| L(s) = 1 | + (−5.10 − 8.84i)3-s + 2.27·5-s + (12.0 − 20.9i)7-s + (−38.6 + 66.8i)9-s + (16.8 + 29.1i)11-s + (46.6 + 4.13i)13-s + (−11.6 − 20.1i)15-s + (−47.5 + 82.2i)17-s + (−47.5 + 82.2i)19-s − 246.·21-s + (65.7 + 113. i)23-s − 119.·25-s + 512.·27-s + (134. + 233. i)29-s − 165.·31-s + ⋯ |
| L(s) = 1 | + (−0.982 − 1.70i)3-s + 0.203·5-s + (0.651 − 1.12i)7-s + (−1.43 + 2.47i)9-s + (0.460 + 0.798i)11-s + (0.996 + 0.0881i)13-s + (−0.200 − 0.346i)15-s + (−0.677 + 1.17i)17-s + (−0.573 + 0.993i)19-s − 2.56·21-s + (0.595 + 1.03i)23-s − 0.958·25-s + 3.65·27-s + (0.863 + 1.49i)29-s − 0.958·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.983 - 0.179i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.983 - 0.179i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.047265496\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.047265496\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 13 | \( 1 + (-46.6 - 4.13i)T \) |
| good | 3 | \( 1 + (5.10 + 8.84i)T + (-13.5 + 23.3i)T^{2} \) |
| 5 | \( 1 - 2.27T + 125T^{2} \) |
| 7 | \( 1 + (-12.0 + 20.9i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (-16.8 - 29.1i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 17 | \( 1 + (47.5 - 82.2i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (47.5 - 82.2i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-65.7 - 113. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-134. - 233. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + 165.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (-7.07 - 12.2i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + (46.5 + 80.7i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (55.3 - 95.9i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + 133.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 235.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-307. + 532. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (145. - 251. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-201. - 349. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + (-68.6 + 118. i)T + (-1.78e5 - 3.09e5i)T^{2} \) |
| 73 | \( 1 + 387.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 608.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 436.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-428. - 742. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + (232. - 401. i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97873266189036437694700525350, −10.36152664385755656863983812369, −8.628116198188207911130831359138, −7.79253518433781244562024289360, −6.98688011572949978319156760750, −6.30921852530516002007336416491, −5.29707793537114039441936023049, −3.97349311873012322348642166235, −1.75027629263915210414010451882, −1.31988755232406571872055183494,
0.42657697318667608042210918112, 2.73741920266933868873032186841, 4.08740471986792967004515173387, 4.95043506813403817585444530226, 5.80173419602431458005811303245, 6.50133452505831651084024475125, 8.663152967921104827210175835937, 8.904162015116547507047121841470, 9.912869235251500105584907335216, 10.98856558760338924086219797863