 7.66005i 0.104781 + 0.257490i
\(886\) 0 0
\(887\) −0.221528 0.826754i −0.00743818 0.0277597i 0.962107 0.272672i \(-0.0879074\pi\)
−0.969545 + 0.244912i \(0.921241\pi\)
\(888\) 0 0
\(889\) 20.1475 + 7.49200i 0.675727 + 0.251274i
\(890\) 0 0
\(891\) −5.04942 26.9662i −0.169162 0.903403i
\(892\) 0 0
\(893\) 13.0369 48.6543i 0.436263 1.62815i
\(894\) 0 0
\(895\) −20.7437 + 24.2806i −0.693385 + 0.811611i
\(896\) 0 0
\(897\) 1.60693 + 2.50773i 0.0536539 + 0.0837305i
\(898\) 0 0
\(899\) −7.84290 13.5843i −0.261575 0.453062i
\(900\) 0 0
\(901\) −21.8867 + 37.9089i −0.729152 + 1.26293i
\(902\) 0 0
\(903\) 32.8746 + 36.1877i 1.09400 + 1.20425i
\(904\) 0 0
\(905\) −4.40211 12.4369i −0.146331 0.413417i
\(906\) 0 0
\(907\) 12.2353 45.6627i 0.406266 1.51621i −0.395443 0.918491i \(-0.629409\pi\)
0.801709 0.597715i \(-0.203925\pi\)
\(908\) 0 0
\(909\) 9.14195 + 4.20427i 0.303219 + 0.139447i
\(910\) 0 0
\(911\) 32.5777i 1.07935i 0.841875 + 0.539673i \(0.181452\pi\)
−0.841875 + 0.539673i \(0.818548\pi\)
\(912\) 0 0
\(913\) −4.14461 1.11055i −0.137167 0.0367537i
\(914\) 0 0
\(915\) −33.8610 + 43.5639i −1.11941 + 1.44018i
\(916\) 0 0
\(917\) −3.41815 0.322989i −0.112877 0.0106660i
\(918\) 0 0
\(919\) 17.0821 + 9.86237i 0.563487 + 0.325329i 0.754544 0.656250i \(-0.227858\pi\)
−0.191057 + 0.981579i \(0.561191\pi\)
\(920\) 0 0
\(921\) −46.0537 + 14.6546i −1.51752 + 0.482886i
\(922\) 0 0
\(923\) 1.75064 + 1.75064i 0.0576232 + 0.0576232i
\(924\) 0 0
\(925\) −8.49037 + 11.6789i −0.279162 + 0.383998i
\(926\) 0 0
\(927\) 3.31701 3.99577i 0.108945 0.131238i
\(928\) 0 0
\(929\) 22.4160 38.8256i 0.735444 1.27383i −0.219085 0.975706i \(-0.570307\pi\)
0.954528 0.298120i \(-0.0963595\pi\)
\(930\) 0 0
\(931\) −44.1759 + 15.3871i −1.44781 + 0.504293i
\(932\) 0 0
\(933\) 2.19922 + 47.4896i 0.0719993 + 1.55474i
\(934\) 0 0
\(935\) −15.5398 22.6176i −0.508206 0.739675i
\(936\) 0 0
\(937\) −20.1180 20.1180i −0.657228 0.657228i 0.297495 0.954723i \(-0.403849\pi\)
−0.954723 + 0.297495i \(0.903849\pi\)
\(938\) 0 0
\(939\) −39.9060 8.73634i −1.30228 0.285100i
\(940\) 0 0
\(941\) −30.7949 + 17.7794i −1.00389 + 0.579593i −0.909395 0.415933i \(-0.863455\pi\)
−0.0944896 + 0.995526i \(0.530122\pi\)
\(942\) 0 0
\(943\) 5.47836 + 20.4455i 0.178400 + 0.665798i
\(944\) 0 0
\(945\) −24.2400 18.9056i −0.788527 0.615001i
\(946\) 0 0
\(947\) 2.02075 + 7.54155i 0.0656657 + 0.245068i 0.990955 0.134194i \(-0.0428446\pi\)
−0.925289 + 0.379262i \(0.876178\pi\)
\(948\) 0 0
\(949\) 7.15438 4.13058i 0.232241 0.134084i
\(950\) 0 0
\(951\) 54.3253 + 11.8931i 1.76162 + 0.385659i
\(952\) 0 0
\(953\) 9.66000 + 9.66000i 0.312918 + 0.312918i 0.846039 0.533121i \(-0.178981\pi\)
−0.533121 + 0.846039i \(0.678981\pi\)
\(954\) 0 0
\(955\) 4.50034 24.2620i 0.145628 0.785100i
\(956\) 0 0
\(957\) 2.07989 + 44.9128i 0.0672333 + 1.45182i
\(958\) 0 0
\(959\) −1.37193 + 0.232095i −0.0443021 + 0.00749474i
\(960\) 0 0
\(961\) 13.8035 23.9083i 0.445274 0.771237i
\(962\) 0 0
\(963\) 15.2584 18.3807i 0.491696 0.592311i
\(964\) 0 0
\(965\) −2.46623 31.3947i −0.0793906 1.01063i
\(966\) 0 0
\(967\) −11.2478 11.2478i −0.361704 0.361704i 0.502736 0.864440i \(-0.332327\pi\)
−0.864440 + 0.502736i \(0.832327\pi\)
\(968\) 0 0
\(969\) 44.4051 14.1300i 1.42650 0.453922i
\(970\) 0 0
\(971\) −23.4447 13.5358i −0.752375 0.434384i 0.0741766 0.997245i \(-0.476367\pi\)
−0.826551 + 0.562861i \(0.809700\pi\)
\(972\) 0 0
\(973\) −19.4676 42.5170i −0.624103 1.36303i
\(974\) 0 0
\(975\) −5.23759 3.44899i −0.167737 0.110456i
\(976\) 0 0
\(977\) 30.8489 + 8.26594i 0.986944 + 0.264451i 0.715966 0.698135i \(-0.245986\pi\)
0.270978 + 0.962586i \(0.412653\pi\)
\(978\) 0 0
\(979\) 4.30575i 0.137612i
\(980\) 0 0
\(981\) −6.67475 3.06963i −0.213108 0.0980058i
\(982\) 0 0
\(983\) −7.40257 + 27.6268i −0.236105 + 0.881157i 0.741542 + 0.670906i \(0.234095\pi\)
−0.977648 + 0.210251i \(0.932572\pi\)
\(984\) 0 0
\(985\) −4.65603 2.22164i −0.148353 0.0707874i
\(986\) 0 0
\(987\) 33.7541 7.33087i 1.07440 0.233344i
\(988\) 0 0
\(989\) −12.6675 + 21.9407i −0.402802 + 0.697674i
\(990\) 0 0
\(991\) 9.37664 + 16.2408i 0.297859 + 0.515907i 0.975646 0.219352i \(-0.0703942\pi\)
−0.677787 + 0.735258i \(0.737061\pi\)
\(992\) 0 0
\(993\) 26.0000 + 40.5747i 0.825085 + 1.28760i
\(994\) 0 0
\(995\) 18.9510 + 16.1905i 0.600787 + 0.513272i
\(996\) 0 0
\(997\) −7.26414 + 27.1101i −0.230058 + 0.858587i 0.750257 + 0.661146i \(0.229930\pi\)
−0.980315 + 0.197441i \(0.936737\pi\)
\(998\) 0 0
\(999\) 13.8172 5.85205i 0.437156 0.185151i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 420.2.bv.c.317.5 yes 48
3.2 odd 2 inner 420.2.bv.c.317.7 yes 48
5.3 odd 4 inner 420.2.bv.c.233.3 yes 48
7.4 even 3 inner 420.2.bv.c.137.12 yes 48
15.8 even 4 inner 420.2.bv.c.233.12 yes 48
21.11 odd 6 inner 420.2.bv.c.137.3 yes 48
35.18 odd 12 inner 420.2.bv.c.53.7 yes 48
105.53 even 12 inner 420.2.bv.c.53.5 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.2.bv.c.53.5 48 105.53 even 12 inner
420.2.bv.c.53.7 yes 48 35.18 odd 12 inner
420.2.bv.c.137.3 yes 48 21.11 odd 6 inner
420.2.bv.c.137.12 yes 48 7.4 even 3 inner
420.2.bv.c.233.3 yes 48 5.3 odd 4 inner
420.2.bv.c.233.12 yes 48 15.8 even 4 inner
420.2.bv.c.317.5 yes 48 1.1 even 1 trivial
420.2.bv.c.317.7 yes 48 3.2 odd 2 inner