Newspace parameters
| Level: | \( N \) | \(=\) | \( 42 = 2 \cdot 3 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 12 \) |
| Character orbit: | \([\chi]\) | \(=\) | 42.f (of order \(6\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(32.2704135835\) |
| Analytic rank: | \(0\) |
| Dimension: | \(60\) |
| Relative dimension: | \(30\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5.1 | −27.7128 | − | 16.0000i | −420.023 | − | 26.9724i | 512.000 | + | 886.810i | 956.472 | − | 1656.66i | 11208.5 | + | 7467.85i | −43035.3 | − | 11193.3i | − | 32768.0i | 175692. | + | 22658.1i | −53013.1 | + | 30607.1i | |
| 5.2 | −27.7128 | − | 16.0000i | −357.754 | − | 221.718i | 512.000 | + | 886.810i | 3644.72 | − | 6312.84i | 6366.89 | + | 11868.5i | 18530.2 | − | 40422.3i | − | 32768.0i | 78829.4 | + | 158641.i | −202011. | + | 116631.i | |
| 5.3 | −27.7128 | − | 16.0000i | −317.166 | + | 276.681i | 512.000 | + | 886.810i | 1584.15 | − | 2743.83i | 13216.5 | − | 2592.95i | 44235.4 | − | 4533.49i | − | 32768.0i | 24042.2 | − | 175508.i | −87802.6 | + | 50692.9i | |
| 5.4 | −27.7128 | − | 16.0000i | −296.285 | − | 298.935i | 512.000 | + | 886.810i | −3221.21 | + | 5579.29i | 3427.95 | + | 13024.9i | 25344.2 | + | 36537.6i | − | 32768.0i | −1576.82 | + | 177140.i | 178537. | − | 103079.i | |
| 5.5 | −27.7128 | − | 16.0000i | −289.106 | + | 305.883i | 512.000 | + | 886.810i | −6887.81 | + | 11930.0i | 12906.1 | − | 3851.19i | −11166.0 | − | 43042.4i | − | 32768.0i | −9982.23 | − | 176866.i | 381761. | − | 220410.i | |
| 5.6 | −27.7128 | − | 16.0000i | −131.210 | + | 399.914i | 512.000 | + | 886.810i | 6258.52 | − | 10840.1i | 10034.8 | − | 8983.37i | −41292.3 | + | 16500.6i | − | 32768.0i | −142715. | − | 104945.i | −346882. | + | 200273.i | |
| 5.7 | −27.7128 | − | 16.0000i | −76.1744 | − | 413.938i | 512.000 | + | 886.810i | −4602.68 | + | 7972.08i | −4512.00 | + | 12690.2i | −26134.7 | − | 35976.5i | − | 32768.0i | −165542. | + | 63062.9i | 255107. | − | 147286.i | |
| 5.8 | −27.7128 | − | 16.0000i | −13.7199 | − | 420.665i | 512.000 | + | 886.810i | 5294.36 | − | 9170.11i | −6350.42 | + | 11877.3i | 18339.4 | + | 40509.2i | − | 32768.0i | −176771. | + | 11543.0i | −293443. | + | 169420.i | |
| 5.9 | −27.7128 | − | 16.0000i | 76.3670 | + | 413.902i | 512.000 | + | 886.810i | −4176.66 | + | 7234.19i | 4506.09 | − | 12692.3i | −20634.7 | + | 39389.6i | − | 32768.0i | −165483. | + | 63217.0i | 231494. | − | 133653.i | |
| 5.10 | −27.7128 | − | 16.0000i | 142.282 | + | 396.110i | 512.000 | + | 886.810i | −497.386 | + | 861.497i | 2394.71 | − | 13253.8i | 43875.4 | + | 7230.30i | − | 32768.0i | −136659. | + | 112719.i | 27567.9 | − | 15916.3i | |
| 5.11 | −27.7128 | − | 16.0000i | 213.694 | − | 362.604i | 512.000 | + | 886.810i | −1022.28 | + | 1770.64i | −11723.7 | + | 6629.68i | −41388.4 | + | 16258.2i | − | 32768.0i | −85816.7 | − | 154973.i | 56660.5 | − | 32712.9i | |
| 5.12 | −27.7128 | − | 16.0000i | 300.225 | + | 294.978i | 512.000 | + | 886.810i | 407.491 | − | 705.796i | −3600.42 | − | 12978.3i | −18834.9 | − | 40281.2i | − | 32768.0i | 3122.76 | + | 177119.i | −22585.5 | + | 13039.7i | |
| 5.13 | −27.7128 | − | 16.0000i | 357.546 | − | 222.054i | 512.000 | + | 886.810i | 4010.83 | − | 6946.96i | −13461.5 | + | 433.002i | 8015.68 | − | 43738.7i | − | 32768.0i | 78531.2 | − | 158789.i | −222303. | + | 128347.i | |
| 5.14 | −27.7128 | − | 16.0000i | 410.418 | − | 93.2952i | 512.000 | + | 886.810i | −4829.27 | + | 8364.54i | −12866.6 | − | 3981.22i | 44317.7 | + | 3642.71i | − | 32768.0i | 159739. | − | 76580.1i | 267665. | − | 154537.i | |
| 5.15 | −27.7128 | − | 16.0000i | 420.827 | + | 7.21258i | 512.000 | + | 886.810i | 1974.84 | − | 3420.52i | −11546.9 | − | 6933.11i | −23996.1 | + | 37436.8i | − | 32768.0i | 177043. | + | 6070.49i | −109457. | + | 63194.8i | |
| 5.16 | 27.7128 | + | 16.0000i | −411.940 | − | 86.3257i | 512.000 | + | 886.810i | −6258.52 | + | 10840.1i | −10034.8 | − | 8983.37i | −41292.3 | + | 16500.6i | 32768.0i | 162243. | + | 71122.1i | −346882. | + | 200273.i | ||
| 5.17 | 27.7128 | + | 16.0000i | −409.456 | + | 97.4316i | 512.000 | + | 886.810i | 6887.81 | − | 11930.0i | −12906.1 | − | 3851.19i | −11166.0 | − | 43042.4i | 32768.0i | 158161. | − | 79787.9i | 381761. | − | 220410.i | ||
| 5.18 | 27.7128 | + | 16.0000i | −398.196 | + | 136.334i | 512.000 | + | 886.810i | −1584.15 | + | 2743.83i | −13216.5 | − | 2592.95i | 44235.4 | − | 4533.49i | 32768.0i | 139973. | − | 108575.i | −87802.6 | + | 50692.9i | ||
| 5.19 | 27.7128 | + | 16.0000i | −320.266 | − | 273.087i | 512.000 | + | 886.810i | 4176.66 | − | 7234.19i | −4506.09 | − | 12692.3i | −20634.7 | + | 39389.6i | 32768.0i | 27994.1 | + | 174921.i | 231494. | − | 133653.i | ||
| 5.20 | 27.7128 | + | 16.0000i | −271.900 | − | 321.275i | 512.000 | + | 886.810i | 497.386 | − | 861.497i | −2394.71 | − | 13253.8i | 43875.4 | + | 7230.30i | 32768.0i | −29287.9 | + | 174709.i | 27567.9 | − | 15916.3i | ||
| See all 60 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 7.d | odd | 6 | 1 | inner |
| 21.g | even | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 42.12.f.a | ✓ | 60 |
| 3.b | odd | 2 | 1 | inner | 42.12.f.a | ✓ | 60 |
| 7.d | odd | 6 | 1 | inner | 42.12.f.a | ✓ | 60 |
| 21.g | even | 6 | 1 | inner | 42.12.f.a | ✓ | 60 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 42.12.f.a | ✓ | 60 | 1.a | even | 1 | 1 | trivial |
| 42.12.f.a | ✓ | 60 | 3.b | odd | 2 | 1 | inner |
| 42.12.f.a | ✓ | 60 | 7.d | odd | 6 | 1 | inner |
| 42.12.f.a | ✓ | 60 | 21.g | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{12}^{\mathrm{new}}(42, [\chi])\).