Properties

Label 4160.2.a.bu.1.4
Level $4160$
Weight $2$
Character 4160.1
Self dual yes
Analytic conductor $33.218$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4160,2,Mod(1,4160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4160.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4160 = 2^{6} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4160.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,4,0,0,0,4,0,0,0,4,0,0,0,-8,0,0,0,16,0,0,0,4,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.2177672409\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{16})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 2080)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.84776\) of defining polynomial
Character \(\chi\) \(=\) 4160.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.61313 q^{3} +1.00000 q^{5} +3.69552 q^{7} +3.82843 q^{9} +1.08239 q^{11} +1.00000 q^{13} +2.61313 q^{15} -7.65685 q^{17} +1.08239 q^{19} +9.65685 q^{21} +5.67459 q^{23} +1.00000 q^{25} +2.16478 q^{27} +8.82843 q^{29} +8.47343 q^{31} +2.82843 q^{33} +3.69552 q^{35} -10.4853 q^{37} +2.61313 q^{39} -2.00000 q^{41} -6.94269 q^{43} +3.82843 q^{45} -11.0866 q^{47} +6.65685 q^{49} -20.0083 q^{51} -9.31371 q^{53} +1.08239 q^{55} +2.82843 q^{57} +9.37011 q^{59} +8.82843 q^{61} +14.1480 q^{63} +1.00000 q^{65} +13.2513 q^{67} +14.8284 q^{69} +11.5349 q^{71} +0.828427 q^{73} +2.61313 q^{75} +4.00000 q^{77} -8.28772 q^{79} -5.82843 q^{81} +3.69552 q^{83} -7.65685 q^{85} +23.0698 q^{87} -11.6569 q^{89} +3.69552 q^{91} +22.1421 q^{93} +1.08239 q^{95} -5.31371 q^{97} +4.14386 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + 4 q^{9} + 4 q^{13} - 8 q^{17} + 16 q^{21} + 4 q^{25} + 24 q^{29} - 8 q^{37} - 8 q^{41} + 4 q^{45} + 4 q^{49} + 8 q^{53} + 24 q^{61} + 4 q^{65} + 48 q^{69} - 8 q^{73} + 16 q^{77} - 12 q^{81}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.61313 1.50869 0.754344 0.656479i \(-0.227955\pi\)
0.754344 + 0.656479i \(0.227955\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 3.69552 1.39677 0.698387 0.715720i \(-0.253901\pi\)
0.698387 + 0.715720i \(0.253901\pi\)
\(8\) 0 0
\(9\) 3.82843 1.27614
\(10\) 0 0
\(11\) 1.08239 0.326354 0.163177 0.986597i \(-0.447826\pi\)
0.163177 + 0.986597i \(0.447826\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 2.61313 0.674706
\(16\) 0 0
\(17\) −7.65685 −1.85706 −0.928530 0.371257i \(-0.878927\pi\)
−0.928530 + 0.371257i \(0.878927\pi\)
\(18\) 0 0
\(19\) 1.08239 0.248318 0.124159 0.992262i \(-0.460377\pi\)
0.124159 + 0.992262i \(0.460377\pi\)
\(20\) 0 0
\(21\) 9.65685 2.10730
\(22\) 0 0
\(23\) 5.67459 1.18323 0.591617 0.806219i \(-0.298490\pi\)
0.591617 + 0.806219i \(0.298490\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 2.16478 0.416613
\(28\) 0 0
\(29\) 8.82843 1.63940 0.819699 0.572795i \(-0.194141\pi\)
0.819699 + 0.572795i \(0.194141\pi\)
\(30\) 0 0
\(31\) 8.47343 1.52187 0.760936 0.648827i \(-0.224740\pi\)
0.760936 + 0.648827i \(0.224740\pi\)
\(32\) 0 0
\(33\) 2.82843 0.492366
\(34\) 0 0
\(35\) 3.69552 0.624657
\(36\) 0 0
\(37\) −10.4853 −1.72377 −0.861885 0.507104i \(-0.830716\pi\)
−0.861885 + 0.507104i \(0.830716\pi\)
\(38\) 0 0
\(39\) 2.61313 0.418435
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) −6.94269 −1.05875 −0.529376 0.848388i \(-0.677574\pi\)
−0.529376 + 0.848388i \(0.677574\pi\)
\(44\) 0 0
\(45\) 3.82843 0.570708
\(46\) 0 0
\(47\) −11.0866 −1.61714 −0.808570 0.588400i \(-0.799758\pi\)
−0.808570 + 0.588400i \(0.799758\pi\)
\(48\) 0 0
\(49\) 6.65685 0.950979
\(50\) 0 0
\(51\) −20.0083 −2.80173
\(52\) 0 0
\(53\) −9.31371 −1.27934 −0.639668 0.768651i \(-0.720928\pi\)
−0.639668 + 0.768651i \(0.720928\pi\)
\(54\) 0 0
\(55\) 1.08239 0.145950
\(56\) 0 0
\(57\) 2.82843 0.374634
\(58\) 0 0
\(59\) 9.37011 1.21988 0.609942 0.792446i \(-0.291193\pi\)
0.609942 + 0.792446i \(0.291193\pi\)
\(60\) 0 0
\(61\) 8.82843 1.13036 0.565182 0.824966i \(-0.308806\pi\)
0.565182 + 0.824966i \(0.308806\pi\)
\(62\) 0 0
\(63\) 14.1480 1.78248
\(64\) 0 0
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) 13.2513 1.61891 0.809454 0.587183i \(-0.199763\pi\)
0.809454 + 0.587183i \(0.199763\pi\)
\(68\) 0 0
\(69\) 14.8284 1.78513
\(70\) 0 0
\(71\) 11.5349 1.36894 0.684470 0.729041i \(-0.260034\pi\)
0.684470 + 0.729041i \(0.260034\pi\)
\(72\) 0 0
\(73\) 0.828427 0.0969601 0.0484800 0.998824i \(-0.484562\pi\)
0.0484800 + 0.998824i \(0.484562\pi\)
\(74\) 0 0
\(75\) 2.61313 0.301738
\(76\) 0 0
\(77\) 4.00000 0.455842
\(78\) 0 0
\(79\) −8.28772 −0.932441 −0.466221 0.884668i \(-0.654385\pi\)
−0.466221 + 0.884668i \(0.654385\pi\)
\(80\) 0 0
\(81\) −5.82843 −0.647603
\(82\) 0 0
\(83\) 3.69552 0.405636 0.202818 0.979216i \(-0.434990\pi\)
0.202818 + 0.979216i \(0.434990\pi\)
\(84\) 0 0
\(85\) −7.65685 −0.830502
\(86\) 0 0
\(87\) 23.0698 2.47334
\(88\) 0 0
\(89\) −11.6569 −1.23562 −0.617812 0.786326i \(-0.711981\pi\)
−0.617812 + 0.786326i \(0.711981\pi\)
\(90\) 0 0
\(91\) 3.69552 0.387396
\(92\) 0 0
\(93\) 22.1421 2.29603
\(94\) 0 0
\(95\) 1.08239 0.111051
\(96\) 0 0
\(97\) −5.31371 −0.539525 −0.269763 0.962927i \(-0.586945\pi\)
−0.269763 + 0.962927i \(0.586945\pi\)
\(98\) 0 0
\(99\) 4.14386 0.416474
\(100\) 0 0
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) 0 0
\(103\) −1.71644 −0.169126 −0.0845631 0.996418i \(-0.526949\pi\)
−0.0845631 + 0.996418i \(0.526949\pi\)
\(104\) 0 0
\(105\) 9.65685 0.942412
\(106\) 0 0
\(107\) −3.88123 −0.375212 −0.187606 0.982244i \(-0.560073\pi\)
−0.187606 + 0.982244i \(0.560073\pi\)
\(108\) 0 0
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 0 0
\(111\) −27.3994 −2.60063
\(112\) 0 0
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) 5.67459 0.529159
\(116\) 0 0
\(117\) 3.82843 0.353938
\(118\) 0 0
\(119\) −28.2960 −2.59389
\(120\) 0 0
\(121\) −9.82843 −0.893493
\(122\) 0 0
\(123\) −5.22625 −0.471235
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −6.94269 −0.616065 −0.308032 0.951376i \(-0.599670\pi\)
−0.308032 + 0.951376i \(0.599670\pi\)
\(128\) 0 0
\(129\) −18.1421 −1.59733
\(130\) 0 0
\(131\) −17.8435 −1.55900 −0.779499 0.626404i \(-0.784526\pi\)
−0.779499 + 0.626404i \(0.784526\pi\)
\(132\) 0 0
\(133\) 4.00000 0.346844
\(134\) 0 0
\(135\) 2.16478 0.186315
\(136\) 0 0
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) 3.95815 0.335726 0.167863 0.985810i \(-0.446313\pi\)
0.167863 + 0.985810i \(0.446313\pi\)
\(140\) 0 0
\(141\) −28.9706 −2.43976
\(142\) 0 0
\(143\) 1.08239 0.0905142
\(144\) 0 0
\(145\) 8.82843 0.733161
\(146\) 0 0
\(147\) 17.3952 1.43473
\(148\) 0 0
\(149\) 0.343146 0.0281116 0.0140558 0.999901i \(-0.495526\pi\)
0.0140558 + 0.999901i \(0.495526\pi\)
\(150\) 0 0
\(151\) 3.24718 0.264251 0.132126 0.991233i \(-0.457820\pi\)
0.132126 + 0.991233i \(0.457820\pi\)
\(152\) 0 0
\(153\) −29.3137 −2.36987
\(154\) 0 0
\(155\) 8.47343 0.680602
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) −24.3379 −1.93012
\(160\) 0 0
\(161\) 20.9706 1.65271
\(162\) 0 0
\(163\) −4.59220 −0.359689 −0.179844 0.983695i \(-0.557559\pi\)
−0.179844 + 0.983695i \(0.557559\pi\)
\(164\) 0 0
\(165\) 2.82843 0.220193
\(166\) 0 0
\(167\) −23.3324 −1.80552 −0.902759 0.430148i \(-0.858462\pi\)
−0.902759 + 0.430148i \(0.858462\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 4.14386 0.316889
\(172\) 0 0
\(173\) −14.9706 −1.13819 −0.569095 0.822272i \(-0.692706\pi\)
−0.569095 + 0.822272i \(0.692706\pi\)
\(174\) 0 0
\(175\) 3.69552 0.279355
\(176\) 0 0
\(177\) 24.4853 1.84043
\(178\) 0 0
\(179\) 8.65914 0.647214 0.323607 0.946192i \(-0.395104\pi\)
0.323607 + 0.946192i \(0.395104\pi\)
\(180\) 0 0
\(181\) 20.1421 1.49715 0.748577 0.663048i \(-0.230738\pi\)
0.748577 + 0.663048i \(0.230738\pi\)
\(182\) 0 0
\(183\) 23.0698 1.70537
\(184\) 0 0
\(185\) −10.4853 −0.770893
\(186\) 0 0
\(187\) −8.28772 −0.606058
\(188\) 0 0
\(189\) 8.00000 0.581914
\(190\) 0 0
\(191\) −11.7206 −0.848073 −0.424037 0.905645i \(-0.639387\pi\)
−0.424037 + 0.905645i \(0.639387\pi\)
\(192\) 0 0
\(193\) −5.31371 −0.382489 −0.191245 0.981542i \(-0.561252\pi\)
−0.191245 + 0.981542i \(0.561252\pi\)
\(194\) 0 0
\(195\) 2.61313 0.187130
\(196\) 0 0
\(197\) 9.31371 0.663574 0.331787 0.943354i \(-0.392348\pi\)
0.331787 + 0.943354i \(0.392348\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 34.6274 2.44243
\(202\) 0 0
\(203\) 32.6256 2.28987
\(204\) 0 0
\(205\) −2.00000 −0.139686
\(206\) 0 0
\(207\) 21.7248 1.50998
\(208\) 0 0
\(209\) 1.17157 0.0810394
\(210\) 0 0
\(211\) 11.7206 0.806880 0.403440 0.915006i \(-0.367814\pi\)
0.403440 + 0.915006i \(0.367814\pi\)
\(212\) 0 0
\(213\) 30.1421 2.06531
\(214\) 0 0
\(215\) −6.94269 −0.473488
\(216\) 0 0
\(217\) 31.3137 2.12571
\(218\) 0 0
\(219\) 2.16478 0.146283
\(220\) 0 0
\(221\) −7.65685 −0.515056
\(222\) 0 0
\(223\) −5.48888 −0.367563 −0.183781 0.982967i \(-0.558834\pi\)
−0.183781 + 0.982967i \(0.558834\pi\)
\(224\) 0 0
\(225\) 3.82843 0.255228
\(226\) 0 0
\(227\) −20.6424 −1.37008 −0.685041 0.728504i \(-0.740216\pi\)
−0.685041 + 0.728504i \(0.740216\pi\)
\(228\) 0 0
\(229\) −20.6274 −1.36310 −0.681549 0.731772i \(-0.738693\pi\)
−0.681549 + 0.731772i \(0.738693\pi\)
\(230\) 0 0
\(231\) 10.4525 0.687724
\(232\) 0 0
\(233\) 5.31371 0.348113 0.174056 0.984736i \(-0.444313\pi\)
0.174056 + 0.984736i \(0.444313\pi\)
\(234\) 0 0
\(235\) −11.0866 −0.723207
\(236\) 0 0
\(237\) −21.6569 −1.40676
\(238\) 0 0
\(239\) −17.6578 −1.14219 −0.571095 0.820884i \(-0.693481\pi\)
−0.571095 + 0.820884i \(0.693481\pi\)
\(240\) 0 0
\(241\) 6.00000 0.386494 0.193247 0.981150i \(-0.438098\pi\)
0.193247 + 0.981150i \(0.438098\pi\)
\(242\) 0 0
\(243\) −21.7248 −1.39364
\(244\) 0 0
\(245\) 6.65685 0.425291
\(246\) 0 0
\(247\) 1.08239 0.0688710
\(248\) 0 0
\(249\) 9.65685 0.611978
\(250\) 0 0
\(251\) −5.22625 −0.329878 −0.164939 0.986304i \(-0.552743\pi\)
−0.164939 + 0.986304i \(0.552743\pi\)
\(252\) 0 0
\(253\) 6.14214 0.386153
\(254\) 0 0
\(255\) −20.0083 −1.25297
\(256\) 0 0
\(257\) 7.65685 0.477621 0.238811 0.971066i \(-0.423242\pi\)
0.238811 + 0.971066i \(0.423242\pi\)
\(258\) 0 0
\(259\) −38.7485 −2.40772
\(260\) 0 0
\(261\) 33.7990 2.09210
\(262\) 0 0
\(263\) 0.448342 0.0276459 0.0138230 0.999904i \(-0.495600\pi\)
0.0138230 + 0.999904i \(0.495600\pi\)
\(264\) 0 0
\(265\) −9.31371 −0.572137
\(266\) 0 0
\(267\) −30.4608 −1.86417
\(268\) 0 0
\(269\) 15.6569 0.954615 0.477308 0.878736i \(-0.341613\pi\)
0.477308 + 0.878736i \(0.341613\pi\)
\(270\) 0 0
\(271\) −17.6578 −1.07264 −0.536318 0.844016i \(-0.680185\pi\)
−0.536318 + 0.844016i \(0.680185\pi\)
\(272\) 0 0
\(273\) 9.65685 0.584459
\(274\) 0 0
\(275\) 1.08239 0.0652707
\(276\) 0 0
\(277\) 18.9706 1.13983 0.569915 0.821703i \(-0.306976\pi\)
0.569915 + 0.821703i \(0.306976\pi\)
\(278\) 0 0
\(279\) 32.4399 1.94213
\(280\) 0 0
\(281\) −32.6274 −1.94639 −0.973194 0.229985i \(-0.926132\pi\)
−0.973194 + 0.229985i \(0.926132\pi\)
\(282\) 0 0
\(283\) 7.83938 0.466003 0.233001 0.972476i \(-0.425145\pi\)
0.233001 + 0.972476i \(0.425145\pi\)
\(284\) 0 0
\(285\) 2.82843 0.167542
\(286\) 0 0
\(287\) −7.39104 −0.436279
\(288\) 0 0
\(289\) 41.6274 2.44867
\(290\) 0 0
\(291\) −13.8854 −0.813976
\(292\) 0 0
\(293\) 14.4853 0.846239 0.423120 0.906074i \(-0.360935\pi\)
0.423120 + 0.906074i \(0.360935\pi\)
\(294\) 0 0
\(295\) 9.37011 0.545549
\(296\) 0 0
\(297\) 2.34315 0.135963
\(298\) 0 0
\(299\) 5.67459 0.328170
\(300\) 0 0
\(301\) −25.6569 −1.47884
\(302\) 0 0
\(303\) 26.1313 1.50120
\(304\) 0 0
\(305\) 8.82843 0.505514
\(306\) 0 0
\(307\) 2.42742 0.138540 0.0692700 0.997598i \(-0.477933\pi\)
0.0692700 + 0.997598i \(0.477933\pi\)
\(308\) 0 0
\(309\) −4.48528 −0.255159
\(310\) 0 0
\(311\) −0.896683 −0.0508462 −0.0254231 0.999677i \(-0.508093\pi\)
−0.0254231 + 0.999677i \(0.508093\pi\)
\(312\) 0 0
\(313\) 11.6569 0.658884 0.329442 0.944176i \(-0.393139\pi\)
0.329442 + 0.944176i \(0.393139\pi\)
\(314\) 0 0
\(315\) 14.1480 0.797151
\(316\) 0 0
\(317\) −8.14214 −0.457308 −0.228654 0.973508i \(-0.573432\pi\)
−0.228654 + 0.973508i \(0.573432\pi\)
\(318\) 0 0
\(319\) 9.55582 0.535023
\(320\) 0 0
\(321\) −10.1421 −0.566079
\(322\) 0 0
\(323\) −8.28772 −0.461141
\(324\) 0 0
\(325\) 1.00000 0.0554700
\(326\) 0 0
\(327\) 36.5838 2.02309
\(328\) 0 0
\(329\) −40.9706 −2.25878
\(330\) 0 0
\(331\) 1.45381 0.0799087 0.0399543 0.999202i \(-0.487279\pi\)
0.0399543 + 0.999202i \(0.487279\pi\)
\(332\) 0 0
\(333\) −40.1421 −2.19978
\(334\) 0 0
\(335\) 13.2513 0.723998
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) 0 0
\(339\) −5.22625 −0.283851
\(340\) 0 0
\(341\) 9.17157 0.496669
\(342\) 0 0
\(343\) −1.26810 −0.0684710
\(344\) 0 0
\(345\) 14.8284 0.798336
\(346\) 0 0
\(347\) −0.0769232 −0.00412946 −0.00206473 0.999998i \(-0.500657\pi\)
−0.00206473 + 0.999998i \(0.500657\pi\)
\(348\) 0 0
\(349\) 34.9706 1.87193 0.935966 0.352091i \(-0.114529\pi\)
0.935966 + 0.352091i \(0.114529\pi\)
\(350\) 0 0
\(351\) 2.16478 0.115548
\(352\) 0 0
\(353\) 6.48528 0.345177 0.172588 0.984994i \(-0.444787\pi\)
0.172588 + 0.984994i \(0.444787\pi\)
\(354\) 0 0
\(355\) 11.5349 0.612209
\(356\) 0 0
\(357\) −73.9411 −3.91338
\(358\) 0 0
\(359\) −1.97908 −0.104452 −0.0522258 0.998635i \(-0.516632\pi\)
−0.0522258 + 0.998635i \(0.516632\pi\)
\(360\) 0 0
\(361\) −17.8284 −0.938338
\(362\) 0 0
\(363\) −25.6829 −1.34800
\(364\) 0 0
\(365\) 0.828427 0.0433619
\(366\) 0 0
\(367\) −21.3533 −1.11464 −0.557318 0.830299i \(-0.688170\pi\)
−0.557318 + 0.830299i \(0.688170\pi\)
\(368\) 0 0
\(369\) −7.65685 −0.398600
\(370\) 0 0
\(371\) −34.4190 −1.78694
\(372\) 0 0
\(373\) −29.3137 −1.51781 −0.758903 0.651204i \(-0.774264\pi\)
−0.758903 + 0.651204i \(0.774264\pi\)
\(374\) 0 0
\(375\) 2.61313 0.134941
\(376\) 0 0
\(377\) 8.82843 0.454687
\(378\) 0 0
\(379\) 35.5014 1.82358 0.911791 0.410654i \(-0.134699\pi\)
0.911791 + 0.410654i \(0.134699\pi\)
\(380\) 0 0
\(381\) −18.1421 −0.929450
\(382\) 0 0
\(383\) 27.6620 1.41346 0.706731 0.707482i \(-0.250169\pi\)
0.706731 + 0.707482i \(0.250169\pi\)
\(384\) 0 0
\(385\) 4.00000 0.203859
\(386\) 0 0
\(387\) −26.5796 −1.35112
\(388\) 0 0
\(389\) 12.3431 0.625822 0.312911 0.949782i \(-0.398696\pi\)
0.312911 + 0.949782i \(0.398696\pi\)
\(390\) 0 0
\(391\) −43.4495 −2.19734
\(392\) 0 0
\(393\) −46.6274 −2.35204
\(394\) 0 0
\(395\) −8.28772 −0.417000
\(396\) 0 0
\(397\) 23.4558 1.17722 0.588608 0.808419i \(-0.299676\pi\)
0.588608 + 0.808419i \(0.299676\pi\)
\(398\) 0 0
\(399\) 10.4525 0.523280
\(400\) 0 0
\(401\) −6.97056 −0.348093 −0.174047 0.984737i \(-0.555684\pi\)
−0.174047 + 0.984737i \(0.555684\pi\)
\(402\) 0 0
\(403\) 8.47343 0.422092
\(404\) 0 0
\(405\) −5.82843 −0.289617
\(406\) 0 0
\(407\) −11.3492 −0.562558
\(408\) 0 0
\(409\) 10.6863 0.528403 0.264202 0.964467i \(-0.414892\pi\)
0.264202 + 0.964467i \(0.414892\pi\)
\(410\) 0 0
\(411\) −5.22625 −0.257792
\(412\) 0 0
\(413\) 34.6274 1.70390
\(414\) 0 0
\(415\) 3.69552 0.181406
\(416\) 0 0
\(417\) 10.3431 0.506506
\(418\) 0 0
\(419\) −21.2764 −1.03942 −0.519711 0.854342i \(-0.673960\pi\)
−0.519711 + 0.854342i \(0.673960\pi\)
\(420\) 0 0
\(421\) −8.62742 −0.420475 −0.210237 0.977650i \(-0.567424\pi\)
−0.210237 + 0.977650i \(0.567424\pi\)
\(422\) 0 0
\(423\) −42.4441 −2.06370
\(424\) 0 0
\(425\) −7.65685 −0.371412
\(426\) 0 0
\(427\) 32.6256 1.57886
\(428\) 0 0
\(429\) 2.82843 0.136558
\(430\) 0 0
\(431\) −33.3366 −1.60577 −0.802883 0.596136i \(-0.796702\pi\)
−0.802883 + 0.596136i \(0.796702\pi\)
\(432\) 0 0
\(433\) −6.00000 −0.288342 −0.144171 0.989553i \(-0.546051\pi\)
−0.144171 + 0.989553i \(0.546051\pi\)
\(434\) 0 0
\(435\) 23.0698 1.10611
\(436\) 0 0
\(437\) 6.14214 0.293818
\(438\) 0 0
\(439\) 8.65914 0.413278 0.206639 0.978417i \(-0.433747\pi\)
0.206639 + 0.978417i \(0.433747\pi\)
\(440\) 0 0
\(441\) 25.4853 1.21358
\(442\) 0 0
\(443\) −6.04601 −0.287255 −0.143627 0.989632i \(-0.545877\pi\)
−0.143627 + 0.989632i \(0.545877\pi\)
\(444\) 0 0
\(445\) −11.6569 −0.552588
\(446\) 0 0
\(447\) 0.896683 0.0424117
\(448\) 0 0
\(449\) 22.9706 1.08405 0.542024 0.840363i \(-0.317658\pi\)
0.542024 + 0.840363i \(0.317658\pi\)
\(450\) 0 0
\(451\) −2.16478 −0.101936
\(452\) 0 0
\(453\) 8.48528 0.398673
\(454\) 0 0
\(455\) 3.69552 0.173249
\(456\) 0 0
\(457\) 6.00000 0.280668 0.140334 0.990104i \(-0.455182\pi\)
0.140334 + 0.990104i \(0.455182\pi\)
\(458\) 0 0
\(459\) −16.5754 −0.773675
\(460\) 0 0
\(461\) −8.34315 −0.388579 −0.194290 0.980944i \(-0.562240\pi\)
−0.194290 + 0.980944i \(0.562240\pi\)
\(462\) 0 0
\(463\) 0.262632 0.0122056 0.00610278 0.999981i \(-0.498057\pi\)
0.00610278 + 0.999981i \(0.498057\pi\)
\(464\) 0 0
\(465\) 22.1421 1.02682
\(466\) 0 0
\(467\) −15.2304 −0.704780 −0.352390 0.935853i \(-0.614631\pi\)
−0.352390 + 0.935853i \(0.614631\pi\)
\(468\) 0 0
\(469\) 48.9706 2.26125
\(470\) 0 0
\(471\) −5.22625 −0.240813
\(472\) 0 0
\(473\) −7.51472 −0.345527
\(474\) 0 0
\(475\) 1.08239 0.0496636
\(476\) 0 0
\(477\) −35.6569 −1.63262
\(478\) 0 0
\(479\) 16.3897 0.748866 0.374433 0.927254i \(-0.377837\pi\)
0.374433 + 0.927254i \(0.377837\pi\)
\(480\) 0 0
\(481\) −10.4853 −0.478088
\(482\) 0 0
\(483\) 54.7987 2.49343
\(484\) 0 0
\(485\) −5.31371 −0.241283
\(486\) 0 0
\(487\) 13.7766 0.624277 0.312139 0.950037i \(-0.398955\pi\)
0.312139 + 0.950037i \(0.398955\pi\)
\(488\) 0 0
\(489\) −12.0000 −0.542659
\(490\) 0 0
\(491\) −9.55582 −0.431248 −0.215624 0.976476i \(-0.569179\pi\)
−0.215624 + 0.976476i \(0.569179\pi\)
\(492\) 0 0
\(493\) −67.5980 −3.04446
\(494\) 0 0
\(495\) 4.14386 0.186253
\(496\) 0 0
\(497\) 42.6274 1.91210
\(498\) 0 0
\(499\) −9.37011 −0.419464 −0.209732 0.977759i \(-0.567259\pi\)
−0.209732 + 0.977759i \(0.567259\pi\)
\(500\) 0 0
\(501\) −60.9706 −2.72396
\(502\) 0 0
\(503\) 41.7331 1.86079 0.930393 0.366563i \(-0.119466\pi\)
0.930393 + 0.366563i \(0.119466\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) 0 0
\(507\) 2.61313 0.116053
\(508\) 0 0
\(509\) −3.65685 −0.162087 −0.0810436 0.996711i \(-0.525825\pi\)
−0.0810436 + 0.996711i \(0.525825\pi\)
\(510\) 0 0
\(511\) 3.06147 0.135431
\(512\) 0 0
\(513\) 2.34315 0.103452
\(514\) 0 0
\(515\) −1.71644 −0.0756355
\(516\) 0 0
\(517\) −12.0000 −0.527759
\(518\) 0 0
\(519\) −39.1200 −1.71718
\(520\) 0 0
\(521\) 20.1421 0.882443 0.441221 0.897398i \(-0.354545\pi\)
0.441221 + 0.897398i \(0.354545\pi\)
\(522\) 0 0
\(523\) 40.0936 1.75317 0.876585 0.481248i \(-0.159816\pi\)
0.876585 + 0.481248i \(0.159816\pi\)
\(524\) 0 0
\(525\) 9.65685 0.421460
\(526\) 0 0
\(527\) −64.8798 −2.82621
\(528\) 0 0
\(529\) 9.20101 0.400044
\(530\) 0 0
\(531\) 35.8728 1.55675
\(532\) 0 0
\(533\) −2.00000 −0.0866296
\(534\) 0 0
\(535\) −3.88123 −0.167800
\(536\) 0 0
\(537\) 22.6274 0.976445
\(538\) 0 0
\(539\) 7.20533 0.310355
\(540\) 0 0
\(541\) 5.31371 0.228454 0.114227 0.993455i \(-0.463561\pi\)
0.114227 + 0.993455i \(0.463561\pi\)
\(542\) 0 0
\(543\) 52.6339 2.25874
\(544\) 0 0
\(545\) 14.0000 0.599694
\(546\) 0 0
\(547\) −33.4454 −1.43002 −0.715010 0.699114i \(-0.753578\pi\)
−0.715010 + 0.699114i \(0.753578\pi\)
\(548\) 0 0
\(549\) 33.7990 1.44251
\(550\) 0 0
\(551\) 9.55582 0.407092
\(552\) 0 0
\(553\) −30.6274 −1.30241
\(554\) 0 0
\(555\) −27.3994 −1.16304
\(556\) 0 0
\(557\) −11.8579 −0.502434 −0.251217 0.967931i \(-0.580831\pi\)
−0.251217 + 0.967931i \(0.580831\pi\)
\(558\) 0 0
\(559\) −6.94269 −0.293645
\(560\) 0 0
\(561\) −21.6569 −0.914353
\(562\) 0 0
\(563\) 24.4148 1.02896 0.514481 0.857502i \(-0.327985\pi\)
0.514481 + 0.857502i \(0.327985\pi\)
\(564\) 0 0
\(565\) −2.00000 −0.0841406
\(566\) 0 0
\(567\) −21.5391 −0.904555
\(568\) 0 0
\(569\) 1.79899 0.0754176 0.0377088 0.999289i \(-0.487994\pi\)
0.0377088 + 0.999289i \(0.487994\pi\)
\(570\) 0 0
\(571\) −21.8017 −0.912372 −0.456186 0.889884i \(-0.650785\pi\)
−0.456186 + 0.889884i \(0.650785\pi\)
\(572\) 0 0
\(573\) −30.6274 −1.27948
\(574\) 0 0
\(575\) 5.67459 0.236647
\(576\) 0 0
\(577\) −13.7990 −0.574459 −0.287230 0.957862i \(-0.592734\pi\)
−0.287230 + 0.957862i \(0.592734\pi\)
\(578\) 0 0
\(579\) −13.8854 −0.577057
\(580\) 0 0
\(581\) 13.6569 0.566582
\(582\) 0 0
\(583\) −10.0811 −0.417516
\(584\) 0 0
\(585\) 3.82843 0.158286
\(586\) 0 0
\(587\) −41.5474 −1.71484 −0.857422 0.514614i \(-0.827935\pi\)
−0.857422 + 0.514614i \(0.827935\pi\)
\(588\) 0 0
\(589\) 9.17157 0.377908
\(590\) 0 0
\(591\) 24.3379 1.00113
\(592\) 0 0
\(593\) −45.3137 −1.86081 −0.930405 0.366532i \(-0.880545\pi\)
−0.930405 + 0.366532i \(0.880545\pi\)
\(594\) 0 0
\(595\) −28.2960 −1.16002
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16.9469 0.692430 0.346215 0.938155i \(-0.387467\pi\)
0.346215 + 0.938155i \(0.387467\pi\)
\(600\) 0 0
\(601\) 10.9706 0.447499 0.223749 0.974647i \(-0.428170\pi\)
0.223749 + 0.974647i \(0.428170\pi\)
\(602\) 0 0
\(603\) 50.7318 2.06596
\(604\) 0 0
\(605\) −9.82843 −0.399582
\(606\) 0 0
\(607\) −3.50981 −0.142459 −0.0712294 0.997460i \(-0.522692\pi\)
−0.0712294 + 0.997460i \(0.522692\pi\)
\(608\) 0 0
\(609\) 85.2548 3.45470
\(610\) 0 0
\(611\) −11.0866 −0.448514
\(612\) 0 0
\(613\) −37.3137 −1.50709 −0.753543 0.657398i \(-0.771657\pi\)
−0.753543 + 0.657398i \(0.771657\pi\)
\(614\) 0 0
\(615\) −5.22625 −0.210743
\(616\) 0 0
\(617\) −35.9411 −1.44694 −0.723468 0.690358i \(-0.757453\pi\)
−0.723468 + 0.690358i \(0.757453\pi\)
\(618\) 0 0
\(619\) −13.3283 −0.535708 −0.267854 0.963460i \(-0.586314\pi\)
−0.267854 + 0.963460i \(0.586314\pi\)
\(620\) 0 0
\(621\) 12.2843 0.492951
\(622\) 0 0
\(623\) −43.0781 −1.72589
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 3.06147 0.122263
\(628\) 0 0
\(629\) 80.2843 3.20114
\(630\) 0 0
\(631\) 19.2974 0.768215 0.384108 0.923288i \(-0.374509\pi\)
0.384108 + 0.923288i \(0.374509\pi\)
\(632\) 0 0
\(633\) 30.6274 1.21733
\(634\) 0 0
\(635\) −6.94269 −0.275512
\(636\) 0 0
\(637\) 6.65685 0.263754
\(638\) 0 0
\(639\) 44.1605 1.74696
\(640\) 0 0
\(641\) −43.6569 −1.72434 −0.862171 0.506617i \(-0.830896\pi\)
−0.862171 + 0.506617i \(0.830896\pi\)
\(642\) 0 0
\(643\) 8.02509 0.316479 0.158239 0.987401i \(-0.449418\pi\)
0.158239 + 0.987401i \(0.449418\pi\)
\(644\) 0 0
\(645\) −18.1421 −0.714346
\(646\) 0 0
\(647\) 39.1969 1.54099 0.770494 0.637447i \(-0.220009\pi\)
0.770494 + 0.637447i \(0.220009\pi\)
\(648\) 0 0
\(649\) 10.1421 0.398114
\(650\) 0 0
\(651\) 81.8267 3.20704
\(652\) 0 0
\(653\) 18.2843 0.715519 0.357759 0.933814i \(-0.383541\pi\)
0.357759 + 0.933814i \(0.383541\pi\)
\(654\) 0 0
\(655\) −17.8435 −0.697205
\(656\) 0 0
\(657\) 3.17157 0.123735
\(658\) 0 0
\(659\) 21.2764 0.828812 0.414406 0.910092i \(-0.363989\pi\)
0.414406 + 0.910092i \(0.363989\pi\)
\(660\) 0 0
\(661\) −29.3137 −1.14017 −0.570086 0.821585i \(-0.693090\pi\)
−0.570086 + 0.821585i \(0.693090\pi\)
\(662\) 0 0
\(663\) −20.0083 −0.777059
\(664\) 0 0
\(665\) 4.00000 0.155113
\(666\) 0 0
\(667\) 50.0977 1.93979
\(668\) 0 0
\(669\) −14.3431 −0.554538
\(670\) 0 0
\(671\) 9.55582 0.368898
\(672\) 0 0
\(673\) 6.97056 0.268695 0.134348 0.990934i \(-0.457106\pi\)
0.134348 + 0.990934i \(0.457106\pi\)
\(674\) 0 0
\(675\) 2.16478 0.0833226
\(676\) 0 0
\(677\) 40.6274 1.56144 0.780719 0.624882i \(-0.214853\pi\)
0.780719 + 0.624882i \(0.214853\pi\)
\(678\) 0 0
\(679\) −19.6369 −0.753595
\(680\) 0 0
\(681\) −53.9411 −2.06703
\(682\) 0 0
\(683\) −29.8268 −1.14129 −0.570645 0.821197i \(-0.693307\pi\)
−0.570645 + 0.821197i \(0.693307\pi\)
\(684\) 0 0
\(685\) −2.00000 −0.0764161
\(686\) 0 0
\(687\) −53.9020 −2.05649
\(688\) 0 0
\(689\) −9.31371 −0.354824
\(690\) 0 0
\(691\) −24.5236 −0.932922 −0.466461 0.884542i \(-0.654471\pi\)
−0.466461 + 0.884542i \(0.654471\pi\)
\(692\) 0 0
\(693\) 15.3137 0.581720
\(694\) 0 0
\(695\) 3.95815 0.150141
\(696\) 0 0
\(697\) 15.3137 0.580048
\(698\) 0 0
\(699\) 13.8854 0.525194
\(700\) 0 0
\(701\) −27.6569 −1.04458 −0.522292 0.852766i \(-0.674923\pi\)
−0.522292 + 0.852766i \(0.674923\pi\)
\(702\) 0 0
\(703\) −11.3492 −0.428043
\(704\) 0 0
\(705\) −28.9706 −1.09109
\(706\) 0 0
\(707\) 36.9552 1.38984
\(708\) 0 0
\(709\) −17.3137 −0.650230 −0.325115 0.945674i \(-0.605403\pi\)
−0.325115 + 0.945674i \(0.605403\pi\)
\(710\) 0 0
\(711\) −31.7289 −1.18993
\(712\) 0 0
\(713\) 48.0833 1.80073
\(714\) 0 0
\(715\) 1.08239 0.0404792
\(716\) 0 0
\(717\) −46.1421 −1.72321
\(718\) 0 0
\(719\) 47.9329 1.78760 0.893799 0.448468i \(-0.148030\pi\)
0.893799 + 0.448468i \(0.148030\pi\)
\(720\) 0 0
\(721\) −6.34315 −0.236231
\(722\) 0 0
\(723\) 15.6788 0.583099
\(724\) 0 0
\(725\) 8.82843 0.327880
\(726\) 0 0
\(727\) −39.5683 −1.46751 −0.733754 0.679416i \(-0.762233\pi\)
−0.733754 + 0.679416i \(0.762233\pi\)
\(728\) 0 0
\(729\) −39.2843 −1.45497
\(730\) 0 0
\(731\) 53.1592 1.96616
\(732\) 0 0
\(733\) 2.68629 0.0992204 0.0496102 0.998769i \(-0.484202\pi\)
0.0496102 + 0.998769i \(0.484202\pi\)
\(734\) 0 0
\(735\) 17.3952 0.641632
\(736\) 0 0
\(737\) 14.3431 0.528337
\(738\) 0 0
\(739\) −50.2834 −1.84971 −0.924853 0.380324i \(-0.875812\pi\)
−0.924853 + 0.380324i \(0.875812\pi\)
\(740\) 0 0
\(741\) 2.82843 0.103905
\(742\) 0 0
\(743\) −20.2710 −0.743669 −0.371835 0.928299i \(-0.621271\pi\)
−0.371835 + 0.928299i \(0.621271\pi\)
\(744\) 0 0
\(745\) 0.343146 0.0125719
\(746\) 0 0
\(747\) 14.1480 0.517649
\(748\) 0 0
\(749\) −14.3431 −0.524087
\(750\) 0 0
\(751\) 20.0083 0.730114 0.365057 0.930985i \(-0.381049\pi\)
0.365057 + 0.930985i \(0.381049\pi\)
\(752\) 0 0
\(753\) −13.6569 −0.497683
\(754\) 0 0
\(755\) 3.24718 0.118177
\(756\) 0 0
\(757\) −11.6569 −0.423676 −0.211838 0.977305i \(-0.567945\pi\)
−0.211838 + 0.977305i \(0.567945\pi\)
\(758\) 0 0
\(759\) 16.0502 0.582584
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) 51.7373 1.87301
\(764\) 0 0
\(765\) −29.3137 −1.05984
\(766\) 0 0
\(767\) 9.37011 0.338335
\(768\) 0 0
\(769\) −25.3137 −0.912836 −0.456418 0.889766i \(-0.650868\pi\)
−0.456418 + 0.889766i \(0.650868\pi\)
\(770\) 0 0
\(771\) 20.0083 0.720582
\(772\) 0 0
\(773\) 8.82843 0.317536 0.158768 0.987316i \(-0.449248\pi\)
0.158768 + 0.987316i \(0.449248\pi\)
\(774\) 0 0
\(775\) 8.47343 0.304375
\(776\) 0 0
\(777\) −101.255 −3.63250
\(778\) 0 0
\(779\) −2.16478 −0.0775615
\(780\) 0 0
\(781\) 12.4853 0.446758
\(782\) 0 0
\(783\) 19.1116 0.682994
\(784\) 0 0
\(785\) −2.00000 −0.0713831
\(786\) 0 0
\(787\) −18.4776 −0.658655 −0.329327 0.944216i \(-0.606822\pi\)
−0.329327 + 0.944216i \(0.606822\pi\)
\(788\) 0 0
\(789\) 1.17157 0.0417091
\(790\) 0 0
\(791\) −7.39104 −0.262795
\(792\) 0 0
\(793\) 8.82843 0.313507
\(794\) 0 0
\(795\) −24.3379 −0.863176
\(796\) 0 0
\(797\) −13.3137 −0.471596 −0.235798 0.971802i \(-0.575770\pi\)
−0.235798 + 0.971802i \(0.575770\pi\)
\(798\) 0 0
\(799\) 84.8881 3.00313
\(800\) 0 0
\(801\) −44.6274 −1.57683
\(802\) 0 0
\(803\) 0.896683 0.0316433
\(804\) 0 0
\(805\) 20.9706 0.739115
\(806\) 0 0
\(807\) 40.9133 1.44022
\(808\) 0 0
\(809\) −1.51472 −0.0532547 −0.0266273 0.999645i \(-0.508477\pi\)
−0.0266273 + 0.999645i \(0.508477\pi\)
\(810\) 0 0
\(811\) −13.3283 −0.468019 −0.234009 0.972234i \(-0.575185\pi\)
−0.234009 + 0.972234i \(0.575185\pi\)
\(812\) 0 0
\(813\) −46.1421 −1.61828
\(814\) 0 0
\(815\) −4.59220 −0.160858
\(816\) 0 0
\(817\) −7.51472 −0.262907
\(818\) 0 0
\(819\) 14.1480 0.494372
\(820\) 0 0
\(821\) −38.2843 −1.33613 −0.668065 0.744103i \(-0.732877\pi\)
−0.668065 + 0.744103i \(0.732877\pi\)
\(822\) 0 0
\(823\) −29.4872 −1.02786 −0.513930 0.857832i \(-0.671811\pi\)
−0.513930 + 0.857832i \(0.671811\pi\)
\(824\) 0 0
\(825\) 2.82843 0.0984732
\(826\) 0 0
\(827\) 8.55035 0.297325 0.148662 0.988888i \(-0.452503\pi\)
0.148662 + 0.988888i \(0.452503\pi\)
\(828\) 0 0
\(829\) −17.1127 −0.594349 −0.297174 0.954823i \(-0.596044\pi\)
−0.297174 + 0.954823i \(0.596044\pi\)
\(830\) 0 0
\(831\) 49.5725 1.71965
\(832\) 0 0
\(833\) −50.9706 −1.76603
\(834\) 0 0
\(835\) −23.3324 −0.807452
\(836\) 0 0
\(837\) 18.3431 0.634032
\(838\) 0 0
\(839\) −11.9063 −0.411052 −0.205526 0.978652i \(-0.565890\pi\)
−0.205526 + 0.978652i \(0.565890\pi\)
\(840\) 0 0
\(841\) 48.9411 1.68763
\(842\) 0 0
\(843\) −85.2595 −2.93649
\(844\) 0 0
\(845\) 1.00000 0.0344010
\(846\) 0 0
\(847\) −36.3211 −1.24801
\(848\) 0 0
\(849\) 20.4853 0.703053
\(850\) 0 0
\(851\) −59.4997 −2.03962
\(852\) 0 0
\(853\) 29.1127 0.996800 0.498400 0.866947i \(-0.333921\pi\)
0.498400 + 0.866947i \(0.333921\pi\)
\(854\) 0 0
\(855\) 4.14386 0.141717
\(856\) 0 0
\(857\) −35.6569 −1.21801 −0.609007 0.793164i \(-0.708432\pi\)
−0.609007 + 0.793164i \(0.708432\pi\)
\(858\) 0 0
\(859\) 31.7289 1.08258 0.541289 0.840837i \(-0.317937\pi\)
0.541289 + 0.840837i \(0.317937\pi\)
\(860\) 0 0
\(861\) −19.3137 −0.658209
\(862\) 0 0
\(863\) −12.3547 −0.420557 −0.210279 0.977641i \(-0.567437\pi\)
−0.210279 + 0.977641i \(0.567437\pi\)
\(864\) 0 0
\(865\) −14.9706 −0.509014
\(866\) 0 0
\(867\) 108.778 3.69428
\(868\) 0 0
\(869\) −8.97056 −0.304305
\(870\) 0 0
\(871\) 13.2513 0.449004
\(872\) 0 0
\(873\) −20.3431 −0.688511
\(874\) 0 0
\(875\) 3.69552 0.124931
\(876\) 0 0
\(877\) −18.0000 −0.607817 −0.303908 0.952701i \(-0.598292\pi\)
−0.303908 + 0.952701i \(0.598292\pi\)
\(878\) 0 0
\(879\) 37.8519 1.27671
\(880\) 0 0
\(881\) −47.1716 −1.58925 −0.794625 0.607100i \(-0.792333\pi\)
−0.794625 + 0.607100i \(0.792333\pi\)
\(882\) 0 0
\(883\) 56.5152 1.90189 0.950943 0.309365i \(-0.100117\pi\)
0.950943 + 0.309365i \(0.100117\pi\)
\(884\) 0 0
\(885\) 24.4853 0.823064
\(886\) 0 0
\(887\) 13.5909 0.456338 0.228169 0.973622i \(-0.426726\pi\)
0.228169 + 0.973622i \(0.426726\pi\)
\(888\) 0 0
\(889\) −25.6569 −0.860503
\(890\) 0 0
\(891\) −6.30864 −0.211348
\(892\) 0 0
\(893\) −12.0000 −0.401565
\(894\) 0 0
\(895\) 8.65914 0.289443
\(896\) 0 0
\(897\) 14.8284 0.495107
\(898\) 0 0
\(899\) 74.8070 2.49495
\(900\) 0 0
\(901\) 71.3137 2.37580
\(902\) 0 0
\(903\) −67.0446 −2.23110
\(904\) 0 0
\(905\) 20.1421 0.669547
\(906\) 0 0
\(907\) −30.0125 −0.996548 −0.498274 0.867020i \(-0.666033\pi\)
−0.498274 + 0.867020i \(0.666033\pi\)
\(908\) 0 0
\(909\) 38.2843 1.26981
\(910\) 0 0
\(911\) 19.6369 0.650600 0.325300 0.945611i \(-0.394535\pi\)
0.325300 + 0.945611i \(0.394535\pi\)
\(912\) 0 0
\(913\) 4.00000 0.132381
\(914\) 0 0
\(915\) 23.0698 0.762664
\(916\) 0 0
\(917\) −65.9411 −2.17757
\(918\) 0 0
\(919\) −15.1535 −0.499868 −0.249934 0.968263i \(-0.580409\pi\)
−0.249934 + 0.968263i \(0.580409\pi\)
\(920\) 0 0
\(921\) 6.34315 0.209014
\(922\) 0 0
\(923\) 11.5349 0.379676
\(924\) 0 0
\(925\) −10.4853 −0.344754
\(926\) 0 0
\(927\) −6.57128 −0.215829
\(928\) 0 0
\(929\) 6.97056 0.228697 0.114348 0.993441i \(-0.463522\pi\)
0.114348 + 0.993441i \(0.463522\pi\)
\(930\) 0 0
\(931\) 7.20533 0.236145
\(932\) 0 0
\(933\) −2.34315 −0.0767111
\(934\) 0 0
\(935\) −8.28772 −0.271037
\(936\) 0 0
\(937\) 47.2548 1.54375 0.771874 0.635775i \(-0.219320\pi\)
0.771874 + 0.635775i \(0.219320\pi\)
\(938\) 0 0
\(939\) 30.4608 0.994052
\(940\) 0 0
\(941\) 2.00000 0.0651981 0.0325991 0.999469i \(-0.489622\pi\)
0.0325991 + 0.999469i \(0.489622\pi\)
\(942\) 0 0
\(943\) −11.3492 −0.369580
\(944\) 0 0
\(945\) 8.00000 0.260240
\(946\) 0 0
\(947\) 25.8686 0.840617 0.420309 0.907381i \(-0.361922\pi\)
0.420309 + 0.907381i \(0.361922\pi\)
\(948\) 0 0
\(949\) 0.828427 0.0268919
\(950\) 0 0
\(951\) −21.2764 −0.689935
\(952\) 0 0
\(953\) −48.3431 −1.56599 −0.782994 0.622029i \(-0.786309\pi\)
−0.782994 + 0.622029i \(0.786309\pi\)
\(954\) 0 0
\(955\) −11.7206 −0.379270
\(956\) 0 0
\(957\) 24.9706 0.807184
\(958\) 0 0
\(959\) −7.39104 −0.238669
\(960\) 0 0
\(961\) 40.7990 1.31610
\(962\) 0 0
\(963\) −14.8590 −0.478824
\(964\) 0 0
\(965\) −5.31371 −0.171054
\(966\) 0 0
\(967\) 29.3015 0.942273 0.471137 0.882060i \(-0.343844\pi\)
0.471137 + 0.882060i \(0.343844\pi\)
\(968\) 0 0
\(969\) −21.6569 −0.695718
\(970\) 0 0
\(971\) −41.2848 −1.32489 −0.662445 0.749110i \(-0.730481\pi\)
−0.662445 + 0.749110i \(0.730481\pi\)
\(972\) 0 0
\(973\) 14.6274 0.468933
\(974\) 0 0
\(975\) 2.61313 0.0836870
\(976\) 0 0
\(977\) 4.14214 0.132519 0.0662593 0.997802i \(-0.478894\pi\)
0.0662593 + 0.997802i \(0.478894\pi\)
\(978\) 0 0
\(979\) −12.6173 −0.403250
\(980\) 0 0
\(981\) 53.5980 1.71125
\(982\) 0 0
\(983\) 34.1563 1.08942 0.544709 0.838625i \(-0.316640\pi\)
0.544709 + 0.838625i \(0.316640\pi\)
\(984\) 0 0
\(985\) 9.31371 0.296759
\(986\) 0 0
\(987\) −107.061 −3.40780
\(988\) 0 0
\(989\) −39.3970 −1.25275
\(990\) 0 0
\(991\) 61.4469 1.95193 0.975963 0.217937i \(-0.0699327\pi\)
0.975963 + 0.217937i \(0.0699327\pi\)
\(992\) 0 0
\(993\) 3.79899 0.120557
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −22.0000 −0.696747 −0.348373 0.937356i \(-0.613266\pi\)
−0.348373 + 0.937356i \(0.613266\pi\)
\(998\) 0 0
\(999\) −22.6984 −0.718145
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4160.2.a.bu.1.4 4
4.3 odd 2 inner 4160.2.a.bu.1.1 4
8.3 odd 2 2080.2.a.q.1.4 yes 4
8.5 even 2 2080.2.a.q.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2080.2.a.q.1.1 4 8.5 even 2
2080.2.a.q.1.4 yes 4 8.3 odd 2
4160.2.a.bu.1.1 4 4.3 odd 2 inner
4160.2.a.bu.1.4 4 1.1 even 1 trivial