Properties

Label 416.3.x.a
Level 416416
Weight 33
Character orbit 416.x
Analytic conductor 11.33511.335
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,3,Mod(303,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.303"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 416=2513 416 = 2^{5} \cdot 13
Weight: k k == 3 3
Character orbit: [χ][\chi] == 416.x (of order 66, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,1,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.335178997411.3351789974
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ6+1)q32q55ζ6q7+8ζ6q9+(7ζ67)q1113q13+(2ζ62)q15+25ζ6q17+(7ζ614)q195q21++(112ζ6+56)q99+O(q100) q + ( - \zeta_{6} + 1) q^{3} - 2 q^{5} - 5 \zeta_{6} q^{7} + 8 \zeta_{6} q^{9} + ( - 7 \zeta_{6} - 7) q^{11} - 13 q^{13} + (2 \zeta_{6} - 2) q^{15} + 25 \zeta_{6} q^{17} + (7 \zeta_{6} - 14) q^{19} - 5 q^{21} + \cdots + ( - 112 \zeta_{6} + 56) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q34q55q7+8q921q1126q132q15+25q1721q1910q2115q2342q25+34q2739q2920q3121q33+10q3561q37++3q97+O(q100) 2 q + q^{3} - 4 q^{5} - 5 q^{7} + 8 q^{9} - 21 q^{11} - 26 q^{13} - 2 q^{15} + 25 q^{17} - 21 q^{19} - 10 q^{21} - 15 q^{23} - 42 q^{25} + 34 q^{27} - 39 q^{29} - 20 q^{31} - 21 q^{33} + 10 q^{35} - 61 q^{37}+ \cdots + 3 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/416Z)×\left(\mathbb{Z}/416\mathbb{Z}\right)^\times.

nn 261261 287287 353353
χ(n)\chi(n) 1-1 1-1 ζ6\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
303.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0.500000 0.866025i 0 −2.00000 0 −2.50000 4.33013i 0 4.00000 + 6.92820i 0
335.1 0 0.500000 + 0.866025i 0 −2.00000 0 −2.50000 + 4.33013i 0 4.00000 6.92820i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.p odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.3.x.a 2
4.b odd 2 1 104.3.p.b yes 2
8.b even 2 1 104.3.p.a 2
8.d odd 2 1 416.3.x.b 2
13.e even 6 1 416.3.x.b 2
52.i odd 6 1 104.3.p.a 2
104.p odd 6 1 inner 416.3.x.a 2
104.s even 6 1 104.3.p.b yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.3.p.a 2 8.b even 2 1
104.3.p.a 2 52.i odd 6 1
104.3.p.b yes 2 4.b odd 2 1
104.3.p.b yes 2 104.s even 6 1
416.3.x.a 2 1.a even 1 1 trivial
416.3.x.a 2 104.p odd 6 1 inner
416.3.x.b 2 8.d odd 2 1
416.3.x.b 2 13.e even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(416,[χ])S_{3}^{\mathrm{new}}(416, [\chi]):

T32T3+1 T_{3}^{2} - T_{3} + 1 Copy content Toggle raw display
T5+2 T_{5} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
55 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
77 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
1111 T2+21T+147 T^{2} + 21T + 147 Copy content Toggle raw display
1313 (T+13)2 (T + 13)^{2} Copy content Toggle raw display
1717 T225T+625 T^{2} - 25T + 625 Copy content Toggle raw display
1919 T2+21T+147 T^{2} + 21T + 147 Copy content Toggle raw display
2323 T2+15T+75 T^{2} + 15T + 75 Copy content Toggle raw display
2929 T2+39T+507 T^{2} + 39T + 507 Copy content Toggle raw display
3131 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
3737 T2+61T+3721 T^{2} + 61T + 3721 Copy content Toggle raw display
4141 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
4343 T241T+1681 T^{2} - 41T + 1681 Copy content Toggle raw display
4747 (T+82)2 (T + 82)^{2} Copy content Toggle raw display
5353 T2+1728 T^{2} + 1728 Copy content Toggle raw display
5959 T2+93T+2883 T^{2} + 93T + 2883 Copy content Toggle raw display
6161 T2105T+3675 T^{2} - 105T + 3675 Copy content Toggle raw display
6767 T2+21T+147 T^{2} + 21T + 147 Copy content Toggle raw display
7171 T2+29T+841 T^{2} + 29T + 841 Copy content Toggle raw display
7373 T2+1728 T^{2} + 1728 Copy content Toggle raw display
7979 T2+15552 T^{2} + 15552 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2+69T+1587 T^{2} + 69T + 1587 Copy content Toggle raw display
9797 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
show more
show less