Properties

Label 420.2.bv.c.233.10
Level $420$
Weight $2$
Character 420.233
Analytic conductor $3.354$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [420,2,Mod(53,420)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(420, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 9, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("420.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 420.bv (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.35371688489\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 233.10
Character \(\chi\) \(=\) 420.233
Dual form 420.2.bv.c.137.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.24755 - 1.20150i) q^{3} +(0.274984 + 2.21910i) q^{5} +(0.250938 - 2.63382i) q^{7} +(0.112777 - 2.99788i) q^{9} +(1.95574 - 1.12915i) q^{11} +(-1.60840 - 1.60840i) q^{13} +(3.00931 + 2.43804i) q^{15} +(1.10647 - 4.12942i) q^{17} +(6.82987 + 3.94323i) q^{19} +(-2.85149 - 3.58734i) q^{21} +(2.31365 + 8.63467i) q^{23} +(-4.84877 + 1.22043i) q^{25} +(-3.46127 - 3.87552i) q^{27} +3.34184 q^{29} +(-2.63173 - 4.55830i) q^{31} +(1.08321 - 3.75850i) q^{33} +(5.91371 - 0.167404i) q^{35} +(-0.379022 - 1.41453i) q^{37} +(-3.93905 - 0.0740656i) q^{39} +5.07849i q^{41} +(-4.16728 - 4.16728i) q^{43} +(6.68359 - 0.574105i) q^{45} +(-12.1810 + 3.26390i) q^{47} +(-6.87406 - 1.32186i) q^{49} +(-3.58112 - 6.48110i) q^{51} +(-4.15930 - 1.11448i) q^{53} +(3.04348 + 4.02947i) q^{55} +(13.2584 - 3.28673i) q^{57} +(0.733066 + 1.26971i) q^{59} +(-4.02291 + 6.96788i) q^{61} +(-7.86759 - 1.04932i) q^{63} +(3.12690 - 4.01147i) q^{65} +(10.8869 + 2.91714i) q^{67} +(13.2610 + 7.99235i) q^{69} +9.99909i q^{71} +(0.353306 - 1.31856i) q^{73} +(-4.58274 + 7.34837i) q^{75} +(-2.48320 - 5.43442i) q^{77} +(5.66226 + 3.26911i) q^{79} +(-8.97456 - 0.676187i) q^{81} +(-7.33432 + 7.33432i) q^{83} +(9.46783 + 1.31985i) q^{85} +(4.16912 - 4.01523i) q^{87} +(-4.63460 + 8.02736i) q^{89} +(-4.63984 + 3.83262i) q^{91} +(-8.76004 - 2.52468i) q^{93} +(-6.87229 + 16.2405i) q^{95} +(7.06487 - 7.06487i) q^{97} +(-3.16448 - 5.99041i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{3} - 8 q^{7} + 32 q^{13} - 16 q^{21} + 16 q^{25} - 32 q^{27} - 64 q^{31} + 34 q^{33} - 40 q^{37} - 24 q^{43} + 30 q^{45} + 36 q^{51} + 92 q^{57} - 18 q^{63} + 28 q^{67} - 8 q^{73} - 38 q^{75}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/420\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(241\) \(281\) \(337\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.24755 1.20150i 0.720275 0.693689i
\(4\) 0 0
\(5\) 0.274984 + 2.21910i 0.122977 + 0.992410i
\(6\) 0 0
\(7\) 0.250938 2.63382i 0.0948458 0.995492i
\(8\) 0 0
\(9\) 0.112777 2.99788i 0.0375925 0.999293i
\(10\) 0 0
\(11\) 1.95574 1.12915i 0.589677 0.340450i −0.175293 0.984516i \(-0.556087\pi\)
0.764970 + 0.644066i \(0.222754\pi\)
\(12\) 0 0
\(13\) −1.60840 1.60840i −0.446089 0.446089i 0.447963 0.894052i \(-0.352150\pi\)
−0.894052 + 0.447963i \(0.852150\pi\)
\(14\) 0 0
\(15\) 3.00931 + 2.43804i 0.777000 + 0.629500i
\(16\) 0 0
\(17\) 1.10647 4.12942i 0.268359 1.00153i −0.691803 0.722087i \(-0.743183\pi\)
0.960162 0.279444i \(-0.0901501\pi\)
\(18\) 0 0
\(19\) 6.82987 + 3.94323i 1.56688 + 0.904639i 0.996530 + 0.0832371i \(0.0265259\pi\)
0.570350 + 0.821402i \(0.306807\pi\)
\(20\) 0 0
\(21\) −2.85149 3.58734i −0.622246 0.782822i
\(22\) 0 0
\(23\) 2.31365 + 8.63467i 0.482430 + 1.80045i 0.591364 + 0.806405i \(0.298590\pi\)
−0.108933 + 0.994049i \(0.534744\pi\)
\(24\) 0 0
\(25\) −4.84877 + 1.22043i −0.969753 + 0.244086i
\(26\) 0 0
\(27\) −3.46127 3.87552i −0.666121 0.745843i
\(28\) 0 0
\(29\) 3.34184 0.620563 0.310282 0.950645i \(-0.399577\pi\)
0.310282 + 0.950645i \(0.399577\pi\)
\(30\) 0 0
\(31\) −2.63173 4.55830i −0.472673 0.818694i 0.526838 0.849966i \(-0.323378\pi\)
−0.999511 + 0.0312718i \(0.990044\pi\)
\(32\) 0 0
\(33\) 1.08321 3.75850i 0.188563 0.654270i
\(34\) 0 0
\(35\) 5.91371 0.167404i 0.999600 0.0282964i
\(36\) 0 0
\(37\) −0.379022 1.41453i −0.0623108 0.232547i 0.927747 0.373211i \(-0.121743\pi\)
−0.990057 + 0.140663i \(0.955076\pi\)
\(38\) 0 0
\(39\) −3.93905 0.0740656i −0.630753 0.0118600i
\(40\) 0 0
\(41\) 5.07849i 0.793127i 0.918007 + 0.396564i \(0.129797\pi\)
−0.918007 + 0.396564i \(0.870203\pi\)
\(42\) 0 0
\(43\) −4.16728 4.16728i −0.635504 0.635504i 0.313939 0.949443i \(-0.398351\pi\)
−0.949443 + 0.313939i \(0.898351\pi\)
\(44\) 0 0
\(45\) 6.68359 0.574105i 0.996331 0.0855826i
\(46\) 0 0
\(47\) −12.1810 + 3.26390i −1.77679 + 0.476089i −0.989992 0.141126i \(-0.954928\pi\)
−0.786795 + 0.617214i \(0.788261\pi\)
\(48\) 0 0
\(49\) −6.87406 1.32186i −0.982009 0.188836i
\(50\) 0 0
\(51\) −3.58112 6.48110i −0.501458 0.907535i
\(52\) 0 0
\(53\) −4.15930 1.11448i −0.571324 0.153086i −0.0384204 0.999262i \(-0.512233\pi\)
−0.532904 + 0.846176i \(0.678899\pi\)
\(54\) 0 0
\(55\) 3.04348 + 4.02947i 0.410383 + 0.543334i
\(56\) 0 0
\(57\) 13.2584 3.28673i 1.75612 0.435338i
\(58\) 0 0
\(59\) 0.733066 + 1.26971i 0.0954370 + 0.165302i 0.909791 0.415067i \(-0.136242\pi\)
−0.814354 + 0.580369i \(0.802908\pi\)
\(60\) 0 0
\(61\) −4.02291 + 6.96788i −0.515081 + 0.892146i 0.484766 + 0.874644i \(0.338905\pi\)
−0.999847 + 0.0175021i \(0.994429\pi\)
\(62\) 0 0
\(63\) −7.86759 1.04932i −0.991223 0.132202i
\(64\) 0 0
\(65\) 3.12690 4.01147i 0.387844 0.497561i
\(66\) 0 0
\(67\) 10.8869 + 2.91714i 1.33005 + 0.356386i 0.852734 0.522346i \(-0.174943\pi\)
0.477316 + 0.878732i \(0.341610\pi\)
\(68\) 0 0
\(69\) 13.2610 + 7.99235i 1.59644 + 0.962166i
\(70\) 0 0
\(71\) 9.99909i 1.18667i 0.804954 + 0.593337i \(0.202190\pi\)
−0.804954 + 0.593337i \(0.797810\pi\)
\(72\) 0 0
\(73\) 0.353306 1.31856i 0.0413514 0.154325i −0.942163 0.335155i \(-0.891211\pi\)
0.983515 + 0.180829i \(0.0578781\pi\)
\(74\) 0 0
\(75\) −4.58274 + 7.34837i −0.529169 + 0.848516i
\(76\) 0 0
\(77\) −2.48320 5.43442i −0.282987 0.619309i
\(78\) 0 0
\(79\) 5.66226 + 3.26911i 0.637054 + 0.367804i 0.783479 0.621418i \(-0.213443\pi\)
−0.146425 + 0.989222i \(0.546777\pi\)
\(80\) 0 0
\(81\) −8.97456 0.676187i −0.997174 0.0751318i
\(82\) 0 0
\(83\) −7.33432 + 7.33432i −0.805046 + 0.805046i −0.983879 0.178834i \(-0.942768\pi\)
0.178834 + 0.983879i \(0.442768\pi\)
\(84\) 0 0
\(85\) 9.46783 + 1.31985i 1.02693 + 0.143158i
\(86\) 0 0
\(87\) 4.16912 4.01523i 0.446976 0.430478i
\(88\) 0 0
\(89\) −4.63460 + 8.02736i −0.491267 + 0.850899i −0.999949 0.0100553i \(-0.996799\pi\)
0.508683 + 0.860954i \(0.330133\pi\)
\(90\) 0 0
\(91\) −4.63984 + 3.83262i −0.486387 + 0.401768i
\(92\) 0 0
\(93\) −8.76004 2.52468i −0.908374 0.261797i
\(94\) 0 0
\(95\) −6.87229 + 16.2405i −0.705082 + 1.66624i
\(96\) 0 0
\(97\) 7.06487 7.06487i 0.717328 0.717328i −0.250729 0.968057i \(-0.580670\pi\)
0.968057 + 0.250729i \(0.0806703\pi\)
\(98\) 0 0
\(99\) −3.16448 5.99041i −0.318042 0.602059i
\(100\) 0 0
\(101\) −5.12029 + 2.95620i −0.509488 + 0.294153i −0.732623 0.680635i \(-0.761704\pi\)
0.223135 + 0.974787i \(0.428371\pi\)
\(102\) 0 0
\(103\) −4.21034 + 1.12816i −0.414857 + 0.111161i −0.460209 0.887810i \(-0.652226\pi\)
0.0453523 + 0.998971i \(0.485559\pi\)
\(104\) 0 0
\(105\) 7.17653 7.31419i 0.700358 0.713792i
\(106\) 0 0
\(107\) 8.47050 2.26966i 0.818874 0.219417i 0.175020 0.984565i \(-0.444001\pi\)
0.643854 + 0.765148i \(0.277334\pi\)
\(108\) 0 0
\(109\) −2.06149 + 1.19020i −0.197455 + 0.114000i −0.595468 0.803379i \(-0.703033\pi\)
0.398013 + 0.917380i \(0.369700\pi\)
\(110\) 0 0
\(111\) −2.17241 1.30930i −0.206196 0.124274i
\(112\) 0 0
\(113\) 3.88087 3.88087i 0.365082 0.365082i −0.500598 0.865680i \(-0.666887\pi\)
0.865680 + 0.500598i \(0.166887\pi\)
\(114\) 0 0
\(115\) −18.5249 + 7.50862i −1.72746 + 0.700182i
\(116\) 0 0
\(117\) −5.00317 + 4.64039i −0.462543 + 0.429004i
\(118\) 0 0
\(119\) −10.5985 3.95049i −0.971563 0.362141i
\(120\) 0 0
\(121\) −2.95006 + 5.10965i −0.268187 + 0.464514i
\(122\) 0 0
\(123\) 6.10183 + 6.33569i 0.550183 + 0.571270i
\(124\) 0 0
\(125\) −4.04159 10.4243i −0.361491 0.932376i
\(126\) 0 0
\(127\) 2.33279 2.33279i 0.207001 0.207001i −0.595990 0.802992i \(-0.703240\pi\)
0.802992 + 0.595990i \(0.203240\pi\)
\(128\) 0 0
\(129\) −10.2059 0.191900i −0.898579 0.0168959i
\(130\) 0 0
\(131\) −14.7871 8.53732i −1.29195 0.745909i −0.312952 0.949769i \(-0.601318\pi\)
−0.979000 + 0.203860i \(0.934651\pi\)
\(132\) 0 0
\(133\) 12.0996 16.9992i 1.04917 1.47402i
\(134\) 0 0
\(135\) 7.64835 8.74659i 0.658265 0.752786i
\(136\) 0 0
\(137\) 1.55344 5.79751i 0.132719 0.495315i −0.867278 0.497825i \(-0.834132\pi\)
0.999997 + 0.00250999i \(0.000798955\pi\)
\(138\) 0 0
\(139\) 1.40112i 0.118841i 0.998233 + 0.0594207i \(0.0189253\pi\)
−0.998233 + 0.0594207i \(0.981075\pi\)
\(140\) 0 0
\(141\) −11.2749 + 18.7074i −0.949518 + 1.57545i
\(142\) 0 0
\(143\) −4.96172 1.32949i −0.414920 0.111177i
\(144\) 0 0
\(145\) 0.918952 + 7.41585i 0.0763148 + 0.615853i
\(146\) 0 0
\(147\) −10.1640 + 6.61012i −0.838310 + 0.545194i
\(148\) 0 0
\(149\) 0.789937 1.36821i 0.0647142 0.112088i −0.831853 0.554996i \(-0.812720\pi\)
0.896567 + 0.442908i \(0.146053\pi\)
\(150\) 0 0
\(151\) 7.36338 + 12.7538i 0.599224 + 1.03789i 0.992936 + 0.118652i \(0.0378573\pi\)
−0.393712 + 0.919234i \(0.628809\pi\)
\(152\) 0 0
\(153\) −12.2547 3.78278i −0.990734 0.305820i
\(154\) 0 0
\(155\) 9.39161 7.09353i 0.754352 0.569766i
\(156\) 0 0
\(157\) −9.33487 2.50127i −0.745003 0.199623i −0.133703 0.991021i \(-0.542687\pi\)
−0.611301 + 0.791398i \(0.709353\pi\)
\(158\) 0 0
\(159\) −6.52801 + 3.60704i −0.517705 + 0.286057i
\(160\) 0 0
\(161\) 23.3228 3.92699i 1.83809 0.309490i
\(162\) 0 0
\(163\) 5.21038 1.39612i 0.408108 0.109352i −0.0489238 0.998803i \(-0.515579\pi\)
0.457032 + 0.889450i \(0.348912\pi\)
\(164\) 0 0
\(165\) 8.63833 + 1.37023i 0.672493 + 0.106672i
\(166\) 0 0
\(167\) 12.9779 + 12.9779i 1.00426 + 1.00426i 0.999991 + 0.00426571i \(0.00135782\pi\)
0.00426571 + 0.999991i \(0.498642\pi\)
\(168\) 0 0
\(169\) 7.82612i 0.602010i
\(170\) 0 0
\(171\) 12.5916 20.0304i 0.962902 1.53176i
\(172\) 0 0
\(173\) −1.65208 6.16566i −0.125606 0.468766i 0.874255 0.485467i \(-0.161350\pi\)
−0.999861 + 0.0167007i \(0.994684\pi\)
\(174\) 0 0
\(175\) 1.99766 + 13.0771i 0.151009 + 0.988532i
\(176\) 0 0
\(177\) 2.44010 + 0.703246i 0.183409 + 0.0528592i
\(178\) 0 0
\(179\) 5.16769 + 8.95070i 0.386251 + 0.669006i 0.991942 0.126694i \(-0.0404365\pi\)
−0.605691 + 0.795700i \(0.707103\pi\)
\(180\) 0 0
\(181\) 2.42214 0.180037 0.0900183 0.995940i \(-0.471307\pi\)
0.0900183 + 0.995940i \(0.471307\pi\)
\(182\) 0 0
\(183\) 3.35314 + 13.5263i 0.247872 + 0.999896i
\(184\) 0 0
\(185\) 3.03475 1.23006i 0.223119 0.0904357i
\(186\) 0 0
\(187\) −2.49874 9.32543i −0.182726 0.681943i
\(188\) 0 0
\(189\) −11.0760 + 8.14385i −0.805660 + 0.592378i
\(190\) 0 0
\(191\) 15.4811 + 8.93801i 1.12017 + 0.646732i 0.941445 0.337167i \(-0.109469\pi\)
0.178727 + 0.983899i \(0.442802\pi\)
\(192\) 0 0
\(193\) 4.18295 15.6110i 0.301095 1.12370i −0.635160 0.772381i \(-0.719066\pi\)
0.936255 0.351321i \(-0.114268\pi\)
\(194\) 0 0
\(195\) −0.918818 8.76150i −0.0657980 0.627424i
\(196\) 0 0
\(197\) −4.87326 4.87326i −0.347205 0.347205i 0.511862 0.859068i \(-0.328956\pi\)
−0.859068 + 0.511862i \(0.828956\pi\)
\(198\) 0 0
\(199\) 10.9994 6.35052i 0.779729 0.450176i −0.0566055 0.998397i \(-0.518028\pi\)
0.836334 + 0.548220i \(0.184694\pi\)
\(200\) 0 0
\(201\) 17.0870 9.44139i 1.20522 0.665944i
\(202\) 0 0
\(203\) 0.838595 8.80181i 0.0588578 0.617766i
\(204\) 0 0
\(205\) −11.2697 + 1.39650i −0.787107 + 0.0975361i
\(206\) 0 0
\(207\) 26.1466 5.96226i 1.81732 0.414406i
\(208\) 0 0
\(209\) 17.8099 1.23194
\(210\) 0 0
\(211\) −2.65439 −0.182736 −0.0913680 0.995817i \(-0.529124\pi\)
−0.0913680 + 0.995817i \(0.529124\pi\)
\(212\) 0 0
\(213\) 12.0139 + 12.4744i 0.823182 + 0.854731i
\(214\) 0 0
\(215\) 8.10165 10.3935i 0.552528 0.708832i
\(216\) 0 0
\(217\) −12.6662 + 5.78767i −0.859835 + 0.392893i
\(218\) 0 0
\(219\) −1.14348 2.06947i −0.0772694 0.139842i
\(220\) 0 0
\(221\) −8.42139 + 4.86209i −0.566484 + 0.327060i
\(222\) 0 0
\(223\) −8.69690 8.69690i −0.582387 0.582387i 0.353171 0.935559i \(-0.385103\pi\)
−0.935559 + 0.353171i \(0.885103\pi\)
\(224\) 0 0
\(225\) 3.11188 + 14.6737i 0.207458 + 0.978244i
\(226\) 0 0
\(227\) 3.38991 12.6513i 0.224996 0.839697i −0.757410 0.652940i \(-0.773535\pi\)
0.982406 0.186757i \(-0.0597978\pi\)
\(228\) 0 0
\(229\) 4.89414 + 2.82564i 0.323414 + 0.186723i 0.652913 0.757433i \(-0.273547\pi\)
−0.329499 + 0.944156i \(0.606880\pi\)
\(230\) 0 0
\(231\) −9.62740 3.79615i −0.633437 0.249768i
\(232\) 0 0
\(233\) −0.106478 0.397381i −0.00697559 0.0260333i 0.962350 0.271812i \(-0.0876229\pi\)
−0.969326 + 0.245779i \(0.920956\pi\)
\(234\) 0 0
\(235\) −10.5925 26.1334i −0.690978 1.70475i
\(236\) 0 0
\(237\) 10.9918 2.72484i 0.713996 0.176998i
\(238\) 0 0
\(239\) 0.602538 0.0389749 0.0194875 0.999810i \(-0.493797\pi\)
0.0194875 + 0.999810i \(0.493797\pi\)
\(240\) 0 0
\(241\) 2.80979 + 4.86670i 0.180994 + 0.313491i 0.942219 0.334996i \(-0.108735\pi\)
−0.761225 + 0.648488i \(0.775402\pi\)
\(242\) 0 0
\(243\) −12.0087 + 9.93939i −0.770357 + 0.637612i
\(244\) 0 0
\(245\) 1.04307 15.6177i 0.0666390 0.997777i
\(246\) 0 0
\(247\) −4.64287 17.3274i −0.295418 1.10252i
\(248\) 0 0
\(249\) −0.337740 + 17.9622i −0.0214034 + 1.13831i
\(250\) 0 0
\(251\) 14.7240i 0.929370i −0.885476 0.464685i \(-0.846168\pi\)
0.885476 0.464685i \(-0.153832\pi\)
\(252\) 0 0
\(253\) 14.2747 + 14.2747i 0.897444 + 0.897444i
\(254\) 0 0
\(255\) 13.3974 9.72906i 0.838979 0.609257i
\(256\) 0 0
\(257\) −23.5784 + 6.31782i −1.47078 + 0.394095i −0.903199 0.429222i \(-0.858788\pi\)
−0.567582 + 0.823317i \(0.692121\pi\)
\(258\) 0 0
\(259\) −3.82073 + 0.643317i −0.237409 + 0.0399738i
\(260\) 0 0
\(261\) 0.376884 10.0184i 0.0233285 0.620125i
\(262\) 0 0
\(263\) 15.3209 + 4.10523i 0.944729 + 0.253139i 0.698124 0.715977i \(-0.254018\pi\)
0.246605 + 0.969116i \(0.420685\pi\)
\(264\) 0 0
\(265\) 1.32940 9.53636i 0.0816644 0.585814i
\(266\) 0 0
\(267\) 3.86300 + 15.5830i 0.236412 + 0.953667i
\(268\) 0 0
\(269\) −12.1007 20.9591i −0.737796 1.27790i −0.953486 0.301438i \(-0.902533\pi\)
0.215690 0.976462i \(-0.430800\pi\)
\(270\) 0 0
\(271\) −2.17200 + 3.76201i −0.131939 + 0.228526i −0.924424 0.381366i \(-0.875454\pi\)
0.792485 + 0.609892i \(0.208787\pi\)
\(272\) 0 0
\(273\) −1.18354 + 10.3562i −0.0716308 + 0.626785i
\(274\) 0 0
\(275\) −8.10488 + 7.86181i −0.488742 + 0.474085i
\(276\) 0 0
\(277\) 5.41699 + 1.45148i 0.325475 + 0.0872108i 0.417857 0.908513i \(-0.362781\pi\)
−0.0923818 + 0.995724i \(0.529448\pi\)
\(278\) 0 0
\(279\) −13.9620 + 7.37555i −0.835884 + 0.441562i
\(280\) 0 0
\(281\) 22.7222i 1.35550i −0.735294 0.677748i \(-0.762956\pi\)
0.735294 0.677748i \(-0.237044\pi\)
\(282\) 0 0
\(283\) 1.15676 4.31710i 0.0687624 0.256625i −0.922984 0.384838i \(-0.874257\pi\)
0.991747 + 0.128213i \(0.0409241\pi\)
\(284\) 0 0
\(285\) 10.9394 + 28.5179i 0.647996 + 1.68926i
\(286\) 0 0
\(287\) 13.3759 + 1.27439i 0.789552 + 0.0752248i
\(288\) 0 0
\(289\) −1.10537 0.638183i −0.0650215 0.0375402i
\(290\) 0 0
\(291\) 0.325332 17.3023i 0.0190713 1.01428i
\(292\) 0 0
\(293\) −5.81011 + 5.81011i −0.339430 + 0.339430i −0.856153 0.516723i \(-0.827152\pi\)
0.516723 + 0.856153i \(0.327152\pi\)
\(294\) 0 0
\(295\) −2.61602 + 1.97589i −0.152311 + 0.115041i
\(296\) 0 0
\(297\) −11.1454 3.67122i −0.646719 0.213026i
\(298\) 0 0
\(299\) 10.1667 17.6092i 0.587956 1.01837i
\(300\) 0 0
\(301\) −12.0216 + 9.93015i −0.692914 + 0.572364i
\(302\) 0 0
\(303\) −2.83595 + 9.84006i −0.162921 + 0.565297i
\(304\) 0 0
\(305\) −16.5686 7.01116i −0.948717 0.401458i
\(306\) 0 0
\(307\) −14.0973 + 14.0973i −0.804576 + 0.804576i −0.983807 0.179231i \(-0.942639\pi\)
0.179231 + 0.983807i \(0.442639\pi\)
\(308\) 0 0
\(309\) −3.89714 + 6.46617i −0.221700 + 0.367848i
\(310\) 0 0
\(311\) −26.4066 + 15.2459i −1.49738 + 0.864513i −0.999995 0.00301684i \(-0.999040\pi\)
−0.497385 + 0.867530i \(0.665706\pi\)
\(312\) 0 0
\(313\) 12.1818 3.26411i 0.688558 0.184498i 0.102458 0.994737i \(-0.467329\pi\)
0.586100 + 0.810239i \(0.300663\pi\)
\(314\) 0 0
\(315\) 0.165078 17.7475i 0.00930107 0.999957i
\(316\) 0 0
\(317\) 4.56328 1.22273i 0.256299 0.0686752i −0.128382 0.991725i \(-0.540978\pi\)
0.384681 + 0.923050i \(0.374312\pi\)
\(318\) 0 0
\(319\) 6.53576 3.77342i 0.365932 0.211271i
\(320\) 0 0
\(321\) 7.84039 13.0089i 0.437608 0.726084i
\(322\) 0 0
\(323\) 23.8403 23.8403i 1.32651 1.32651i
\(324\) 0 0
\(325\) 9.76168 + 5.83580i 0.541480 + 0.323712i
\(326\) 0 0
\(327\) −1.14178 + 3.96172i −0.0631408 + 0.219084i
\(328\) 0 0
\(329\) 5.53985 + 32.9017i 0.305422 + 1.81393i
\(330\) 0 0
\(331\) 5.49408 9.51603i 0.301982 0.523048i −0.674603 0.738181i \(-0.735685\pi\)
0.976585 + 0.215133i \(0.0690184\pi\)
\(332\) 0 0
\(333\) −4.28333 + 0.976735i −0.234725 + 0.0535248i
\(334\) 0 0
\(335\) −3.47969 + 24.9613i −0.190116 + 1.36378i
\(336\) 0 0
\(337\) −23.9082 + 23.9082i −1.30237 + 1.30237i −0.375572 + 0.926793i \(0.622554\pi\)
−0.926793 + 0.375572i \(0.877446\pi\)
\(338\) 0 0
\(339\) 0.178712 9.50448i 0.00970629 0.516213i
\(340\) 0 0
\(341\) −10.2940 5.94322i −0.557450 0.321844i
\(342\) 0 0
\(343\) −5.20650 + 17.7734i −0.281125 + 0.959671i
\(344\) 0 0
\(345\) −14.0892 + 31.6252i −0.758538 + 1.70264i
\(346\) 0 0
\(347\) −1.66513 + 6.21434i −0.0893887 + 0.333603i −0.996109 0.0881292i \(-0.971911\pi\)
0.906720 + 0.421732i \(0.138578\pi\)
\(348\) 0 0
\(349\) 15.3799i 0.823266i 0.911350 + 0.411633i \(0.135041\pi\)
−0.911350 + 0.411633i \(0.864959\pi\)
\(350\) 0 0
\(351\) −0.666276 + 11.8005i −0.0355632 + 0.629862i
\(352\) 0 0
\(353\) −10.3958 2.78555i −0.553313 0.148260i −0.0286804 0.999589i \(-0.509131\pi\)
−0.524632 + 0.851329i \(0.675797\pi\)
\(354\) 0 0
\(355\) −22.1889 + 2.74959i −1.17767 + 0.145933i
\(356\) 0 0
\(357\) −17.9687 + 7.80570i −0.951005 + 0.413121i
\(358\) 0 0
\(359\) 16.2835 28.2038i 0.859410 1.48854i −0.0130825 0.999914i \(-0.504164\pi\)
0.872493 0.488627i \(-0.162502\pi\)
\(360\) 0 0
\(361\) 21.5981 + 37.4090i 1.13674 + 1.96890i
\(362\) 0 0
\(363\) 2.45891 + 9.91906i 0.129059 + 0.520616i
\(364\) 0 0
\(365\) 3.02316 + 0.421438i 0.158239 + 0.0220591i
\(366\) 0 0
\(367\) 12.4872 + 3.34594i 0.651828 + 0.174657i 0.569555 0.821953i \(-0.307115\pi\)
0.0822728 + 0.996610i \(0.473782\pi\)
\(368\) 0 0
\(369\) 15.2247 + 0.572739i 0.792566 + 0.0298156i
\(370\) 0 0
\(371\) −3.97908 + 10.6752i −0.206583 + 0.554229i
\(372\) 0 0
\(373\) −1.39327 + 0.373327i −0.0721410 + 0.0193301i −0.294709 0.955587i \(-0.595223\pi\)
0.222568 + 0.974917i \(0.428556\pi\)
\(374\) 0 0
\(375\) −17.5669 8.14886i −0.907151 0.420805i
\(376\) 0 0
\(377\) −5.37500 5.37500i −0.276826 0.276826i
\(378\) 0 0
\(379\) 36.9758i 1.89932i −0.313284 0.949659i \(-0.601429\pi\)
0.313284 0.949659i \(-0.398571\pi\)
\(380\) 0 0
\(381\) 0.107423 5.71313i 0.00550346 0.292692i
\(382\) 0 0
\(383\) −6.06426 22.6321i −0.309869 1.15645i −0.928672 0.370901i \(-0.879049\pi\)
0.618803 0.785546i \(-0.287618\pi\)
\(384\) 0 0
\(385\) 11.3767 7.00484i 0.579808 0.357000i
\(386\) 0 0
\(387\) −12.9630 + 12.0230i −0.658945 + 0.611165i
\(388\) 0 0
\(389\) −10.0292 17.3711i −0.508502 0.880752i −0.999952 0.00984566i \(-0.996866\pi\)
0.491449 0.870906i \(-0.336467\pi\)
\(390\) 0 0
\(391\) 38.2162 1.93267
\(392\) 0 0
\(393\) −28.7053 + 7.11596i −1.44799 + 0.358953i
\(394\) 0 0
\(395\) −5.69743 + 13.4641i −0.286669 + 0.677450i
\(396\) 0 0
\(397\) −9.30700 34.7342i −0.467105 1.74326i −0.649815 0.760092i \(-0.725154\pi\)
0.182710 0.983167i \(-0.441513\pi\)
\(398\) 0 0
\(399\) −5.32962 35.7451i −0.266815 1.78950i
\(400\) 0 0
\(401\) −11.0543 6.38223i −0.552027 0.318713i 0.197912 0.980220i \(-0.436584\pi\)
−0.749939 + 0.661507i \(0.769917\pi\)
\(402\) 0 0
\(403\) −3.09868 + 11.5644i −0.154356 + 0.576065i
\(404\) 0 0
\(405\) −0.967340 20.1013i −0.0480675 0.998844i
\(406\) 0 0
\(407\) −2.33848 2.33848i −0.115914 0.115914i
\(408\) 0 0
\(409\) 10.3607 5.98176i 0.512304 0.295779i −0.221476 0.975166i \(-0.571087\pi\)
0.733780 + 0.679387i \(0.237754\pi\)
\(410\) 0 0
\(411\) −5.02773 9.09916i −0.248000 0.448829i
\(412\) 0 0
\(413\) 3.52814 1.61215i 0.173608 0.0793286i
\(414\) 0 0
\(415\) −18.2924 14.2587i −0.897937 0.699933i
\(416\) 0 0
\(417\) 1.68345 + 1.74797i 0.0824389 + 0.0855985i
\(418\) 0 0
\(419\) 5.09737 0.249023 0.124511 0.992218i \(-0.460264\pi\)
0.124511 + 0.992218i \(0.460264\pi\)
\(420\) 0 0
\(421\) 18.8316 0.917796 0.458898 0.888489i \(-0.348244\pi\)
0.458898 + 0.888489i \(0.348244\pi\)
\(422\) 0 0
\(423\) 8.41103 + 36.8854i 0.408958 + 1.79343i
\(424\) 0 0
\(425\) −0.325363 + 21.3730i −0.0157824 + 1.03674i
\(426\) 0 0
\(427\) 17.3427 + 12.3441i 0.839271 + 0.597375i
\(428\) 0 0
\(429\) −7.78739 + 4.30291i −0.375979 + 0.207747i
\(430\) 0 0
\(431\) 2.55511 1.47519i 0.123075 0.0710575i −0.437198 0.899365i \(-0.644029\pi\)
0.560274 + 0.828308i \(0.310696\pi\)
\(432\) 0 0
\(433\) −5.74628 5.74628i −0.276149 0.276149i 0.555421 0.831569i \(-0.312557\pi\)
−0.831569 + 0.555421i \(0.812557\pi\)
\(434\) 0 0
\(435\) 10.0566 + 8.14755i 0.482178 + 0.390645i
\(436\) 0 0
\(437\) −18.2465 + 68.0970i −0.872850 + 3.25752i
\(438\) 0 0
\(439\) 35.1852 + 20.3142i 1.67930 + 0.969544i 0.962109 + 0.272666i \(0.0879053\pi\)
0.717190 + 0.696878i \(0.245428\pi\)
\(440\) 0 0
\(441\) −4.73800 + 20.4585i −0.225619 + 0.974216i
\(442\) 0 0
\(443\) 4.71442 + 17.5944i 0.223989 + 0.835937i 0.982807 + 0.184635i \(0.0591103\pi\)
−0.758818 + 0.651302i \(0.774223\pi\)
\(444\) 0 0
\(445\) −19.0879 8.07722i −0.904854 0.382897i
\(446\) 0 0
\(447\) −0.658423 2.65603i −0.0311423 0.125626i
\(448\) 0 0
\(449\) −29.2170 −1.37883 −0.689417 0.724364i \(-0.742133\pi\)
−0.689417 + 0.724364i \(0.742133\pi\)
\(450\) 0 0
\(451\) 5.73436 + 9.93220i 0.270020 + 0.467689i
\(452\) 0 0
\(453\) 24.5099 + 7.06385i 1.15158 + 0.331889i
\(454\) 0 0
\(455\) −9.78084 9.24234i −0.458533 0.433287i
\(456\) 0 0
\(457\) 6.29669 + 23.4995i 0.294547 + 1.09926i 0.941577 + 0.336798i \(0.109344\pi\)
−0.647030 + 0.762464i \(0.723989\pi\)
\(458\) 0 0
\(459\) −19.8334 + 10.0049i −0.925745 + 0.466987i
\(460\) 0 0
\(461\) 15.0369i 0.700340i −0.936686 0.350170i \(-0.886124\pi\)
0.936686 0.350170i \(-0.113876\pi\)
\(462\) 0 0
\(463\) 9.45318 + 9.45318i 0.439327 + 0.439327i 0.891785 0.452459i \(-0.149453\pi\)
−0.452459 + 0.891785i \(0.649453\pi\)
\(464\) 0 0
\(465\) 3.19363 20.1336i 0.148101 0.933674i
\(466\) 0 0
\(467\) 24.1420 6.46882i 1.11716 0.299341i 0.347425 0.937708i \(-0.387056\pi\)
0.769733 + 0.638366i \(0.220390\pi\)
\(468\) 0 0
\(469\) 10.4152 27.9422i 0.480929 1.29025i
\(470\) 0 0
\(471\) −14.6510 + 8.09541i −0.675084 + 0.373017i
\(472\) 0 0
\(473\) −12.8556 3.44464i −0.591100 0.158385i
\(474\) 0 0
\(475\) −37.9289 10.7844i −1.74030 0.494822i
\(476\) 0 0
\(477\) −3.81016 + 12.3434i −0.174455 + 0.565166i
\(478\) 0 0
\(479\) 6.08042 + 10.5316i 0.277821 + 0.481201i 0.970843 0.239716i \(-0.0770544\pi\)
−0.693022 + 0.720917i \(0.743721\pi\)
\(480\) 0 0
\(481\) −1.66551 + 2.88474i −0.0759405 + 0.131533i
\(482\) 0 0
\(483\) 24.3781 32.9216i 1.10924 1.49798i
\(484\) 0 0
\(485\) 17.6203 + 13.7349i 0.800098 + 0.623669i
\(486\) 0 0
\(487\) −33.3830 8.94495i −1.51273 0.405334i −0.595388 0.803438i \(-0.703002\pi\)
−0.917340 + 0.398104i \(0.869668\pi\)
\(488\) 0 0
\(489\) 4.82278 8.00202i 0.218094 0.361864i
\(490\) 0 0
\(491\) 28.8464i 1.30182i −0.759154 0.650911i \(-0.774387\pi\)
0.759154 0.650911i \(-0.225613\pi\)
\(492\) 0 0
\(493\) 3.69765 13.7998i 0.166534 0.621513i
\(494\) 0 0
\(495\) 12.4231 8.66955i 0.558377 0.389667i
\(496\) 0 0
\(497\) 26.3358 + 2.50915i 1.18132 + 0.112551i
\(498\) 0 0
\(499\) 26.3227 + 15.1974i 1.17837 + 0.680329i 0.955636 0.294551i \(-0.0951701\pi\)
0.222729 + 0.974880i \(0.428503\pi\)
\(500\) 0 0
\(501\) 31.7835 + 0.597622i 1.41998 + 0.0266998i
\(502\) 0 0
\(503\) −23.4649 + 23.4649i −1.04625 + 1.04625i −0.0473718 + 0.998877i \(0.515085\pi\)
−0.998877 + 0.0473718i \(0.984915\pi\)
\(504\) 0 0
\(505\) −7.96809 10.5495i −0.354575 0.469447i
\(506\) 0 0
\(507\) −9.40312 9.76351i −0.417607 0.433613i
\(508\) 0 0
\(509\) −0.122791 + 0.212680i −0.00544260 + 0.00942686i −0.868734 0.495279i \(-0.835066\pi\)
0.863291 + 0.504706i \(0.168399\pi\)
\(510\) 0 0
\(511\) −3.38419 1.26142i −0.149708 0.0558021i
\(512\) 0 0
\(513\) −8.35797 40.1178i −0.369013 1.77125i
\(514\) 0 0
\(515\) −3.66126 9.03292i −0.161335 0.398038i
\(516\) 0 0
\(517\) −20.1375 + 20.1375i −0.885647 + 0.885647i
\(518\) 0 0
\(519\) −9.46912 5.70700i −0.415648 0.250510i
\(520\) 0 0
\(521\) 18.1819 10.4973i 0.796561 0.459895i −0.0457060 0.998955i \(-0.514554\pi\)
0.842267 + 0.539060i \(0.181220\pi\)
\(522\) 0 0
\(523\) −21.6866 + 5.81090i −0.948288 + 0.254093i −0.699636 0.714500i \(-0.746654\pi\)
−0.248652 + 0.968593i \(0.579988\pi\)
\(524\) 0 0
\(525\) 18.2043 + 13.9141i 0.794502 + 0.607262i
\(526\) 0 0
\(527\) −21.7350 + 5.82389i −0.946794 + 0.253693i
\(528\) 0 0
\(529\) −49.2860 + 28.4553i −2.14287 + 1.23719i
\(530\) 0 0
\(531\) 3.88910 2.05445i 0.168773 0.0891555i
\(532\) 0 0
\(533\) 8.16822 8.16822i 0.353805 0.353805i
\(534\) 0 0
\(535\) 7.36585 + 18.1727i 0.318454 + 0.785675i
\(536\) 0 0
\(537\) 17.2013 + 4.95747i 0.742289 + 0.213931i
\(538\) 0 0
\(539\) −14.9364 + 5.17662i −0.643358 + 0.222973i
\(540\) 0 0
\(541\) 8.28329 14.3471i 0.356126 0.616829i −0.631184 0.775633i \(-0.717431\pi\)
0.987310 + 0.158804i \(0.0507639\pi\)
\(542\) 0 0
\(543\) 3.02175 2.91022i 0.129676 0.124889i
\(544\) 0 0
\(545\) −3.20804 4.24735i −0.137417 0.181936i
\(546\) 0 0
\(547\) −11.0461 + 11.0461i −0.472296 + 0.472296i −0.902657 0.430361i \(-0.858386\pi\)
0.430361 + 0.902657i \(0.358386\pi\)
\(548\) 0 0
\(549\) 20.4352 + 12.8460i 0.872152 + 0.548255i
\(550\) 0 0
\(551\) 22.8243 + 13.1776i 0.972348 + 0.561386i
\(552\) 0 0
\(553\) 10.0311 14.0931i 0.426567 0.599298i
\(554\) 0 0
\(555\) 2.30809 5.18083i 0.0979730 0.219914i
\(556\) 0 0
\(557\) 9.69992 36.2006i 0.410999 1.53387i −0.381719 0.924279i \(-0.624668\pi\)
0.792717 0.609589i \(-0.208666\pi\)
\(558\) 0 0
\(559\) 13.4053i 0.566982i
\(560\) 0 0
\(561\) −14.3219 8.63172i −0.604669 0.364432i
\(562\) 0 0
\(563\) 2.77219 + 0.742806i 0.116834 + 0.0313056i 0.316762 0.948505i \(-0.397404\pi\)
−0.199928 + 0.979811i \(0.564071\pi\)
\(564\) 0 0
\(565\) 9.67921 + 7.54485i 0.407207 + 0.317414i
\(566\) 0 0
\(567\) −4.03302 + 23.4677i −0.169371 + 0.985552i
\(568\) 0 0
\(569\) −17.2252 + 29.8350i −0.722119 + 1.25075i 0.238029 + 0.971258i \(0.423499\pi\)
−0.960149 + 0.279490i \(0.909835\pi\)
\(570\) 0 0
\(571\) −6.99523 12.1161i −0.292741 0.507043i 0.681716 0.731617i \(-0.261234\pi\)
−0.974457 + 0.224574i \(0.927901\pi\)
\(572\) 0 0
\(573\) 30.0525 7.44994i 1.25546 0.311226i
\(574\) 0 0
\(575\) −21.7564 39.0439i −0.907305 1.62824i
\(576\) 0 0
\(577\) −10.6964 2.86608i −0.445296 0.119317i 0.0292017 0.999574i \(-0.490703\pi\)
−0.474497 + 0.880257i \(0.657370\pi\)
\(578\) 0 0
\(579\) −13.5382 24.5013i −0.562628 1.01824i
\(580\) 0 0
\(581\) 17.4768 + 21.1578i 0.725061 + 0.877772i
\(582\) 0 0
\(583\) −9.39293 + 2.51683i −0.389015 + 0.104236i
\(584\) 0 0
\(585\) −11.6733 9.82647i −0.482630 0.406275i
\(586\) 0 0
\(587\) −3.07192 3.07192i −0.126792 0.126792i 0.640863 0.767655i \(-0.278577\pi\)
−0.767655 + 0.640863i \(0.778577\pi\)
\(588\) 0 0
\(589\) 41.5101i 1.71039i
\(590\) 0 0
\(591\) −11.9349 0.224410i −0.490936 0.00923101i
\(592\) 0 0
\(593\) 9.02050 + 33.6650i 0.370428 + 1.38245i 0.859912 + 0.510442i \(0.170518\pi\)
−0.489484 + 0.872012i \(0.662815\pi\)
\(594\) 0 0
\(595\) 5.85209 24.6054i 0.239912 1.00872i
\(596\) 0 0
\(597\) 6.09219 21.1385i 0.249337 0.865140i
\(598\) 0 0
\(599\) 13.7809 + 23.8692i 0.563073 + 0.975270i 0.997226 + 0.0744315i \(0.0237142\pi\)
−0.434153 + 0.900839i \(0.642952\pi\)
\(600\) 0 0
\(601\) −22.5471 −0.919717 −0.459858 0.887992i \(-0.652100\pi\)
−0.459858 + 0.887992i \(0.652100\pi\)
\(602\) 0 0
\(603\) 9.97304 32.3087i 0.406134 1.31571i
\(604\) 0 0
\(605\) −12.1500 5.14139i −0.493968 0.209027i
\(606\) 0 0
\(607\) −8.73196 32.5881i −0.354419 1.32271i −0.881214 0.472718i \(-0.843273\pi\)
0.526794 0.849993i \(-0.323394\pi\)
\(608\) 0 0
\(609\) −9.52921 11.9883i −0.386143 0.485790i
\(610\) 0 0
\(611\) 24.8416 + 14.3423i 1.00498 + 0.580227i
\(612\) 0 0
\(613\) 3.25023 12.1300i 0.131276 0.489927i −0.868710 0.495321i \(-0.835050\pi\)
0.999985 + 0.00539398i \(0.00171697\pi\)
\(614\) 0 0
\(615\) −12.3816 + 15.2827i −0.499274 + 0.616260i
\(616\) 0 0
\(617\) 4.35042 + 4.35042i 0.175141 + 0.175141i 0.789234 0.614093i \(-0.210478\pi\)
−0.614093 + 0.789234i \(0.710478\pi\)
\(618\) 0 0
\(619\) 7.59365 4.38420i 0.305215 0.176216i −0.339568 0.940581i \(-0.610281\pi\)
0.644783 + 0.764366i \(0.276948\pi\)
\(620\) 0 0
\(621\) 25.4556 38.8535i 1.02150 1.55914i
\(622\) 0 0
\(623\) 19.9797 + 14.2211i 0.800468 + 0.569756i
\(624\) 0 0
\(625\) 22.0211 11.8352i 0.880844 0.473407i
\(626\) 0 0
\(627\) 22.2188 21.3987i 0.887335 0.854582i
\(628\) 0 0
\(629\) −6.26056 −0.249625
\(630\) 0 0
\(631\) −28.4353 −1.13199 −0.565995 0.824409i \(-0.691508\pi\)
−0.565995 + 0.824409i \(0.691508\pi\)
\(632\) 0 0
\(633\) −3.31150 + 3.18926i −0.131620 + 0.126762i
\(634\) 0 0
\(635\) 5.81816 + 4.53520i 0.230886 + 0.179974i
\(636\) 0 0
\(637\) 8.93014 + 13.1823i 0.353825 + 0.522301i
\(638\) 0 0
\(639\) 29.9761 + 1.12767i 1.18583 + 0.0446100i
\(640\) 0 0
\(641\) 16.8799 9.74560i 0.666715 0.384928i −0.128116 0.991759i \(-0.540893\pi\)
0.794831 + 0.606831i \(0.207560\pi\)
\(642\) 0 0
\(643\) 31.2135 + 31.2135i 1.23094 + 1.23094i 0.963604 + 0.267335i \(0.0861430\pi\)
0.267335 + 0.963604i \(0.413857\pi\)
\(644\) 0 0
\(645\) −2.38062 22.7006i −0.0937366 0.893837i
\(646\) 0 0
\(647\) 0.768215 2.86702i 0.0302016 0.112714i −0.949180 0.314735i \(-0.898084\pi\)
0.979381 + 0.202021i \(0.0647510\pi\)
\(648\) 0 0
\(649\) 2.86737 + 1.65548i 0.112554 + 0.0649832i
\(650\) 0 0
\(651\) −8.84779 + 22.4389i −0.346772 + 0.879448i
\(652\) 0 0
\(653\) 2.16578 + 8.08279i 0.0847534 + 0.316304i 0.995267 0.0971743i \(-0.0309804\pi\)
−0.910514 + 0.413478i \(0.864314\pi\)
\(654\) 0 0
\(655\) 14.8789 35.1616i 0.581367 1.37388i
\(656\) 0 0
\(657\) −3.91303 1.20787i −0.152662 0.0471236i
\(658\) 0 0
\(659\) −35.1050 −1.36750 −0.683749 0.729717i \(-0.739652\pi\)
−0.683749 + 0.729717i \(0.739652\pi\)
\(660\) 0 0
\(661\) 5.30983 + 9.19689i 0.206528 + 0.357718i 0.950619 0.310361i \(-0.100450\pi\)
−0.744090 + 0.668079i \(0.767117\pi\)
\(662\) 0 0
\(663\) −4.66431 + 16.1840i −0.181147 + 0.628536i
\(664\) 0 0
\(665\) 41.0500 + 22.1758i 1.59185 + 0.859939i
\(666\) 0 0
\(667\) 7.73185 + 28.8557i 0.299379 + 1.11730i
\(668\) 0 0
\(669\) −21.2992 0.400486i −0.823474 0.0154837i
\(670\) 0 0
\(671\) 18.1698i 0.701438i
\(672\) 0 0
\(673\) 18.1638 + 18.1638i 0.700162 + 0.700162i 0.964445 0.264284i \(-0.0851355\pi\)
−0.264284 + 0.964445i \(0.585135\pi\)
\(674\) 0 0
\(675\) 21.5127 + 14.5672i 0.828024 + 0.560693i
\(676\) 0 0
\(677\) 17.9695 4.81492i 0.690626 0.185053i 0.103598 0.994619i \(-0.466965\pi\)
0.587028 + 0.809567i \(0.300298\pi\)
\(678\) 0 0
\(679\) −16.8348 20.3805i −0.646059 0.782130i
\(680\) 0 0
\(681\) −10.9715 19.8562i −0.420429 0.760890i
\(682\) 0 0
\(683\) 23.8730 + 6.39675i 0.913475 + 0.244765i 0.684794 0.728736i \(-0.259892\pi\)
0.228681 + 0.973501i \(0.426559\pi\)
\(684\) 0 0
\(685\) 13.2924 + 1.85300i 0.507876 + 0.0707996i
\(686\) 0 0
\(687\) 9.50072 2.35520i 0.362475 0.0898566i
\(688\) 0 0
\(689\) 4.89728 + 8.48234i 0.186571 + 0.323151i
\(690\) 0 0
\(691\) 22.6542 39.2382i 0.861806 1.49269i −0.00837711 0.999965i \(-0.502667\pi\)
0.870184 0.492728i \(-0.164000\pi\)
\(692\) 0 0
\(693\) −16.5718 + 6.83146i −0.629510 + 0.259506i
\(694\) 0 0
\(695\) −3.10922 + 0.385286i −0.117939 + 0.0146147i
\(696\) 0 0
\(697\) 20.9712 + 5.61922i 0.794341 + 0.212843i
\(698\) 0 0
\(699\) −0.610291 0.367820i −0.0230833 0.0139122i
\(700\) 0 0
\(701\) 7.92195i 0.299208i 0.988746 + 0.149604i \(0.0477999\pi\)
−0.988746 + 0.149604i \(0.952200\pi\)
\(702\) 0 0
\(703\) 2.98914 11.1556i 0.112738 0.420742i
\(704\) 0 0
\(705\) −44.6140 19.8758i −1.68026 0.748567i
\(706\) 0 0
\(707\) 6.50123 + 14.2278i 0.244504 + 0.535090i
\(708\) 0 0
\(709\) −31.3009 18.0716i −1.17553 0.678693i −0.220555 0.975375i \(-0.570787\pi\)
−0.954977 + 0.296681i \(0.904120\pi\)
\(710\) 0 0
\(711\) 10.4390 16.6061i 0.391492 0.622777i
\(712\) 0 0
\(713\) 33.2705 33.2705i 1.24599 1.24599i
\(714\) 0 0
\(715\) 1.58587 11.3761i 0.0593081 0.425442i
\(716\) 0 0
\(717\) 0.751698 0.723951i 0.0280727 0.0270365i
\(718\) 0 0
\(719\) 11.1558 19.3224i 0.416041 0.720604i −0.579496 0.814975i \(-0.696751\pi\)
0.995537 + 0.0943709i \(0.0300839\pi\)
\(720\) 0 0
\(721\) 1.91483 + 11.3724i 0.0713121 + 0.423530i
\(722\) 0 0
\(723\) 9.35271 + 2.69549i 0.347831 + 0.100246i
\(724\) 0 0
\(725\) −16.2038 + 4.07848i −0.601793 + 0.151471i
\(726\) 0 0
\(727\) 32.5217 32.5217i 1.20616 1.20616i 0.233902 0.972260i \(-0.424851\pi\)
0.972260 0.233902i \(-0.0751494\pi\)
\(728\) 0 0
\(729\) −3.03925 + 26.8284i −0.112565 + 0.993644i
\(730\) 0 0
\(731\) −21.8194 + 12.5974i −0.807020 + 0.465933i
\(732\) 0 0
\(733\) −18.4073 + 4.93222i −0.679889 + 0.182176i −0.582205 0.813042i \(-0.697810\pi\)
−0.0976839 + 0.995217i \(0.531143\pi\)
\(734\) 0 0
\(735\) −17.4634 20.7371i −0.644148 0.764901i
\(736\) 0 0
\(737\) 24.5859 6.58776i 0.905632 0.242663i
\(738\) 0 0
\(739\) 2.96973 1.71458i 0.109243 0.0630717i −0.444383 0.895837i \(-0.646577\pi\)
0.553626 + 0.832765i \(0.313244\pi\)
\(740\) 0 0
\(741\) −26.6112 16.0384i −0.977586 0.589187i
\(742\) 0 0
\(743\) −16.8816 + 16.8816i −0.619326 + 0.619326i −0.945358 0.326033i \(-0.894288\pi\)
0.326033 + 0.945358i \(0.394288\pi\)
\(744\) 0 0
\(745\) 3.25341 + 1.37671i 0.119196 + 0.0504387i
\(746\) 0 0
\(747\) 21.1602 + 22.8145i 0.774213 + 0.834740i
\(748\) 0 0
\(749\) −3.85232 22.8793i −0.140761 0.835993i
\(750\) 0 0
\(751\) −17.7576 + 30.7571i −0.647985 + 1.12234i 0.335618 + 0.941998i \(0.391055\pi\)
−0.983603 + 0.180345i \(0.942279\pi\)
\(752\) 0 0
\(753\) −17.6909 18.3690i −0.644693 0.669402i
\(754\) 0 0
\(755\) −26.2770 + 19.8471i −0.956317 + 0.722311i
\(756\) 0 0
\(757\) −28.5534 + 28.5534i −1.03779 + 1.03779i −0.0385344 + 0.999257i \(0.512269\pi\)
−0.999257 + 0.0385344i \(0.987731\pi\)
\(758\) 0 0
\(759\) 34.9596 + 0.657341i 1.26895 + 0.0238600i
\(760\) 0 0
\(761\) 14.9877 + 8.65316i 0.543304 + 0.313677i 0.746417 0.665479i \(-0.231773\pi\)
−0.203113 + 0.979155i \(0.565106\pi\)
\(762\) 0 0
\(763\) 2.61747 + 5.72826i 0.0947588 + 0.207377i
\(764\) 0 0
\(765\) 5.02450 28.2346i 0.181661 1.02082i
\(766\) 0 0
\(767\) 0.863132 3.22125i 0.0311659 0.116313i
\(768\) 0 0
\(769\) 16.1547i 0.582552i −0.956639 0.291276i \(-0.905920\pi\)
0.956639 0.291276i \(-0.0940799\pi\)
\(770\) 0 0
\(771\) −21.8244 + 36.2114i −0.785988 + 1.30412i
\(772\) 0 0
\(773\) −10.5936 2.83854i −0.381024 0.102095i 0.0632229 0.997999i \(-0.479862\pi\)
−0.444247 + 0.895904i \(0.646529\pi\)
\(774\) 0 0
\(775\) 18.3238 + 18.8903i 0.658209 + 0.678558i
\(776\) 0 0
\(777\) −3.99362 + 5.39320i −0.143270 + 0.193480i
\(778\) 0 0
\(779\) −20.0257 + 34.6854i −0.717493 + 1.24274i
\(780\) 0 0
\(781\) 11.2904 + 19.5556i 0.404003 + 0.699754i
\(782\) 0 0
\(783\) −11.5670 12.9513i −0.413370 0.462843i
\(784\) 0 0
\(785\) 2.98362 21.4028i 0.106490 0.763897i
\(786\) 0 0
\(787\) −8.74047 2.34200i −0.311564 0.0834834i 0.0996487 0.995023i \(-0.468228\pi\)
−0.411213 + 0.911539i \(0.634895\pi\)
\(788\) 0 0
\(789\) 24.0461 13.2867i 0.856065 0.473018i
\(790\) 0 0
\(791\) −9.24768 11.1954i −0.328810 0.398063i
\(792\) 0 0
\(793\) 17.6775 4.73668i 0.627748 0.168205i
\(794\) 0 0
\(795\) −9.79947 13.4944i −0.347551 0.478597i
\(796\) 0 0
\(797\) −16.3203 16.3203i −0.578093 0.578093i 0.356284 0.934378i \(-0.384043\pi\)
−0.934378 + 0.356284i \(0.884043\pi\)
\(798\) 0 0
\(799\) 53.9120i 1.90727i
\(800\) 0 0
\(801\) 23.5424 + 14.7993i 0.831829 + 0.522907i
\(802\) 0 0
\(803\) −0.797869 2.97769i −0.0281562 0.105080i
\(804\) 0 0
\(805\) 15.1278 + 50.6757i 0.533183 + 1.78608i
\(806\) 0 0
\(807\) −40.2788 11.6085i −1.41788 0.408639i
\(808\) 0 0
\(809\) 20.0240 + 34.6826i 0.704006 + 1.21937i 0.967049 + 0.254591i \(0.0819407\pi\)
−0.263043 + 0.964784i \(0.584726\pi\)
\(810\) 0 0
\(811\) 27.7465 0.974312 0.487156 0.873315i \(-0.338034\pi\)
0.487156 + 0.873315i \(0.338034\pi\)
\(812\) 0 0
\(813\) 1.81039 + 7.30297i 0.0634930 + 0.256126i
\(814\) 0 0
\(815\) 4.53089 + 11.1784i 0.158710 + 0.391563i
\(816\) 0 0
\(817\) −12.0294 44.8945i −0.420857 1.57066i
\(818\) 0 0
\(819\) 10.9665 + 14.3419i 0.383200 + 0.501147i
\(820\) 0 0
\(821\) −28.5058 16.4578i −0.994858 0.574381i −0.0881350 0.996109i \(-0.528091\pi\)
−0.906723 + 0.421727i \(0.861424\pi\)
\(822\) 0 0
\(823\) 6.01032 22.4308i 0.209506 0.781889i −0.778522 0.627617i \(-0.784030\pi\)
0.988028 0.154272i \(-0.0493031\pi\)
\(824\) 0 0
\(825\) −0.665265 + 19.5461i −0.0231616 + 0.680507i
\(826\) 0 0
\(827\) −21.1976 21.1976i −0.737112 0.737112i 0.234906 0.972018i \(-0.424522\pi\)
−0.972018 + 0.234906i \(0.924522\pi\)
\(828\) 0 0
\(829\) −21.2241 + 12.2537i −0.737143 + 0.425590i −0.821030 0.570886i \(-0.806600\pi\)
0.0838866 + 0.996475i \(0.473267\pi\)
\(830\) 0 0
\(831\) 8.50193 4.69773i 0.294929 0.162963i
\(832\) 0 0
\(833\) −13.0645 + 26.9233i −0.452657 + 0.932836i
\(834\) 0 0
\(835\) −25.2304 + 32.3678i −0.873134 + 1.12013i
\(836\) 0 0
\(837\) −8.55662 + 25.9768i −0.295760 + 0.897890i
\(838\) 0 0
\(839\) −16.2459 −0.560870 −0.280435 0.959873i \(-0.590479\pi\)
−0.280435 + 0.959873i \(0.590479\pi\)
\(840\) 0 0
\(841\) −17.8321 −0.614901
\(842\) 0 0
\(843\) −27.3009 28.3472i −0.940292 0.976330i
\(844\) 0 0
\(845\) 17.3669 2.15206i 0.597440 0.0740331i
\(846\) 0 0
\(847\) 12.7176 + 9.05214i 0.436983 + 0.311035i
\(848\) 0 0
\(849\) −3.74389 6.77566i −0.128490 0.232540i
\(850\) 0 0
\(851\) 11.3371 6.54546i 0.388630 0.224376i
\(852\) 0 0
\(853\) −36.9068 36.9068i −1.26367 1.26367i −0.949303 0.314364i \(-0.898209\pi\)
−0.314364 0.949303i \(-0.601791\pi\)
\(854\) 0 0
\(855\) 47.9119 + 22.4339i 1.63855 + 0.767222i
\(856\) 0 0
\(857\) −0.970024 + 3.62018i −0.0331354 + 0.123663i −0.980512 0.196457i \(-0.937056\pi\)
0.947377 + 0.320120i \(0.103723\pi\)
\(858\) 0 0
\(859\) 3.27915 + 1.89322i 0.111883 + 0.0645958i 0.554897 0.831919i \(-0.312758\pi\)
−0.443014 + 0.896515i \(0.646091\pi\)
\(860\) 0 0
\(861\) 18.2183 14.4813i 0.620877 0.493520i
\(862\) 0 0
\(863\) −4.11255 15.3482i −0.139993 0.522460i −0.999927 0.0120559i \(-0.996162\pi\)
0.859934 0.510404i \(-0.170504\pi\)
\(864\) 0 0
\(865\) 13.2279 5.36159i 0.449762 0.182299i
\(866\) 0 0
\(867\) −2.14578 + 0.531934i −0.0728746 + 0.0180654i
\(868\) 0 0
\(869\) 14.7652 0.500875
\(870\) 0 0
\(871\) −12.8186 22.2024i −0.434341 0.752300i
\(872\) 0 0
\(873\) −20.3829 21.9764i −0.689855 0.743788i
\(874\) 0 0
\(875\) −28.4699 + 8.02898i −0.962458 + 0.271429i
\(876\) 0 0
\(877\) −2.47546 9.23854i −0.0835903 0.311963i 0.911453 0.411404i \(-0.134961\pi\)
−0.995044 + 0.0994405i \(0.968295\pi\)
\(878\) 0 0
\(879\) −0.267552 + 14.2293i −0.00902429 + 0.479942i
\(880\) 0 0
\(881\) 47.9942i 1.61697i 0.588519 + 0.808483i \(0.299711\pi\)
−0.588519 + 0.808483i \(0.700289\pi\)
\(882\) 0 0
\(883\) 7.51781 + 7.51781i 0.252994 + 0.252994i 0.822197 0.569203i \(-0.192748\pi\)
−0.569203 + 0.822197i \(0.692748\pi\)
\(884\) 0 0
\(885\) −0.889582 + 5.60819i −0.0299030 + 0.188517i
\(886\) 0 0
\(887\) −18.2956 + 4.90230i −0.614307 + 0.164603i −0.552538 0.833487i \(-0.686341\pi\)
−0.0617686 + 0.998090i \(0.519674\pi\)
\(888\) 0 0
\(889\) −5.55877 6.72954i −0.186435 0.225701i
\(890\) 0 0
\(891\) −18.3154 + 8.81115i −0.613589 + 0.295185i
\(892\) 0 0
\(893\) −96.0652 25.7406i −3.21470 0.861376i
\(894\) 0 0
\(895\) −18.4414 + 13.9289i −0.616429 + 0.465591i
\(896\) 0 0
\(897\) −8.47407 34.1838i −0.282941 1.14136i
\(898\) 0 0
\(899\) −8.79482 15.2331i −0.293324 0.508052i
\(900\) 0 0
\(901\) −9.20432 + 15.9424i −0.306640 + 0.531117i
\(902\) 0 0
\(903\) −3.06648 + 26.8324i −0.102046 + 0.892926i
\(904\) 0 0
\(905\) 0.666051 + 5.37497i 0.0221403 + 0.178670i
\(906\) 0 0
\(907\) 37.1996 + 9.96761i 1.23519 + 0.330969i 0.816599 0.577205i \(-0.195857\pi\)
0.418594 + 0.908174i \(0.362523\pi\)
\(908\) 0 0
\(909\) 8.28488 + 15.6834i 0.274792 + 0.520186i
\(910\) 0 0
\(911\) 11.7562i 0.389501i −0.980853 0.194751i \(-0.937610\pi\)
0.980853 0.194751i \(-0.0623897\pi\)
\(912\) 0 0
\(913\) −6.06249 + 22.6255i −0.200639 + 0.748795i
\(914\) 0 0
\(915\) −29.0942 + 11.1605i −0.961824 + 0.368954i
\(916\) 0 0
\(917\) −26.1964 + 36.8042i −0.865083 + 1.21538i
\(918\) 0 0
\(919\) 7.47875 + 4.31786i 0.246701 + 0.142433i 0.618253 0.785979i \(-0.287841\pi\)
−0.371552 + 0.928412i \(0.621174\pi\)
\(920\) 0 0
\(921\) −0.649172 + 34.5251i −0.0213909 + 1.13764i
\(922\) 0 0
\(923\) 16.0825 16.0825i 0.529362 0.529362i
\(924\) 0 0
\(925\) 3.56413 + 6.39615i 0.117188 + 0.210304i
\(926\) 0 0
\(927\) 2.90725 + 12.7493i 0.0954865 + 0.418743i
\(928\) 0 0
\(929\) 24.2232 41.9559i 0.794739 1.37653i −0.128266 0.991740i \(-0.540941\pi\)
0.923005 0.384788i \(-0.125725\pi\)
\(930\) 0 0
\(931\) −41.7366 36.1341i −1.36786 1.18425i
\(932\) 0 0
\(933\) −14.6257 + 50.7476i −0.478823 + 1.66140i
\(934\) 0 0
\(935\) 20.0069 8.10929i 0.654296 0.265202i
\(936\) 0 0
\(937\) 41.6088 41.6088i 1.35930 1.35930i 0.484521 0.874779i \(-0.338994\pi\)
0.874779 0.484521i \(-0.161006\pi\)
\(938\) 0 0
\(939\) 11.2756 18.7087i 0.367966 0.610534i
\(940\) 0 0
\(941\) −38.9456 + 22.4852i −1.26959 + 0.732997i −0.974910 0.222599i \(-0.928546\pi\)
−0.294679 + 0.955596i \(0.595213\pi\)
\(942\) 0 0
\(943\) −43.8511 + 11.7499i −1.42799 + 0.382628i
\(944\) 0 0
\(945\) −21.1177 22.3393i −0.686959 0.726696i
\(946\) 0 0
\(947\) −16.7281 + 4.48228i −0.543591 + 0.145655i −0.520157 0.854071i \(-0.674127\pi\)
−0.0234337 + 0.999725i \(0.507460\pi\)
\(948\) 0 0
\(949\) −2.68902 + 1.55251i −0.0872892 + 0.0503964i
\(950\) 0 0
\(951\) 4.22382 7.00821i 0.136967 0.227257i
\(952\) 0 0
\(953\) 12.2360 12.2360i 0.396362 0.396362i −0.480586 0.876948i \(-0.659576\pi\)
0.876948 + 0.480586i \(0.159576\pi\)
\(954\) 0 0
\(955\) −15.5772 + 36.8118i −0.504068 + 1.19120i
\(956\) 0 0
\(957\) 3.61992 12.5603i 0.117016 0.406016i
\(958\) 0 0
\(959\) −14.8798 5.54630i −0.480494 0.179099i
\(960\) 0 0
\(961\) 1.64796 2.85434i 0.0531599 0.0920756i
\(962\) 0 0
\(963\) −5.84890 25.6495i −0.188478 0.826544i
\(964\) 0 0
\(965\) 35.7925 + 4.98959i 1.15220 + 0.160621i
\(966\) 0 0
\(967\) −22.2486 + 22.2486i −0.715466 + 0.715466i −0.967673 0.252207i \(-0.918844\pi\)
0.252207 + 0.967673i \(0.418844\pi\)
\(968\) 0 0
\(969\) 1.09783 58.3863i 0.0352674 1.87564i
\(970\) 0 0
\(971\) −40.2070 23.2135i −1.29030 0.744957i −0.311595 0.950215i \(-0.600863\pi\)
−0.978708 + 0.205258i \(0.934197\pi\)
\(972\) 0 0
\(973\) 3.69030 + 0.351595i 0.118306 + 0.0112716i
\(974\) 0 0
\(975\) 19.1899 4.44822i 0.614570 0.142457i
\(976\) 0 0
\(977\) 1.13940 4.25230i 0.0364526 0.136043i −0.945301 0.326198i \(-0.894232\pi\)
0.981754 + 0.190155i \(0.0608991\pi\)
\(978\) 0 0
\(979\) 20.9326i 0.669008i
\(980\) 0 0
\(981\) 3.33559 + 6.31431i 0.106497 + 0.201601i
\(982\) 0 0
\(983\) 9.69254 + 2.59711i 0.309144 + 0.0828349i 0.410056 0.912060i \(-0.365509\pi\)
−0.100912 + 0.994895i \(0.532176\pi\)
\(984\) 0 0
\(985\) 9.47415 12.1543i 0.301872 0.387268i
\(986\) 0 0
\(987\) 46.4428 + 34.3905i 1.47829 + 1.09466i
\(988\) 0 0
\(989\) 26.3414 45.6247i 0.837609 1.45078i
\(990\) 0 0
\(991\) 1.27892 + 2.21515i 0.0406261 + 0.0703666i 0.885624 0.464404i \(-0.153731\pi\)
−0.844997 + 0.534770i \(0.820398\pi\)
\(992\) 0 0
\(993\) −4.57939 18.4729i −0.145322 0.586220i
\(994\) 0 0
\(995\) 17.1171 + 22.6625i 0.542648 + 0.718449i
\(996\) 0 0
\(997\) 49.9388 + 13.3811i 1.58158 + 0.423783i 0.939414 0.342784i \(-0.111370\pi\)
0.642164 + 0.766567i \(0.278037\pi\)
\(998\) 0 0
\(999\) −4.17013 + 6.36497i −0.131937 + 0.201379i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 420.2.bv.c.233.10 yes 48
3.2 odd 2 inner 420.2.bv.c.233.5 yes 48
5.2 odd 4 inner 420.2.bv.c.317.4 yes 48
7.4 even 3 inner 420.2.bv.c.53.2 48
15.2 even 4 inner 420.2.bv.c.317.2 yes 48
21.11 odd 6 inner 420.2.bv.c.53.4 yes 48
35.32 odd 12 inner 420.2.bv.c.137.5 yes 48
105.32 even 12 inner 420.2.bv.c.137.10 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.2.bv.c.53.2 48 7.4 even 3 inner
420.2.bv.c.53.4 yes 48 21.11 odd 6 inner
420.2.bv.c.137.5 yes 48 35.32 odd 12 inner
420.2.bv.c.137.10 yes 48 105.32 even 12 inner
420.2.bv.c.233.5 yes 48 3.2 odd 2 inner
420.2.bv.c.233.10 yes 48 1.1 even 1 trivial
420.2.bv.c.317.2 yes 48 15.2 even 4 inner
420.2.bv.c.317.4 yes 48 5.2 odd 4 inner