Properties

Label 4160.2.a.bv
Level $4160$
Weight $2$
Character orbit 4160.a
Self dual yes
Analytic conductor $33.218$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4160,2,Mod(1,4160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4160.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4160 = 2^{6} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4160.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,4,0,0,0,12,0,0,0,4,0,0,0,24,0,0,0,16,0,0,0,4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.2177672409\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.25088.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 2080)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + q^{5} + (\beta_{2} - \beta_1) q^{7} + ( - \beta_{3} + 3) q^{9} - \beta_1 q^{11} + q^{13} + \beta_{2} q^{15} + 6 q^{17} - \beta_1 q^{19} + 4 q^{21} + ( - \beta_{2} - 2 \beta_1) q^{23}+ \cdots + ( - 6 \beta_{2} + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + 12 q^{9} + 4 q^{13} + 24 q^{17} + 16 q^{21} + 4 q^{25} - 8 q^{33} - 16 q^{37} + 8 q^{41} + 12 q^{45} + 20 q^{49} - 8 q^{53} - 8 q^{57} - 32 q^{61} + 4 q^{65} - 40 q^{69} + 16 q^{73} + 32 q^{77}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 6x^{2} + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - 6\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} - 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{2} + 3\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.595188
2.37608
−2.37608
−0.595188
0 −3.36028 0 1.00000 0 −1.19038 0 8.29150 0
1.2 0 −0.841723 0 1.00000 0 −4.75216 0 −2.29150 0
1.3 0 0.841723 0 1.00000 0 4.75216 0 −2.29150 0
1.4 0 3.36028 0 1.00000 0 1.19038 0 8.29150 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(13\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4160.2.a.bv 4
4.b odd 2 1 inner 4160.2.a.bv 4
8.b even 2 1 2080.2.a.r 4
8.d odd 2 1 2080.2.a.r 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2080.2.a.r 4 8.b even 2 1
2080.2.a.r 4 8.d odd 2 1
4160.2.a.bv 4 1.a even 1 1 trivial
4160.2.a.bv 4 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4160))\):

\( T_{3}^{4} - 12T_{3}^{2} + 8 \) Copy content Toggle raw display
\( T_{7}^{4} - 24T_{7}^{2} + 32 \) Copy content Toggle raw display
\( T_{11}^{4} - 20T_{11}^{2} + 72 \) Copy content Toggle raw display
\( T_{17} - 6 \) Copy content Toggle raw display
\( T_{19}^{4} - 20T_{19}^{2} + 72 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 12T^{2} + 8 \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 24T^{2} + 32 \) Copy content Toggle raw display
$11$ \( T^{4} - 20T^{2} + 72 \) Copy content Toggle raw display
$13$ \( (T - 1)^{4} \) Copy content Toggle raw display
$17$ \( (T - 6)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - 20T^{2} + 72 \) Copy content Toggle raw display
$23$ \( T^{4} - 108T^{2} + 2888 \) Copy content Toggle raw display
$29$ \( (T^{2} - 28)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - 52T^{2} + 648 \) Copy content Toggle raw display
$37$ \( (T^{2} + 8 T - 12)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 4 T - 108)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 108T^{2} + 648 \) Copy content Toggle raw display
$47$ \( T^{4} - 24T^{2} + 32 \) Copy content Toggle raw display
$53$ \( (T^{2} + 4 T - 108)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 180T^{2} + 6728 \) Copy content Toggle raw display
$61$ \( (T^{2} + 16 T + 36)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 40T^{2} + 288 \) Copy content Toggle raw display
$71$ \( T^{4} - 180T^{2} + 5832 \) Copy content Toggle raw display
$73$ \( (T^{2} - 8 T - 12)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - 80T^{2} + 1152 \) Copy content Toggle raw display
$83$ \( T^{4} - 24T^{2} + 32 \) Copy content Toggle raw display
$89$ \( (T^{2} - 12 T - 76)^{2} \) Copy content Toggle raw display
$97$ \( (T + 2)^{4} \) Copy content Toggle raw display
show more
show less