Defining parameters
Level: | \( N \) | = | \( 416 = 2^{5} \cdot 13 \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 20 \) | ||
Newform subspaces: | \( 42 \) | ||
Sturm bound: | \(32256\) | ||
Trace bound: | \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(416))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 11136 | 6086 | 5050 |
Cusp forms | 10368 | 5866 | 4502 |
Eisenstein series | 768 | 220 | 548 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(416))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(416))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(416)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(208))\)\(^{\oplus 2}\)