Properties

Label 416.4.i.h.289.1
Level $416$
Weight $4$
Character 416.289
Analytic conductor $24.545$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,4,Mod(289,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.289"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 416.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,0,10,0,26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.5447945624\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Character \(\chi\) \(=\) 416.289
Dual form 416.4.i.h.321.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.10450 - 8.84125i) q^{3} +2.27672 q^{5} +(12.0705 - 20.9067i) q^{7} +(-38.6118 + 66.8776i) q^{9} +(16.8093 + 29.1146i) q^{11} +(46.6898 + 4.13045i) q^{13} +(-11.6215 - 20.1290i) q^{15} +(-47.5050 + 82.2810i) q^{17} +(-47.5062 + 82.2831i) q^{19} -246.455 q^{21} +(65.7077 + 113.809i) q^{23} -119.817 q^{25} +512.732 q^{27} +(134.898 + 233.651i) q^{29} -165.370 q^{31} +(171.606 - 297.231i) q^{33} +(27.4810 - 47.5985i) q^{35} +(7.07469 + 12.2537i) q^{37} +(-201.810 - 433.880i) q^{39} +(-46.5925 - 80.7006i) q^{41} +(-55.3880 + 95.9349i) q^{43} +(-87.9081 + 152.261i) q^{45} -133.152 q^{47} +(-119.892 - 207.660i) q^{49} +969.956 q^{51} +235.653 q^{53} +(38.2700 + 66.2857i) q^{55} +969.980 q^{57} +(307.515 - 532.631i) q^{59} +(-145.173 + 251.447i) q^{61} +(932.125 + 1614.49i) q^{63} +(106.299 + 9.40386i) q^{65} +(201.856 + 349.625i) q^{67} +(670.809 - 1161.88i) q^{69} +(68.6883 - 118.972i) q^{71} -387.353 q^{73} +(611.603 + 1059.33i) q^{75} +811.585 q^{77} -608.582 q^{79} +(-1574.72 - 2727.50i) q^{81} -436.570 q^{83} +(-108.155 + 187.331i) q^{85} +(1377.18 - 2385.34i) q^{87} +(428.464 + 742.121i) q^{89} +(649.922 - 926.272i) q^{91} +(844.132 + 1462.08i) q^{93} +(-108.158 + 187.335i) q^{95} +(-232.079 + 401.972i) q^{97} -2596.15 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + 10 q^{5} + 26 q^{7} - 117 q^{9} + 22 q^{11} + 37 q^{13} + 86 q^{15} - 109 q^{17} + 140 q^{19} + 20 q^{21} + 292 q^{23} + 812 q^{25} - 60 q^{27} + 101 q^{29} - 988 q^{31} - 226 q^{33} + 216 q^{35}+ \cdots - 8040 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.10450 8.84125i −0.982361 1.70150i −0.653122 0.757253i \(-0.726541\pi\)
−0.329239 0.944247i \(-0.606792\pi\)
\(4\) 0 0
\(5\) 2.27672 0.203636 0.101818 0.994803i \(-0.467534\pi\)
0.101818 + 0.994803i \(0.467534\pi\)
\(6\) 0 0
\(7\) 12.0705 20.9067i 0.651744 1.12885i −0.330955 0.943646i \(-0.607371\pi\)
0.982699 0.185208i \(-0.0592957\pi\)
\(8\) 0 0
\(9\) −38.6118 + 66.8776i −1.43007 + 2.47695i
\(10\) 0 0
\(11\) 16.8093 + 29.1146i 0.460745 + 0.798034i 0.998998 0.0447489i \(-0.0142488\pi\)
−0.538253 + 0.842783i \(0.680915\pi\)
\(12\) 0 0
\(13\) 46.6898 + 4.13045i 0.996110 + 0.0881216i
\(14\) 0 0
\(15\) −11.6215 20.1290i −0.200044 0.346486i
\(16\) 0 0
\(17\) −47.5050 + 82.2810i −0.677744 + 1.17389i 0.297915 + 0.954593i \(0.403709\pi\)
−0.975659 + 0.219295i \(0.929624\pi\)
\(18\) 0 0
\(19\) −47.5062 + 82.2831i −0.573614 + 0.993528i 0.422577 + 0.906327i \(0.361126\pi\)
−0.996191 + 0.0872010i \(0.972208\pi\)
\(20\) 0 0
\(21\) −246.455 −2.56099
\(22\) 0 0
\(23\) 65.7077 + 113.809i 0.595695 + 1.03177i 0.993448 + 0.114282i \(0.0364568\pi\)
−0.397753 + 0.917493i \(0.630210\pi\)
\(24\) 0 0
\(25\) −119.817 −0.958533
\(26\) 0 0
\(27\) 512.732 3.65464
\(28\) 0 0
\(29\) 134.898 + 233.651i 0.863793 + 1.49613i 0.868241 + 0.496143i \(0.165251\pi\)
−0.00444782 + 0.999990i \(0.501416\pi\)
\(30\) 0 0
\(31\) −165.370 −0.958109 −0.479055 0.877785i \(-0.659020\pi\)
−0.479055 + 0.877785i \(0.659020\pi\)
\(32\) 0 0
\(33\) 171.606 297.231i 0.905237 1.56792i
\(34\) 0 0
\(35\) 27.4810 47.5985i 0.132718 0.229875i
\(36\) 0 0
\(37\) 7.07469 + 12.2537i 0.0314344 + 0.0544459i 0.881315 0.472530i \(-0.156659\pi\)
−0.849880 + 0.526976i \(0.823326\pi\)
\(38\) 0 0
\(39\) −201.810 433.880i −0.828601 1.78145i
\(40\) 0 0
\(41\) −46.5925 80.7006i −0.177476 0.307398i 0.763539 0.645762i \(-0.223460\pi\)
−0.941015 + 0.338363i \(0.890127\pi\)
\(42\) 0 0
\(43\) −55.3880 + 95.9349i −0.196432 + 0.340231i −0.947369 0.320143i \(-0.896269\pi\)
0.750937 + 0.660374i \(0.229602\pi\)
\(44\) 0 0
\(45\) −87.9081 + 152.261i −0.291213 + 0.504395i
\(46\) 0 0
\(47\) −133.152 −0.413240 −0.206620 0.978421i \(-0.566246\pi\)
−0.206620 + 0.978421i \(0.566246\pi\)
\(48\) 0 0
\(49\) −119.892 207.660i −0.349541 0.605422i
\(50\) 0 0
\(51\) 969.956 2.66316
\(52\) 0 0
\(53\) 235.653 0.610745 0.305372 0.952233i \(-0.401219\pi\)
0.305372 + 0.952233i \(0.401219\pi\)
\(54\) 0 0
\(55\) 38.2700 + 66.2857i 0.0938242 + 0.162508i
\(56\) 0 0
\(57\) 969.980 2.25398
\(58\) 0 0
\(59\) 307.515 532.631i 0.678560 1.17530i −0.296855 0.954923i \(-0.595938\pi\)
0.975415 0.220377i \(-0.0707288\pi\)
\(60\) 0 0
\(61\) −145.173 + 251.447i −0.304713 + 0.527779i −0.977197 0.212332i \(-0.931894\pi\)
0.672484 + 0.740112i \(0.265227\pi\)
\(62\) 0 0
\(63\) 932.125 + 1614.49i 1.86407 + 3.22867i
\(64\) 0 0
\(65\) 106.299 + 9.40386i 0.202843 + 0.0179447i
\(66\) 0 0
\(67\) 201.856 + 349.625i 0.368070 + 0.637515i 0.989264 0.146142i \(-0.0466855\pi\)
−0.621194 + 0.783657i \(0.713352\pi\)
\(68\) 0 0
\(69\) 670.809 1161.88i 1.17038 2.02715i
\(70\) 0 0
\(71\) 68.6883 118.972i 0.114814 0.198864i −0.802891 0.596125i \(-0.796706\pi\)
0.917705 + 0.397262i \(0.130039\pi\)
\(72\) 0 0
\(73\) −387.353 −0.621044 −0.310522 0.950566i \(-0.600504\pi\)
−0.310522 + 0.950566i \(0.600504\pi\)
\(74\) 0 0
\(75\) 611.603 + 1059.33i 0.941625 + 1.63094i
\(76\) 0 0
\(77\) 811.585 1.20115
\(78\) 0 0
\(79\) −608.582 −0.866719 −0.433359 0.901221i \(-0.642672\pi\)
−0.433359 + 0.901221i \(0.642672\pi\)
\(80\) 0 0
\(81\) −1574.72 2727.50i −2.16011 3.74143i
\(82\) 0 0
\(83\) −436.570 −0.577346 −0.288673 0.957428i \(-0.593214\pi\)
−0.288673 + 0.957428i \(0.593214\pi\)
\(84\) 0 0
\(85\) −108.155 + 187.331i −0.138013 + 0.239045i
\(86\) 0 0
\(87\) 1377.18 2385.34i 1.69711 2.93949i
\(88\) 0 0
\(89\) 428.464 + 742.121i 0.510304 + 0.883872i 0.999929 + 0.0119390i \(0.00380039\pi\)
−0.489625 + 0.871933i \(0.662866\pi\)
\(90\) 0 0
\(91\) 649.922 926.272i 0.748685 1.06703i
\(92\) 0 0
\(93\) 844.132 + 1462.08i 0.941209 + 1.63022i
\(94\) 0 0
\(95\) −108.158 + 187.335i −0.116808 + 0.202318i
\(96\) 0 0
\(97\) −232.079 + 401.972i −0.242928 + 0.420764i −0.961547 0.274640i \(-0.911441\pi\)
0.718619 + 0.695404i \(0.244775\pi\)
\(98\) 0 0
\(99\) −2596.15 −2.63559
\(100\) 0 0
\(101\) 42.6225 + 73.8243i 0.0419910 + 0.0727306i 0.886257 0.463194i \(-0.153297\pi\)
−0.844266 + 0.535924i \(0.819963\pi\)
\(102\) 0 0
\(103\) 959.374 0.917766 0.458883 0.888497i \(-0.348250\pi\)
0.458883 + 0.888497i \(0.348250\pi\)
\(104\) 0 0
\(105\) −561.108 −0.521509
\(106\) 0 0
\(107\) −296.956 514.343i −0.268297 0.464704i 0.700125 0.714020i \(-0.253128\pi\)
−0.968422 + 0.249316i \(0.919794\pi\)
\(108\) 0 0
\(109\) −1284.37 −1.12863 −0.564313 0.825561i \(-0.690859\pi\)
−0.564313 + 0.825561i \(0.690859\pi\)
\(110\) 0 0
\(111\) 72.2255 125.098i 0.0617598 0.106971i
\(112\) 0 0
\(113\) −910.240 + 1576.58i −0.757772 + 1.31250i 0.186213 + 0.982509i \(0.440379\pi\)
−0.943985 + 0.329990i \(0.892955\pi\)
\(114\) 0 0
\(115\) 149.598 + 259.111i 0.121305 + 0.210106i
\(116\) 0 0
\(117\) −2079.01 + 2963.02i −1.64278 + 2.34129i
\(118\) 0 0
\(119\) 1146.81 + 1986.34i 0.883431 + 1.53015i
\(120\) 0 0
\(121\) 100.394 173.887i 0.0754273 0.130644i
\(122\) 0 0
\(123\) −475.663 + 823.872i −0.348692 + 0.603952i
\(124\) 0 0
\(125\) −557.378 −0.398827
\(126\) 0 0
\(127\) 87.3688 + 151.327i 0.0610451 + 0.105733i 0.894933 0.446201i \(-0.147223\pi\)
−0.833888 + 0.551934i \(0.813890\pi\)
\(128\) 0 0
\(129\) 1130.91 0.771870
\(130\) 0 0
\(131\) −1822.67 −1.21563 −0.607814 0.794079i \(-0.707953\pi\)
−0.607814 + 0.794079i \(0.707953\pi\)
\(132\) 0 0
\(133\) 1146.84 + 1986.39i 0.747699 + 1.29505i
\(134\) 0 0
\(135\) 1167.35 0.744216
\(136\) 0 0
\(137\) 567.436 982.829i 0.353864 0.612910i −0.633059 0.774104i \(-0.718201\pi\)
0.986923 + 0.161193i \(0.0515343\pi\)
\(138\) 0 0
\(139\) 637.791 1104.69i 0.389185 0.674089i −0.603155 0.797624i \(-0.706090\pi\)
0.992340 + 0.123535i \(0.0394233\pi\)
\(140\) 0 0
\(141\) 679.676 + 1177.23i 0.405951 + 0.703127i
\(142\) 0 0
\(143\) 664.568 + 1428.79i 0.388629 + 0.835532i
\(144\) 0 0
\(145\) 307.125 + 531.957i 0.175899 + 0.304666i
\(146\) 0 0
\(147\) −1223.98 + 2120.00i −0.686751 + 1.18949i
\(148\) 0 0
\(149\) −788.778 + 1366.20i −0.433686 + 0.751166i −0.997187 0.0749488i \(-0.976121\pi\)
0.563501 + 0.826115i \(0.309454\pi\)
\(150\) 0 0
\(151\) −2417.13 −1.30267 −0.651336 0.758789i \(-0.725791\pi\)
−0.651336 + 0.758789i \(0.725791\pi\)
\(152\) 0 0
\(153\) −3668.50 6354.04i −1.93844 3.35747i
\(154\) 0 0
\(155\) −376.501 −0.195105
\(156\) 0 0
\(157\) −1121.21 −0.569951 −0.284976 0.958535i \(-0.591986\pi\)
−0.284976 + 0.958535i \(0.591986\pi\)
\(158\) 0 0
\(159\) −1202.89 2083.47i −0.599972 1.03918i
\(160\) 0 0
\(161\) 3172.49 1.55296
\(162\) 0 0
\(163\) −37.6930 + 65.2862i −0.0181125 + 0.0313718i −0.874940 0.484232i \(-0.839099\pi\)
0.856827 + 0.515604i \(0.172432\pi\)
\(164\) 0 0
\(165\) 390.699 676.710i 0.184339 0.319284i
\(166\) 0 0
\(167\) −1731.03 2998.24i −0.802104 1.38929i −0.918229 0.396050i \(-0.870381\pi\)
0.116125 0.993235i \(-0.462953\pi\)
\(168\) 0 0
\(169\) 2162.88 + 385.700i 0.984469 + 0.175557i
\(170\) 0 0
\(171\) −3668.60 6354.19i −1.64061 2.84162i
\(172\) 0 0
\(173\) −103.360 + 179.025i −0.0454237 + 0.0786762i −0.887843 0.460146i \(-0.847797\pi\)
0.842420 + 0.538822i \(0.181130\pi\)
\(174\) 0 0
\(175\) −1446.24 + 2504.97i −0.624718 + 1.08204i
\(176\) 0 0
\(177\) −6278.83 −2.66636
\(178\) 0 0
\(179\) −176.705 306.062i −0.0737851 0.127800i 0.826772 0.562537i \(-0.190175\pi\)
−0.900557 + 0.434737i \(0.856841\pi\)
\(180\) 0 0
\(181\) 3145.99 1.29193 0.645965 0.763367i \(-0.276455\pi\)
0.645965 + 0.763367i \(0.276455\pi\)
\(182\) 0 0
\(183\) 2964.14 1.19735
\(184\) 0 0
\(185\) 16.1071 + 27.8983i 0.00640116 + 0.0110871i
\(186\) 0 0
\(187\) −3194.10 −1.24907
\(188\) 0 0
\(189\) 6188.92 10719.5i 2.38189 4.12556i
\(190\) 0 0
\(191\) −294.787 + 510.587i −0.111676 + 0.193428i −0.916446 0.400158i \(-0.868955\pi\)
0.804770 + 0.593586i \(0.202288\pi\)
\(192\) 0 0
\(193\) 2498.21 + 4327.03i 0.931738 + 1.61382i 0.780350 + 0.625343i \(0.215041\pi\)
0.151387 + 0.988475i \(0.451626\pi\)
\(194\) 0 0
\(195\) −459.464 987.822i −0.168733 0.362766i
\(196\) 0 0
\(197\) −171.510 297.064i −0.0620284 0.107436i 0.833344 0.552755i \(-0.186424\pi\)
−0.895372 + 0.445319i \(0.853090\pi\)
\(198\) 0 0
\(199\) −506.061 + 876.523i −0.180270 + 0.312237i −0.941972 0.335690i \(-0.891030\pi\)
0.761703 + 0.647927i \(0.224364\pi\)
\(200\) 0 0
\(201\) 2060.75 3569.32i 0.723154 1.25254i
\(202\) 0 0
\(203\) 6513.15 2.25189
\(204\) 0 0
\(205\) −106.078 183.732i −0.0361405 0.0625972i
\(206\) 0 0
\(207\) −10148.4 −3.40754
\(208\) 0 0
\(209\) −3194.18 −1.05716
\(210\) 0 0
\(211\) 2377.47 + 4117.90i 0.775696 + 1.34354i 0.934403 + 0.356218i \(0.115934\pi\)
−0.158707 + 0.987326i \(0.550733\pi\)
\(212\) 0 0
\(213\) −1402.48 −0.451155
\(214\) 0 0
\(215\) −126.103 + 218.416i −0.0400006 + 0.0692832i
\(216\) 0 0
\(217\) −1996.10 + 3457.34i −0.624442 + 1.08157i
\(218\) 0 0
\(219\) 1977.24 + 3424.68i 0.610090 + 1.05671i
\(220\) 0 0
\(221\) −2557.86 + 3645.47i −0.778552 + 1.10960i
\(222\) 0 0
\(223\) 126.436 + 218.993i 0.0379676 + 0.0657617i 0.884385 0.466759i \(-0.154578\pi\)
−0.846417 + 0.532520i \(0.821245\pi\)
\(224\) 0 0
\(225\) 4626.33 8013.04i 1.37077 2.37423i
\(226\) 0 0
\(227\) 2116.97 3666.71i 0.618980 1.07211i −0.370692 0.928756i \(-0.620879\pi\)
0.989672 0.143349i \(-0.0457872\pi\)
\(228\) 0 0
\(229\) 6420.73 1.85281 0.926406 0.376527i \(-0.122882\pi\)
0.926406 + 0.376527i \(0.122882\pi\)
\(230\) 0 0
\(231\) −4142.74 7175.43i −1.17997 2.04376i
\(232\) 0 0
\(233\) 2582.41 0.726092 0.363046 0.931771i \(-0.381737\pi\)
0.363046 + 0.931771i \(0.381737\pi\)
\(234\) 0 0
\(235\) −303.150 −0.0841504
\(236\) 0 0
\(237\) 3106.50 + 5380.62i 0.851431 + 1.47472i
\(238\) 0 0
\(239\) −1397.21 −0.378149 −0.189075 0.981963i \(-0.560549\pi\)
−0.189075 + 0.981963i \(0.560549\pi\)
\(240\) 0 0
\(241\) 582.050 1008.14i 0.155573 0.269461i −0.777694 0.628642i \(-0.783611\pi\)
0.933268 + 0.359182i \(0.116944\pi\)
\(242\) 0 0
\(243\) −9154.45 + 15856.0i −2.41670 + 4.18585i
\(244\) 0 0
\(245\) −272.961 472.783i −0.0711790 0.123286i
\(246\) 0 0
\(247\) −2557.92 + 3645.56i −0.658933 + 0.939115i
\(248\) 0 0
\(249\) 2228.47 + 3859.82i 0.567162 + 0.982354i
\(250\) 0 0
\(251\) 3427.19 5936.06i 0.861841 1.49275i −0.00830936 0.999965i \(-0.502645\pi\)
0.870150 0.492787i \(-0.164022\pi\)
\(252\) 0 0
\(253\) −2209.00 + 3826.10i −0.548928 + 0.950771i
\(254\) 0 0
\(255\) 2208.31 0.542314
\(256\) 0 0
\(257\) 1545.34 + 2676.62i 0.375082 + 0.649660i 0.990339 0.138666i \(-0.0442814\pi\)
−0.615258 + 0.788326i \(0.710948\pi\)
\(258\) 0 0
\(259\) 341.579 0.0819487
\(260\) 0 0
\(261\) −20834.7 −4.94113
\(262\) 0 0
\(263\) 3357.89 + 5816.04i 0.787287 + 1.36362i 0.927623 + 0.373518i \(0.121848\pi\)
−0.140336 + 0.990104i \(0.544818\pi\)
\(264\) 0 0
\(265\) 536.516 0.124369
\(266\) 0 0
\(267\) 4374.18 7576.31i 1.00261 1.73656i
\(268\) 0 0
\(269\) 549.501 951.764i 0.124549 0.215725i −0.797008 0.603969i \(-0.793585\pi\)
0.921557 + 0.388244i \(0.126918\pi\)
\(270\) 0 0
\(271\) −2300.73 3984.98i −0.515717 0.893248i −0.999834 0.0182445i \(-0.994192\pi\)
0.484117 0.875004i \(-0.339141\pi\)
\(272\) 0 0
\(273\) −11506.9 1017.97i −2.55103 0.225679i
\(274\) 0 0
\(275\) −2014.03 3488.41i −0.441639 0.764942i
\(276\) 0 0
\(277\) 2790.07 4832.54i 0.605195 1.04823i −0.386825 0.922153i \(-0.626428\pi\)
0.992021 0.126076i \(-0.0402383\pi\)
\(278\) 0 0
\(279\) 6385.24 11059.6i 1.37016 2.37319i
\(280\) 0 0
\(281\) 258.903 0.0549639 0.0274820 0.999622i \(-0.491251\pi\)
0.0274820 + 0.999622i \(0.491251\pi\)
\(282\) 0 0
\(283\) −1366.08 2366.12i −0.286943 0.497000i 0.686135 0.727474i \(-0.259306\pi\)
−0.973079 + 0.230474i \(0.925972\pi\)
\(284\) 0 0
\(285\) 2208.37 0.458991
\(286\) 0 0
\(287\) −2249.58 −0.462677
\(288\) 0 0
\(289\) −2056.95 3562.73i −0.418674 0.725165i
\(290\) 0 0
\(291\) 4738.58 0.954572
\(292\) 0 0
\(293\) −3304.11 + 5722.89i −0.658799 + 1.14107i 0.322128 + 0.946696i \(0.395602\pi\)
−0.980927 + 0.194377i \(0.937731\pi\)
\(294\) 0 0
\(295\) 700.124 1212.65i 0.138179 0.239333i
\(296\) 0 0
\(297\) 8618.68 + 14928.0i 1.68386 + 2.91653i
\(298\) 0 0
\(299\) 2597.80 + 5585.12i 0.502456 + 1.08025i
\(300\) 0 0
\(301\) 1337.12 + 2315.96i 0.256047 + 0.443487i
\(302\) 0 0
\(303\) 435.132 753.671i 0.0825007 0.142895i
\(304\) 0 0
\(305\) −330.518 + 572.474i −0.0620505 + 0.107475i
\(306\) 0 0
\(307\) 2674.08 0.497127 0.248564 0.968616i \(-0.420042\pi\)
0.248564 + 0.968616i \(0.420042\pi\)
\(308\) 0 0
\(309\) −4897.12 8482.06i −0.901578 1.56158i
\(310\) 0 0
\(311\) −3325.59 −0.606357 −0.303179 0.952934i \(-0.598048\pi\)
−0.303179 + 0.952934i \(0.598048\pi\)
\(312\) 0 0
\(313\) −3156.36 −0.569994 −0.284997 0.958528i \(-0.591993\pi\)
−0.284997 + 0.958528i \(0.591993\pi\)
\(314\) 0 0
\(315\) 2122.18 + 3675.73i 0.379592 + 0.657473i
\(316\) 0 0
\(317\) 7253.57 1.28518 0.642589 0.766211i \(-0.277860\pi\)
0.642589 + 0.766211i \(0.277860\pi\)
\(318\) 0 0
\(319\) −4535.10 + 7855.02i −0.795977 + 1.37867i
\(320\) 0 0
\(321\) −3031.62 + 5250.92i −0.527129 + 0.913015i
\(322\) 0 0
\(323\) −4513.56 7817.71i −0.777526 1.34672i
\(324\) 0 0
\(325\) −5594.21 494.896i −0.954804 0.0844674i
\(326\) 0 0
\(327\) 6556.06 + 11355.4i 1.10872 + 1.92036i
\(328\) 0 0
\(329\) −1607.21 + 2783.77i −0.269327 + 0.466488i
\(330\) 0 0
\(331\) −5793.88 + 10035.3i −0.962116 + 1.66643i −0.244944 + 0.969537i \(0.578770\pi\)
−0.717172 + 0.696896i \(0.754564\pi\)
\(332\) 0 0
\(333\) −1092.67 −0.179813
\(334\) 0 0
\(335\) 459.569 + 795.997i 0.0749521 + 0.129821i
\(336\) 0 0
\(337\) −3901.81 −0.630698 −0.315349 0.948976i \(-0.602122\pi\)
−0.315349 + 0.948976i \(0.602122\pi\)
\(338\) 0 0
\(339\) 18585.3 2.97762
\(340\) 0 0
\(341\) −2779.76 4814.69i −0.441444 0.764604i
\(342\) 0 0
\(343\) 2491.71 0.392244
\(344\) 0 0
\(345\) 1527.24 2645.26i 0.238330 0.412800i
\(346\) 0 0
\(347\) −486.340 + 842.366i −0.0752395 + 0.130319i −0.901190 0.433423i \(-0.857305\pi\)
0.825951 + 0.563742i \(0.190639\pi\)
\(348\) 0 0
\(349\) 5175.73 + 8964.62i 0.793840 + 1.37497i 0.923573 + 0.383423i \(0.125255\pi\)
−0.129733 + 0.991549i \(0.541412\pi\)
\(350\) 0 0
\(351\) 23939.4 + 2117.81i 3.64043 + 0.322053i
\(352\) 0 0
\(353\) 1783.16 + 3088.53i 0.268862 + 0.465682i 0.968568 0.248748i \(-0.0800192\pi\)
−0.699706 + 0.714430i \(0.746686\pi\)
\(354\) 0 0
\(355\) 156.384 270.865i 0.0233802 0.0404958i
\(356\) 0 0
\(357\) 11707.8 20278.6i 1.73570 3.00632i
\(358\) 0 0
\(359\) −3465.53 −0.509481 −0.254740 0.967010i \(-0.581990\pi\)
−0.254740 + 0.967010i \(0.581990\pi\)
\(360\) 0 0
\(361\) −1084.17 1877.84i −0.158065 0.273777i
\(362\) 0 0
\(363\) −2049.84 −0.296387
\(364\) 0 0
\(365\) −881.893 −0.126467
\(366\) 0 0
\(367\) 5411.84 + 9373.57i 0.769743 + 1.33323i 0.937702 + 0.347439i \(0.112949\pi\)
−0.167960 + 0.985794i \(0.553718\pi\)
\(368\) 0 0
\(369\) 7196.09 1.01521
\(370\) 0 0
\(371\) 2844.45 4926.73i 0.398049 0.689442i
\(372\) 0 0
\(373\) −239.114 + 414.158i −0.0331927 + 0.0574914i −0.882145 0.470979i \(-0.843901\pi\)
0.848952 + 0.528470i \(0.177234\pi\)
\(374\) 0 0
\(375\) 2845.13 + 4927.92i 0.391792 + 0.678604i
\(376\) 0 0
\(377\) 5333.30 + 11466.3i 0.728591 + 1.56643i
\(378\) 0 0
\(379\) −1302.69 2256.32i −0.176556 0.305804i 0.764143 0.645047i \(-0.223162\pi\)
−0.940699 + 0.339243i \(0.889829\pi\)
\(380\) 0 0
\(381\) 891.948 1544.90i 0.119937 0.207736i
\(382\) 0 0
\(383\) 4318.61 7480.05i 0.576164 0.997945i −0.419750 0.907640i \(-0.637882\pi\)
0.995914 0.0903053i \(-0.0287843\pi\)
\(384\) 0 0
\(385\) 1847.75 0.244598
\(386\) 0 0
\(387\) −4277.26 7408.43i −0.561823 0.973106i
\(388\) 0 0
\(389\) 2326.59 0.303247 0.151623 0.988438i \(-0.451550\pi\)
0.151623 + 0.988438i \(0.451550\pi\)
\(390\) 0 0
\(391\) −12485.8 −1.61492
\(392\) 0 0
\(393\) 9303.81 + 16114.7i 1.19419 + 2.06839i
\(394\) 0 0
\(395\) −1385.57 −0.176495
\(396\) 0 0
\(397\) 6009.32 10408.4i 0.759695 1.31583i −0.183311 0.983055i \(-0.558682\pi\)
0.943006 0.332775i \(-0.107985\pi\)
\(398\) 0 0
\(399\) 11708.1 20279.1i 1.46902 2.54442i
\(400\) 0 0
\(401\) −3128.67 5419.01i −0.389621 0.674844i 0.602777 0.797910i \(-0.294061\pi\)
−0.992399 + 0.123066i \(0.960727\pi\)
\(402\) 0 0
\(403\) −7721.11 683.054i −0.954382 0.0844301i
\(404\) 0 0
\(405\) −3585.20 6209.74i −0.439876 0.761888i
\(406\) 0 0
\(407\) −237.841 + 411.953i −0.0289665 + 0.0501714i
\(408\) 0 0
\(409\) 5387.61 9331.62i 0.651346 1.12816i −0.331451 0.943472i \(-0.607538\pi\)
0.982797 0.184691i \(-0.0591285\pi\)
\(410\) 0 0
\(411\) −11585.9 −1.39049
\(412\) 0 0
\(413\) −7423.70 12858.2i −0.884494 1.53199i
\(414\) 0 0
\(415\) −993.945 −0.117568
\(416\) 0 0
\(417\) −13022.4 −1.52928
\(418\) 0 0
\(419\) −535.922 928.245i −0.0624857 0.108228i 0.833090 0.553137i \(-0.186569\pi\)
−0.895576 + 0.444909i \(0.853236\pi\)
\(420\) 0 0
\(421\) −10966.8 −1.26958 −0.634788 0.772687i \(-0.718912\pi\)
−0.634788 + 0.772687i \(0.718912\pi\)
\(422\) 0 0
\(423\) 5141.25 8904.91i 0.590961 1.02357i
\(424\) 0 0
\(425\) 5691.88 9858.63i 0.649640 1.12521i
\(426\) 0 0
\(427\) 3504.62 + 6070.17i 0.397190 + 0.687954i
\(428\) 0 0
\(429\) 9239.96 13168.8i 1.03988 1.48205i
\(430\) 0 0
\(431\) 3693.17 + 6396.76i 0.412747 + 0.714899i 0.995189 0.0979736i \(-0.0312361\pi\)
−0.582442 + 0.812872i \(0.697903\pi\)
\(432\) 0 0
\(433\) −2734.86 + 4736.92i −0.303532 + 0.525732i −0.976933 0.213545i \(-0.931499\pi\)
0.673402 + 0.739277i \(0.264832\pi\)
\(434\) 0 0
\(435\) 3135.44 5430.74i 0.345593 0.598584i
\(436\) 0 0
\(437\) −12486.1 −1.36680
\(438\) 0 0
\(439\) 4579.13 + 7931.28i 0.497836 + 0.862277i 0.999997 0.00249744i \(-0.000794961\pi\)
−0.502161 + 0.864774i \(0.667462\pi\)
\(440\) 0 0
\(441\) 18517.1 1.99947
\(442\) 0 0
\(443\) 10116.8 1.08502 0.542509 0.840050i \(-0.317475\pi\)
0.542509 + 0.840050i \(0.317475\pi\)
\(444\) 0 0
\(445\) 975.490 + 1689.60i 0.103916 + 0.179988i
\(446\) 0 0
\(447\) 16105.3 1.70415
\(448\) 0 0
\(449\) 8526.80 14768.9i 0.896224 1.55231i 0.0639426 0.997954i \(-0.479633\pi\)
0.832282 0.554353i \(-0.187034\pi\)
\(450\) 0 0
\(451\) 1566.38 2713.05i 0.163543 0.283265i
\(452\) 0 0
\(453\) 12338.3 + 21370.5i 1.27969 + 2.21650i
\(454\) 0 0
\(455\) 1479.69 2108.86i 0.152459 0.217285i
\(456\) 0 0
\(457\) −8468.80 14668.4i −0.866857 1.50144i −0.865191 0.501442i \(-0.832803\pi\)
−0.00166576 0.999999i \(-0.500530\pi\)
\(458\) 0 0
\(459\) −24357.3 + 42188.1i −2.47691 + 4.29014i
\(460\) 0 0
\(461\) 3622.02 6273.52i 0.365931 0.633812i −0.622994 0.782227i \(-0.714084\pi\)
0.988925 + 0.148415i \(0.0474172\pi\)
\(462\) 0 0
\(463\) −12328.0 −1.23743 −0.618715 0.785616i \(-0.712346\pi\)
−0.618715 + 0.785616i \(0.712346\pi\)
\(464\) 0 0
\(465\) 1921.85 + 3328.74i 0.191664 + 0.331971i
\(466\) 0 0
\(467\) 8974.81 0.889303 0.444651 0.895704i \(-0.353328\pi\)
0.444651 + 0.895704i \(0.353328\pi\)
\(468\) 0 0
\(469\) 9746.00 0.959549
\(470\) 0 0
\(471\) 5723.22 + 9912.91i 0.559898 + 0.969772i
\(472\) 0 0
\(473\) −3724.14 −0.362021
\(474\) 0 0
\(475\) 5692.02 9858.87i 0.549827 0.952329i
\(476\) 0 0
\(477\) −9099.00 + 15759.9i −0.873406 + 1.51278i
\(478\) 0 0
\(479\) −247.933 429.433i −0.0236500 0.0409630i 0.853958 0.520342i \(-0.174195\pi\)
−0.877608 + 0.479379i \(0.840862\pi\)
\(480\) 0 0
\(481\) 279.703 + 601.346i 0.0265142 + 0.0570042i
\(482\) 0 0
\(483\) −16194.0 28048.8i −1.52557 2.64237i
\(484\) 0 0
\(485\) −528.377 + 915.176i −0.0494688 + 0.0856825i
\(486\) 0 0
\(487\) −7644.29 + 13240.3i −0.711285 + 1.23198i 0.253089 + 0.967443i \(0.418553\pi\)
−0.964375 + 0.264540i \(0.914780\pi\)
\(488\) 0 0
\(489\) 769.615 0.0711722
\(490\) 0 0
\(491\) 10555.2 + 18282.2i 0.970166 + 1.68038i 0.695044 + 0.718968i \(0.255385\pi\)
0.275122 + 0.961409i \(0.411282\pi\)
\(492\) 0 0
\(493\) −25633.4 −2.34172
\(494\) 0 0
\(495\) −5910.70 −0.536699
\(496\) 0 0
\(497\) −1658.20 2872.09i −0.149659 0.259217i
\(498\) 0 0
\(499\) −10400.6 −0.933059 −0.466530 0.884506i \(-0.654496\pi\)
−0.466530 + 0.884506i \(0.654496\pi\)
\(500\) 0 0
\(501\) −17672.1 + 30609.0i −1.57591 + 2.72956i
\(502\) 0 0
\(503\) 6210.60 10757.1i 0.550531 0.953548i −0.447705 0.894181i \(-0.647759\pi\)
0.998236 0.0593664i \(-0.0189080\pi\)
\(504\) 0 0
\(505\) 97.0392 + 168.077i 0.00855087 + 0.0148105i
\(506\) 0 0
\(507\) −7630.34 21091.4i −0.668393 1.84753i
\(508\) 0 0
\(509\) 4054.90 + 7023.29i 0.353105 + 0.611595i 0.986792 0.161994i \(-0.0517926\pi\)
−0.633687 + 0.773589i \(0.718459\pi\)
\(510\) 0 0
\(511\) −4675.53 + 8098.26i −0.404762 + 0.701068i
\(512\) 0 0
\(513\) −24357.9 + 42189.2i −2.09635 + 3.63099i
\(514\) 0 0
\(515\) 2184.22 0.186890
\(516\) 0 0
\(517\) −2238.20 3876.68i −0.190398 0.329780i
\(518\) 0 0
\(519\) 2110.40 0.178490
\(520\) 0 0
\(521\) 418.325 0.0351769 0.0175885 0.999845i \(-0.494401\pi\)
0.0175885 + 0.999845i \(0.494401\pi\)
\(522\) 0 0
\(523\) −2770.12 4797.98i −0.231604 0.401149i 0.726676 0.686980i \(-0.241064\pi\)
−0.958280 + 0.285830i \(0.907731\pi\)
\(524\) 0 0
\(525\) 29529.4 2.45479
\(526\) 0 0
\(527\) 7855.91 13606.8i 0.649353 1.12471i
\(528\) 0 0
\(529\) −2551.49 + 4419.31i −0.209706 + 0.363221i
\(530\) 0 0
\(531\) 23747.4 + 41131.7i 1.94077 + 3.36151i
\(532\) 0 0
\(533\) −1842.07 3960.35i −0.149698 0.321842i
\(534\) 0 0
\(535\) −676.084 1171.01i −0.0546349 0.0946304i
\(536\) 0 0
\(537\) −1803.98 + 3124.58i −0.144967 + 0.251091i
\(538\) 0 0
\(539\) 4030.62 6981.24i 0.322099 0.557891i
\(540\) 0 0
\(541\) 7129.33 0.566569 0.283285 0.959036i \(-0.408576\pi\)
0.283285 + 0.959036i \(0.408576\pi\)
\(542\) 0 0
\(543\) −16058.7 27814.5i −1.26914 2.19822i
\(544\) 0 0
\(545\) −2924.14 −0.229829
\(546\) 0 0
\(547\) 3794.55 0.296606 0.148303 0.988942i \(-0.452619\pi\)
0.148303 + 0.988942i \(0.452619\pi\)
\(548\) 0 0
\(549\) −11210.8 19417.7i −0.871521 1.50952i
\(550\) 0 0
\(551\) −25634.0 −1.98193
\(552\) 0 0
\(553\) −7345.87 + 12723.4i −0.564879 + 0.978399i
\(554\) 0 0
\(555\) 164.437 284.813i 0.0125765 0.0217831i
\(556\) 0 0
\(557\) −8771.59 15192.8i −0.667261 1.15573i −0.978667 0.205453i \(-0.934133\pi\)
0.311406 0.950277i \(-0.399200\pi\)
\(558\) 0 0
\(559\) −2982.31 + 4250.40i −0.225650 + 0.321597i
\(560\) 0 0
\(561\) 16304.3 + 28239.9i 1.22704 + 2.12529i
\(562\) 0 0
\(563\) 2250.08 3897.26i 0.168436 0.291740i −0.769434 0.638726i \(-0.779462\pi\)
0.937870 + 0.346986i \(0.112795\pi\)
\(564\) 0 0
\(565\) −2072.36 + 3589.43i −0.154309 + 0.267272i
\(566\) 0 0
\(567\) −76030.6 −5.63137
\(568\) 0 0
\(569\) 1303.74 + 2258.14i 0.0960556 + 0.166373i 0.910049 0.414501i \(-0.136044\pi\)
−0.813993 + 0.580875i \(0.802711\pi\)
\(570\) 0 0
\(571\) −4409.79 −0.323194 −0.161597 0.986857i \(-0.551665\pi\)
−0.161597 + 0.986857i \(0.551665\pi\)
\(572\) 0 0
\(573\) 6018.96 0.438823
\(574\) 0 0
\(575\) −7872.87 13636.2i −0.570993 0.988989i
\(576\) 0 0
\(577\) −21487.8 −1.55034 −0.775172 0.631750i \(-0.782337\pi\)
−0.775172 + 0.631750i \(0.782337\pi\)
\(578\) 0 0
\(579\) 25504.3 44174.7i 1.83061 3.17070i
\(580\) 0 0
\(581\) −5269.60 + 9127.22i −0.376282 + 0.651740i
\(582\) 0 0
\(583\) 3961.17 + 6860.95i 0.281398 + 0.487396i
\(584\) 0 0
\(585\) −4733.32 + 6745.95i −0.334528 + 0.476771i
\(586\) 0 0
\(587\) −4040.02 6997.52i −0.284071 0.492025i 0.688313 0.725414i \(-0.258352\pi\)
−0.972383 + 0.233389i \(0.925018\pi\)
\(588\) 0 0
\(589\) 7856.11 13607.2i 0.549584 0.951908i
\(590\) 0 0
\(591\) −1750.95 + 3032.73i −0.121868 + 0.211082i
\(592\) 0 0
\(593\) 10054.7 0.696283 0.348141 0.937442i \(-0.386813\pi\)
0.348141 + 0.937442i \(0.386813\pi\)
\(594\) 0 0
\(595\) 2610.97 + 4522.34i 0.179898 + 0.311593i
\(596\) 0 0
\(597\) 10332.7 0.708360
\(598\) 0 0
\(599\) −8304.77 −0.566484 −0.283242 0.959049i \(-0.591410\pi\)
−0.283242 + 0.959049i \(0.591410\pi\)
\(600\) 0 0
\(601\) −7000.68 12125.5i −0.475148 0.822980i 0.524447 0.851443i \(-0.324272\pi\)
−0.999595 + 0.0284633i \(0.990939\pi\)
\(602\) 0 0
\(603\) −31176.1 −2.10546
\(604\) 0 0
\(605\) 228.568 395.891i 0.0153597 0.0266038i
\(606\) 0 0
\(607\) −10242.9 + 17741.3i −0.684923 + 1.18632i 0.288538 + 0.957469i \(0.406831\pi\)
−0.973461 + 0.228853i \(0.926502\pi\)
\(608\) 0 0
\(609\) −33246.3 57584.3i −2.21217 3.83159i
\(610\) 0 0
\(611\) −6216.86 549.979i −0.411632 0.0364154i
\(612\) 0 0
\(613\) −12076.1 20916.4i −0.795676 1.37815i −0.922409 0.386215i \(-0.873782\pi\)
0.126732 0.991937i \(-0.459551\pi\)
\(614\) 0 0
\(615\) −1082.95 + 1875.72i −0.0710061 + 0.122986i
\(616\) 0 0
\(617\) −2957.21 + 5122.04i −0.192954 + 0.334207i −0.946228 0.323501i \(-0.895140\pi\)
0.753274 + 0.657707i \(0.228474\pi\)
\(618\) 0 0
\(619\) −99.7569 −0.00647749 −0.00323875 0.999995i \(-0.501031\pi\)
−0.00323875 + 0.999995i \(0.501031\pi\)
\(620\) 0 0
\(621\) 33690.4 + 58353.6i 2.17705 + 3.77077i
\(622\) 0 0
\(623\) 20687.0 1.33035
\(624\) 0 0
\(625\) 13708.1 0.877317
\(626\) 0 0
\(627\) 16304.7 + 28240.6i 1.03851 + 1.79876i
\(628\) 0 0
\(629\) −1344.33 −0.0852179
\(630\) 0 0
\(631\) −8138.93 + 14097.0i −0.513480 + 0.889373i 0.486398 + 0.873737i \(0.338311\pi\)
−0.999878 + 0.0156356i \(0.995023\pi\)
\(632\) 0 0
\(633\) 24271.6 42039.6i 1.52403 2.63969i
\(634\) 0 0
\(635\) 198.914 + 344.529i 0.0124310 + 0.0215311i
\(636\) 0 0
\(637\) −4740.03 10190.8i −0.294830 0.633869i
\(638\) 0 0
\(639\) 5304.36 + 9187.41i 0.328383 + 0.568777i
\(640\) 0 0
\(641\) 10167.2 17610.0i 0.626488 1.08511i −0.361763 0.932270i \(-0.617825\pi\)
0.988251 0.152839i \(-0.0488416\pi\)
\(642\) 0 0
\(643\) 2579.29 4467.47i 0.158192 0.273996i −0.776025 0.630702i \(-0.782767\pi\)
0.934217 + 0.356706i \(0.116100\pi\)
\(644\) 0 0
\(645\) 2574.77 0.157180
\(646\) 0 0
\(647\) 3537.96 + 6127.93i 0.214979 + 0.372355i 0.953266 0.302132i \(-0.0976983\pi\)
−0.738287 + 0.674487i \(0.764365\pi\)
\(648\) 0 0
\(649\) 20676.5 1.25057
\(650\) 0 0
\(651\) 40756.3 2.45371
\(652\) 0 0
\(653\) 36.1116 + 62.5470i 0.00216410 + 0.00374832i 0.867105 0.498125i \(-0.165978\pi\)
−0.864941 + 0.501873i \(0.832644\pi\)
\(654\) 0 0
\(655\) −4149.70 −0.247545
\(656\) 0 0
\(657\) 14956.4 25905.2i 0.888135 1.53829i
\(658\) 0 0
\(659\) −2328.19 + 4032.53i −0.137622 + 0.238369i −0.926596 0.376058i \(-0.877279\pi\)
0.788974 + 0.614427i \(0.210613\pi\)
\(660\) 0 0
\(661\) −1786.90 3095.00i −0.105147 0.182120i 0.808651 0.588289i \(-0.200198\pi\)
−0.913798 + 0.406168i \(0.866865\pi\)
\(662\) 0 0
\(663\) 45287.1 + 4006.35i 2.65280 + 0.234682i
\(664\) 0 0
\(665\) 2611.04 + 4522.45i 0.152258 + 0.263719i
\(666\) 0 0
\(667\) −17727.7 + 30705.3i −1.02911 + 1.78248i
\(668\) 0 0
\(669\) 1290.78 2235.70i 0.0745957 0.129204i
\(670\) 0 0
\(671\) −9761.05 −0.561581
\(672\) 0 0
\(673\) 1649.16 + 2856.43i 0.0944584 + 0.163607i 0.909382 0.415961i \(-0.136555\pi\)
−0.814924 + 0.579568i \(0.803221\pi\)
\(674\) 0 0
\(675\) −61433.8 −3.50310
\(676\) 0 0
\(677\) 19778.6 1.12283 0.561413 0.827536i \(-0.310258\pi\)
0.561413 + 0.827536i \(0.310258\pi\)
\(678\) 0 0
\(679\) 5602.60 + 9703.98i 0.316654 + 0.548461i
\(680\) 0 0
\(681\) −43224.4 −2.43225
\(682\) 0 0
\(683\) 1145.84 1984.65i 0.0641937 0.111187i −0.832142 0.554562i \(-0.812886\pi\)
0.896336 + 0.443375i \(0.146219\pi\)
\(684\) 0 0
\(685\) 1291.89 2237.62i 0.0720593 0.124810i
\(686\) 0 0
\(687\) −32774.6 56767.3i −1.82013 3.15256i
\(688\) 0 0
\(689\) 11002.6 + 973.354i 0.608369 + 0.0538198i
\(690\) 0 0
\(691\) 4748.27 + 8224.24i 0.261407 + 0.452771i 0.966616 0.256229i \(-0.0824801\pi\)
−0.705209 + 0.709000i \(0.749147\pi\)
\(692\) 0 0
\(693\) −31336.8 + 54276.9i −1.71773 + 2.97519i
\(694\) 0 0
\(695\) 1452.07 2515.06i 0.0792520 0.137269i
\(696\) 0 0
\(697\) 8853.51 0.481134
\(698\) 0 0
\(699\) −13181.9 22831.7i −0.713284 1.23544i
\(700\) 0 0
\(701\) −19712.0 −1.06207 −0.531036 0.847349i \(-0.678197\pi\)
−0.531036 + 0.847349i \(0.678197\pi\)
\(702\) 0 0
\(703\) −1344.37 −0.0721248
\(704\) 0 0
\(705\) 1547.43 + 2680.23i 0.0826661 + 0.143182i
\(706\) 0 0
\(707\) 2057.89 0.109470
\(708\) 0 0
\(709\) 629.703 1090.68i 0.0333554 0.0577733i −0.848866 0.528608i \(-0.822714\pi\)
0.882221 + 0.470835i \(0.156047\pi\)
\(710\) 0 0
\(711\) 23498.4 40700.5i 1.23947 2.14682i
\(712\) 0 0
\(713\) −10866.1 18820.6i −0.570741 0.988553i
\(714\) 0 0
\(715\) 1513.03 + 3252.94i 0.0791387 + 0.170144i
\(716\) 0 0
\(717\) 7132.03 + 12353.0i 0.371479 + 0.643421i
\(718\) 0 0
\(719\) −4287.14 + 7425.55i −0.222369 + 0.385155i −0.955527 0.294904i \(-0.904712\pi\)
0.733158 + 0.680059i \(0.238046\pi\)
\(720\) 0 0
\(721\) 11580.1 20057.3i 0.598149 1.03602i
\(722\) 0 0
\(723\) −11884.3 −0.611316
\(724\) 0 0
\(725\) −16163.1 27995.2i −0.827974 1.43409i
\(726\) 0 0
\(727\) −21535.4 −1.09863 −0.549314 0.835616i \(-0.685111\pi\)
−0.549314 + 0.835616i \(0.685111\pi\)
\(728\) 0 0
\(729\) 101880. 5.17606
\(730\) 0 0
\(731\) −5262.41 9114.77i −0.266262 0.461179i
\(732\) 0 0
\(733\) 36997.3 1.86429 0.932146 0.362083i \(-0.117934\pi\)
0.932146 + 0.362083i \(0.117934\pi\)
\(734\) 0 0
\(735\) −2786.66 + 4826.64i −0.139847 + 0.242222i
\(736\) 0 0
\(737\) −6786.13 + 11753.9i −0.339173 + 0.587464i
\(738\) 0 0
\(739\) −2649.09 4588.36i −0.131865 0.228397i 0.792530 0.609832i \(-0.208763\pi\)
−0.924396 + 0.381435i \(0.875430\pi\)
\(740\) 0 0
\(741\) 45288.2 + 4006.45i 2.24521 + 0.198624i
\(742\) 0 0
\(743\) 2236.51 + 3873.76i 0.110430 + 0.191271i 0.915944 0.401306i \(-0.131444\pi\)
−0.805514 + 0.592577i \(0.798110\pi\)
\(744\) 0 0
\(745\) −1795.82 + 3110.46i −0.0883140 + 0.152964i
\(746\) 0 0
\(747\) 16856.7 29196.7i 0.825643 1.43006i
\(748\) 0 0
\(749\) −14337.6 −0.699445
\(750\) 0 0
\(751\) −14118.4 24453.8i −0.686002 1.18819i −0.973121 0.230295i \(-0.926031\pi\)
0.287119 0.957895i \(-0.407302\pi\)
\(752\) 0 0
\(753\) −69976.2 −3.38656
\(754\) 0 0
\(755\) −5503.13 −0.265271
\(756\) 0 0
\(757\) 13715.1 + 23755.3i 0.658500 + 1.14056i 0.981004 + 0.193987i \(0.0621421\pi\)
−0.322504 + 0.946568i \(0.604525\pi\)
\(758\) 0 0
\(759\) 45103.4 2.15698
\(760\) 0 0
\(761\) −11175.7 + 19356.8i −0.532349 + 0.922056i 0.466937 + 0.884290i \(0.345357\pi\)
−0.999287 + 0.0377656i \(0.987976\pi\)
\(762\) 0 0
\(763\) −15502.9 + 26851.9i −0.735576 + 1.27405i
\(764\) 0 0
\(765\) −8352.14 14466.3i −0.394735 0.683701i
\(766\) 0 0
\(767\) 16557.8 23598.3i 0.779489 1.11093i
\(768\) 0 0
\(769\) −17115.4 29644.8i −0.802598 1.39014i −0.917901 0.396811i \(-0.870117\pi\)
0.115302 0.993330i \(-0.463216\pi\)
\(770\) 0 0
\(771\) 15776.4 27325.6i 0.736931 1.27640i
\(772\) 0 0
\(773\) −13129.7 + 22741.3i −0.610921 + 1.05815i 0.380165 + 0.924919i \(0.375867\pi\)
−0.991086 + 0.133227i \(0.957466\pi\)
\(774\) 0 0
\(775\) 19814.1 0.918379
\(776\) 0 0
\(777\) −1743.59 3019.99i −0.0805032 0.139436i
\(778\) 0 0
\(779\) 8853.73 0.407211
\(780\) 0 0
\(781\) 4618.41 0.211600
\(782\) 0 0
\(783\) 69166.8 + 119800.i 3.15686 + 5.46783i
\(784\) 0 0
\(785\) −2552.68 −0.116062
\(786\) 0 0
\(787\) −4121.33 + 7138.35i −0.186670 + 0.323322i −0.944138 0.329550i \(-0.893103\pi\)
0.757468 + 0.652872i \(0.226436\pi\)
\(788\) 0 0
\(789\) 34280.7 59375.9i 1.54680 2.67914i
\(790\) 0 0
\(791\) 21974.1 + 38060.2i 0.987746 + 1.71083i
\(792\) 0 0
\(793\) −7816.70 + 11140.4i −0.350037 + 0.498874i
\(794\) 0 0
\(795\) −2738.64 4743.47i −0.122176 0.211615i
\(796\) 0 0
\(797\) −8055.27 + 13952.1i −0.358008 + 0.620088i −0.987628 0.156815i \(-0.949877\pi\)
0.629620 + 0.776903i \(0.283211\pi\)
\(798\) 0 0
\(799\) 6325.40 10955.9i 0.280071 0.485097i
\(800\) 0 0
\(801\) −66175.0 −2.91907
\(802\) 0 0
\(803\) −6511.14 11277.6i −0.286143 0.495615i
\(804\) 0 0
\(805\) 7222.86 0.316239
\(806\) 0 0
\(807\) −11219.7 −0.489408
\(808\) 0 0
\(809\) −4590.29 7950.61i −0.199488 0.345524i 0.748874 0.662712i \(-0.230595\pi\)
−0.948363 + 0.317188i \(0.897261\pi\)
\(810\) 0 0
\(811\) −9117.75 −0.394781 −0.197391 0.980325i \(-0.563247\pi\)
−0.197391 + 0.980325i \(0.563247\pi\)
\(812\) 0 0
\(813\) −23488.1 + 40682.6i −1.01324 + 1.75498i
\(814\) 0 0
\(815\) −85.8162 + 148.638i −0.00368836 + 0.00638842i
\(816\) 0 0
\(817\) −5262.54 9114.99i −0.225353 0.390322i
\(818\) 0 0
\(819\) 36852.2 + 79230.2i 1.57231 + 3.38038i
\(820\) 0 0
\(821\) −11125.0 19269.1i −0.472917 0.819117i 0.526602 0.850112i \(-0.323466\pi\)
−0.999520 + 0.0309951i \(0.990132\pi\)
\(822\) 0 0
\(823\) 17868.3 30948.9i 0.756806 1.31083i −0.187666 0.982233i \(-0.560092\pi\)
0.944472 0.328593i \(-0.106574\pi\)
\(824\) 0 0
\(825\) −20561.3 + 35613.2i −0.867699 + 1.50290i
\(826\) 0 0
\(827\) 11229.2 0.472162 0.236081 0.971733i \(-0.424137\pi\)
0.236081 + 0.971733i \(0.424137\pi\)
\(828\) 0 0
\(829\) 20617.7 + 35710.9i 0.863790 + 1.49613i 0.868243 + 0.496139i \(0.165249\pi\)
−0.00445289 + 0.999990i \(0.501417\pi\)
\(830\) 0 0
\(831\) −56967.6 −2.37808
\(832\) 0 0
\(833\) 22782.0 0.947597
\(834\) 0 0
\(835\) −3941.07 6826.14i −0.163337 0.282908i
\(836\) 0 0
\(837\) −84790.7 −3.50155
\(838\) 0 0
\(839\) −2921.61 + 5060.37i −0.120221 + 0.208228i −0.919855 0.392259i \(-0.871694\pi\)
0.799634 + 0.600488i \(0.205027\pi\)
\(840\) 0 0
\(841\) −24200.6 + 41916.7i −0.992276 + 1.71867i
\(842\) 0 0
\(843\) −1321.57 2289.03i −0.0539944 0.0935211i
\(844\) 0 0
\(845\) 4924.26 + 878.129i 0.200473 + 0.0357498i
\(846\) 0 0
\(847\) −2423.60 4197.80i −0.0983186 0.170293i
\(848\) 0 0
\(849\) −13946.3 + 24155.7i −0.563763 + 0.976467i
\(850\) 0 0
\(851\) −929.723 + 1610.33i −0.0374506 + 0.0648664i
\(852\) 0 0
\(853\) 43746.6 1.75599 0.877993 0.478673i \(-0.158882\pi\)
0.877993 + 0.478673i \(0.158882\pi\)
\(854\) 0 0
\(855\) −8352.35 14466.7i −0.334087 0.578656i
\(856\) 0 0
\(857\) 33068.9 1.31810 0.659049 0.752100i \(-0.270959\pi\)
0.659049 + 0.752100i \(0.270959\pi\)
\(858\) 0 0
\(859\) 12332.5 0.489847 0.244924 0.969542i \(-0.421237\pi\)
0.244924 + 0.969542i \(0.421237\pi\)
\(860\) 0 0
\(861\) 11483.0 + 19889.1i 0.454516 + 0.787244i
\(862\) 0 0
\(863\) 35801.1 1.41215 0.706075 0.708137i \(-0.250464\pi\)
0.706075 + 0.708137i \(0.250464\pi\)
\(864\) 0 0
\(865\) −235.321 + 407.588i −0.00924990 + 0.0160213i
\(866\) 0 0
\(867\) −20999.3 + 36371.9i −0.822578 + 1.42475i
\(868\) 0 0
\(869\) −10229.8 17718.6i −0.399337 0.691671i
\(870\) 0 0
\(871\) 7980.52 + 17157.7i 0.310459 + 0.667470i
\(872\) 0 0
\(873\) −17922.0 31041.7i −0.694807 1.20344i
\(874\) 0 0
\(875\) −6727.81 + 11652.9i −0.259933 + 0.450218i
\(876\) 0 0
\(877\) −8336.10 + 14438.5i −0.320969 + 0.555935i −0.980688 0.195577i \(-0.937342\pi\)
0.659719 + 0.751512i \(0.270675\pi\)
\(878\) 0 0
\(879\) 67463.3 2.58871
\(880\) 0 0
\(881\) 19721.9 + 34159.3i 0.754195 + 1.30630i 0.945773 + 0.324827i \(0.105306\pi\)
−0.191578 + 0.981477i \(0.561361\pi\)
\(882\) 0 0
\(883\) −20868.8 −0.795347 −0.397673 0.917527i \(-0.630182\pi\)
−0.397673 + 0.917527i \(0.630182\pi\)
\(884\) 0 0
\(885\) −14295.1 −0.542966
\(886\) 0 0
\(887\) 1771.57 + 3068.45i 0.0670614 + 0.116154i 0.897607 0.440798i \(-0.145304\pi\)
−0.830545 + 0.556951i \(0.811971\pi\)
\(888\) 0 0
\(889\) 4218.33 0.159143
\(890\) 0 0
\(891\) 52940.0 91694.8i 1.99052 3.44769i
\(892\) 0 0
\(893\) 6325.56 10956.2i 0.237040 0.410565i
\(894\) 0 0
\(895\) −402.307 696.815i −0.0150253 0.0260245i
\(896\) 0 0
\(897\) 36119.0 51477.0i 1.34446 1.91613i
\(898\) 0 0
\(899\) −22308.2 38638.9i −0.827608 1.43346i
\(900\) 0 0
\(901\) −11194.7 + 19389.8i −0.413929 + 0.716946i
\(902\) 0 0
\(903\) 13650.6 23643.6i 0.503062 0.871329i
\(904\) 0 0
\(905\) 7162.52 0.263083
\(906\) 0 0
\(907\) −13350.4 23123.6i −0.488747 0.846534i 0.511169 0.859480i \(-0.329213\pi\)
−0.999916 + 0.0129456i \(0.995879\pi\)
\(908\) 0 0
\(909\) −6582.92 −0.240200
\(910\) 0 0
\(911\) 28583.6 1.03953 0.519767 0.854308i \(-0.326019\pi\)
0.519767 + 0.854308i \(0.326019\pi\)
\(912\) 0 0
\(913\) −7338.44 12710.5i −0.266010 0.460742i
\(914\) 0 0
\(915\) 6748.52 0.243824
\(916\) 0 0
\(917\) −22000.5 + 38105.9i −0.792279 + 1.37227i
\(918\) 0 0
\(919\) −8159.51 + 14132.7i −0.292881 + 0.507284i −0.974490 0.224432i \(-0.927947\pi\)
0.681609 + 0.731717i \(0.261281\pi\)
\(920\) 0 0
\(921\) −13649.9 23642.2i −0.488358 0.845861i
\(922\) 0 0
\(923\) 3698.45 5271.05i 0.131892 0.187973i
\(924\) 0 0
\(925\) −847.665 1468.20i −0.0301309 0.0521882i
\(926\) 0 0
\(927\) −37043.1 + 64160.6i −1.31247 + 2.27326i
\(928\) 0 0
\(929\) −1196.99 + 2073.24i −0.0422733 + 0.0732195i −0.886388 0.462943i \(-0.846793\pi\)
0.844115 + 0.536163i \(0.180127\pi\)
\(930\) 0 0
\(931\) 22782.5 0.802005
\(932\) 0 0
\(933\) 16975.5 + 29402.4i 0.595662 + 1.03172i
\(934\) 0 0
\(935\) −7272.07 −0.254355
\(936\) 0 0
\(937\) −9538.91 −0.332575 −0.166287 0.986077i \(-0.553178\pi\)
−0.166287 + 0.986077i \(0.553178\pi\)
\(938\) 0 0
\(939\) 16111.6 + 27906.2i 0.559940 + 0.969844i
\(940\) 0 0
\(941\) −25196.8 −0.872893 −0.436447 0.899730i \(-0.643763\pi\)
−0.436447 + 0.899730i \(0.643763\pi\)
\(942\) 0 0
\(943\) 6122.97 10605.3i 0.211444 0.366231i
\(944\) 0 0
\(945\) 14090.4 24405.3i 0.485038 0.840111i
\(946\) 0 0
\(947\) −12508.8 21665.9i −0.429232 0.743452i 0.567573 0.823323i \(-0.307882\pi\)
−0.996805 + 0.0798714i \(0.974549\pi\)
\(948\) 0 0
\(949\) −18085.4 1599.94i −0.618628 0.0547274i
\(950\) 0 0
\(951\) −37025.8 64130.6i −1.26251 2.18673i
\(952\) 0 0
\(953\) 25996.9 45028.0i 0.883655 1.53054i 0.0364071 0.999337i \(-0.488409\pi\)
0.847248 0.531198i \(-0.178258\pi\)
\(954\) 0 0
\(955\) −671.147 + 1162.46i −0.0227412 + 0.0393888i
\(956\) 0 0
\(957\) 92597.6 3.12775
\(958\) 0 0
\(959\) −13698.4 23726.4i −0.461257 0.798921i
\(960\) 0 0
\(961\) −2443.67 −0.0820270
\(962\) 0 0
\(963\) 45864.0 1.53473
\(964\) 0 0
\(965\) 5687.72 + 9851.43i 0.189735 + 0.328631i
\(966\) 0 0
\(967\) 26140.9 0.869321 0.434661 0.900594i \(-0.356868\pi\)
0.434661 + 0.900594i \(0.356868\pi\)
\(968\) 0 0
\(969\) −46078.9 + 79811.0i −1.52762 + 2.64592i
\(970\) 0 0
\(971\) −7744.13 + 13413.2i −0.255943 + 0.443307i −0.965151 0.261692i \(-0.915719\pi\)
0.709208 + 0.704999i \(0.249053\pi\)
\(972\) 0 0
\(973\) −15396.9 26668.2i −0.507298 0.878667i
\(974\) 0 0
\(975\) 24180.2 + 51986.0i 0.794241 + 1.70757i
\(976\) 0 0
\(977\) 21996.0 + 38098.3i 0.720282 + 1.24757i 0.960887 + 0.276942i \(0.0893211\pi\)
−0.240604 + 0.970623i \(0.577346\pi\)
\(978\) 0 0
\(979\) −14404.4 + 24949.1i −0.470240 + 0.814480i
\(980\) 0 0
\(981\) 49591.8 85895.5i 1.61401 2.79555i
\(982\) 0 0
\(983\) −33273.5 −1.07961 −0.539806 0.841789i \(-0.681502\pi\)
−0.539806 + 0.841789i \(0.681502\pi\)
\(984\) 0 0
\(985\) −390.480 676.331i −0.0126312 0.0218779i
\(986\) 0 0
\(987\) 32816.0 1.05830
\(988\) 0 0
\(989\) −14557.7 −0.468055
\(990\) 0 0
\(991\) −22466.1 38912.4i −0.720140 1.24732i −0.960943 0.276745i \(-0.910744\pi\)
0.240804 0.970574i \(-0.422589\pi\)
\(992\) 0 0
\(993\) 118299. 3.78058
\(994\) 0 0
\(995\) −1152.16 + 1995.59i −0.0367094 + 0.0635825i
\(996\) 0 0
\(997\) −18618.8 + 32248.7i −0.591438 + 1.02440i 0.402601 + 0.915375i \(0.368106\pi\)
−0.994039 + 0.109025i \(0.965227\pi\)
\(998\) 0 0
\(999\) 3627.42 + 6282.88i 0.114881 + 0.198981i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.4.i.h.289.1 yes 22
4.3 odd 2 416.4.i.g.289.11 22
13.9 even 3 inner 416.4.i.h.321.1 yes 22
52.35 odd 6 416.4.i.g.321.11 yes 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.4.i.g.289.11 22 4.3 odd 2
416.4.i.g.321.11 yes 22 52.35 odd 6
416.4.i.h.289.1 yes 22 1.1 even 1 trivial
416.4.i.h.321.1 yes 22 13.9 even 3 inner