gp: [N,k,chi] = [416,3,Mod(303,416)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(416, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 1]))
N = Newforms(chi, 3, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("416.303");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,1,0,-4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 416 Z ) × \left(\mathbb{Z}/416\mathbb{Z}\right)^\times ( Z / 4 1 6 Z ) × .
n n n
261 261 2 6 1
287 287 2 8 7
353 353 3 5 3
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
ζ 6 \zeta_{6} ζ 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 3 n e w ( 416 , [ χ ] ) S_{3}^{\mathrm{new}}(416, [\chi]) S 3 n e w ( 4 1 6 , [ χ ] ) :
T 3 2 − T 3 + 1 T_{3}^{2} - T_{3} + 1 T 3 2 − T 3 + 1
T3^2 - T3 + 1
T 5 + 2 T_{5} + 2 T 5 + 2
T5 + 2
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 − T + 1 T^{2} - T + 1 T 2 − T + 1
T^2 - T + 1
5 5 5
( T + 2 ) 2 (T + 2)^{2} ( T + 2 ) 2
(T + 2)^2
7 7 7
T 2 + 5 T + 25 T^{2} + 5T + 25 T 2 + 5 T + 2 5
T^2 + 5*T + 25
11 11 1 1
T 2 + 21 T + 147 T^{2} + 21T + 147 T 2 + 2 1 T + 1 4 7
T^2 + 21*T + 147
13 13 1 3
( T + 13 ) 2 (T + 13)^{2} ( T + 1 3 ) 2
(T + 13)^2
17 17 1 7
T 2 − 25 T + 625 T^{2} - 25T + 625 T 2 − 2 5 T + 6 2 5
T^2 - 25*T + 625
19 19 1 9
T 2 + 21 T + 147 T^{2} + 21T + 147 T 2 + 2 1 T + 1 4 7
T^2 + 21*T + 147
23 23 2 3
T 2 + 15 T + 75 T^{2} + 15T + 75 T 2 + 1 5 T + 7 5
T^2 + 15*T + 75
29 29 2 9
T 2 + 39 T + 507 T^{2} + 39T + 507 T 2 + 3 9 T + 5 0 7
T^2 + 39*T + 507
31 31 3 1
( T + 10 ) 2 (T + 10)^{2} ( T + 1 0 ) 2
(T + 10)^2
37 37 3 7
T 2 + 61 T + 3721 T^{2} + 61T + 3721 T 2 + 6 1 T + 3 7 2 1
T^2 + 61*T + 3721
41 41 4 1
T 2 − 3 T + 3 T^{2} - 3T + 3 T 2 − 3 T + 3
T^2 - 3*T + 3
43 43 4 3
T 2 − 41 T + 1681 T^{2} - 41T + 1681 T 2 − 4 1 T + 1 6 8 1
T^2 - 41*T + 1681
47 47 4 7
( T + 82 ) 2 (T + 82)^{2} ( T + 8 2 ) 2
(T + 82)^2
53 53 5 3
T 2 + 1728 T^{2} + 1728 T 2 + 1 7 2 8
T^2 + 1728
59 59 5 9
T 2 + 93 T + 2883 T^{2} + 93T + 2883 T 2 + 9 3 T + 2 8 8 3
T^2 + 93*T + 2883
61 61 6 1
T 2 − 105 T + 3675 T^{2} - 105T + 3675 T 2 − 1 0 5 T + 3 6 7 5
T^2 - 105*T + 3675
67 67 6 7
T 2 + 21 T + 147 T^{2} + 21T + 147 T 2 + 2 1 T + 1 4 7
T^2 + 21*T + 147
71 71 7 1
T 2 + 29 T + 841 T^{2} + 29T + 841 T 2 + 2 9 T + 8 4 1
T^2 + 29*T + 841
73 73 7 3
T 2 + 1728 T^{2} + 1728 T 2 + 1 7 2 8
T^2 + 1728
79 79 7 9
T 2 + 15552 T^{2} + 15552 T 2 + 1 5 5 5 2
T^2 + 15552
83 83 8 3
T 2 T^{2} T 2
T^2
89 89 8 9
T 2 + 69 T + 1587 T^{2} + 69T + 1587 T 2 + 6 9 T + 1 5 8 7
T^2 + 69*T + 1587
97 97 9 7
T 2 − 3 T + 3 T^{2} - 3T + 3 T 2 − 3 T + 3
T^2 - 3*T + 3
show more
show less