Properties

Label 416.3
Level 416
Weight 3
Dimension 5866
Nonzero newspaces 20
Newform subspaces 42
Sturm bound 32256
Trace bound 11

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 20 \)
Newform subspaces: \( 42 \)
Sturm bound: \(32256\)
Trace bound: \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(416))\).

Total New Old
Modular forms 11136 6086 5050
Cusp forms 10368 5866 4502
Eisenstein series 768 220 548

Trace form

\( 5866 q - 40 q^{2} - 32 q^{3} - 40 q^{4} - 48 q^{5} - 40 q^{6} - 28 q^{7} - 40 q^{8} - 26 q^{9} + 40 q^{10} + 56 q^{12} - 16 q^{13} - 56 q^{14} - 20 q^{15} - 80 q^{16} - 100 q^{17} - 160 q^{18} - 96 q^{19}+ \cdots + 160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(416))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
416.3.c \(\chi_{416}(415, \cdot)\) 416.3.c.a 14 1
416.3.c.b 14
416.3.d \(\chi_{416}(287, \cdot)\) 416.3.d.a 12 1
416.3.d.b 12
416.3.g \(\chi_{416}(79, \cdot)\) 416.3.g.a 24 1
416.3.h \(\chi_{416}(207, \cdot)\) 416.3.h.a 3 1
416.3.h.b 3
416.3.h.c 20
416.3.j \(\chi_{416}(177, \cdot)\) 416.3.j.a 52 2
416.3.m \(\chi_{416}(265, \cdot)\) None 0 2
416.3.o \(\chi_{416}(103, \cdot)\) None 0 2
416.3.q \(\chi_{416}(183, \cdot)\) None 0 2
416.3.r \(\chi_{416}(57, \cdot)\) None 0 2
416.3.t \(\chi_{416}(161, \cdot)\) 416.3.t.a 2 2
416.3.t.b 2
416.3.t.c 12
416.3.t.d 12
416.3.t.e 14
416.3.t.f 14
416.3.v \(\chi_{416}(367, \cdot)\) 416.3.v.a 4 2
416.3.v.b 48
416.3.x \(\chi_{416}(303, \cdot)\) 416.3.x.a 2 2
416.3.x.b 2
416.3.x.c 4
416.3.x.d 44
416.3.y \(\chi_{416}(95, \cdot)\) 416.3.y.a 28 2
416.3.y.b 28
416.3.bb \(\chi_{416}(159, \cdot)\) 416.3.bb.a 12 2
416.3.bb.b 12
416.3.bb.c 32
416.3.bc \(\chi_{416}(5, \cdot)\) 416.3.bc.a 440 4
416.3.be \(\chi_{416}(51, \cdot)\) 416.3.be.a 440 4
416.3.bh \(\chi_{416}(27, \cdot)\) 416.3.bh.a 384 4
416.3.bj \(\chi_{416}(21, \cdot)\) 416.3.bj.a 440 4
416.3.bl \(\chi_{416}(33, \cdot)\) 416.3.bl.a 4 4
416.3.bl.b 4
416.3.bl.c 8
416.3.bl.d 16
416.3.bl.e 24
416.3.bl.f 28
416.3.bl.g 28
416.3.bm \(\chi_{416}(41, \cdot)\) None 0 4
416.3.bo \(\chi_{416}(55, \cdot)\) None 0 4
416.3.bq \(\chi_{416}(23, \cdot)\) None 0 4
416.3.bt \(\chi_{416}(137, \cdot)\) None 0 4
416.3.bv \(\chi_{416}(145, \cdot)\) 416.3.bv.a 104 4
416.3.bw \(\chi_{416}(37, \cdot)\) 416.3.bw.a 880 8
416.3.by \(\chi_{416}(3, \cdot)\) 416.3.by.a 880 8
416.3.cb \(\chi_{416}(43, \cdot)\) 416.3.cb.a 880 8
416.3.cd \(\chi_{416}(141, \cdot)\) 416.3.cd.a 880 8

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(416))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(416)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(208))\)\(^{\oplus 2}\)