Properties

Label 416.3.bb.c.159.7
Level $416$
Weight $3$
Character 416.159
Analytic conductor $11.335$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,3,Mod(159,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.159"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 416.bb (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,-8,0,0,0,80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3351789974\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 159.7
Character \(\chi\) \(=\) 416.159
Dual form 416.3.bb.c.191.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.576566 + 0.332881i) q^{3} -2.21788 q^{5} +(1.70346 + 0.983494i) q^{7} +(-4.27838 + 7.41037i) q^{9} +(-5.88030 + 3.39500i) q^{11} +(5.15319 - 11.9350i) q^{13} +(1.27875 - 0.738289i) q^{15} +(15.6446 - 27.0972i) q^{17} +(-22.2355 - 12.8377i) q^{19} -1.30955 q^{21} +(-22.3874 + 12.9254i) q^{23} -20.0810 q^{25} -11.6886i q^{27} +(-5.69864 - 9.87033i) q^{29} +48.9377i q^{31} +(2.26026 - 3.91488i) q^{33} +(-3.77807 - 2.18127i) q^{35} +(-18.5864 - 32.1926i) q^{37} +(1.00178 + 8.59673i) q^{39} +(-3.15967 - 5.47272i) q^{41} +(-70.4488 - 40.6737i) q^{43} +(9.48892 - 16.4353i) q^{45} -48.9746i q^{47} +(-22.5655 - 39.0846i) q^{49} +20.8311i q^{51} +20.7411 q^{53} +(13.0418 - 7.52968i) q^{55} +17.0937 q^{57} +(-2.77794 - 1.60385i) q^{59} +(-8.27717 + 14.3365i) q^{61} +(-14.5761 + 8.41553i) q^{63} +(-11.4291 + 26.4704i) q^{65} +(-47.1880 + 27.2440i) q^{67} +(8.60520 - 14.9047i) q^{69} +(67.4819 + 38.9607i) q^{71} +56.2186 q^{73} +(11.5780 - 6.68458i) q^{75} -13.3558 q^{77} +126.553i q^{79} +(-34.6145 - 59.9541i) q^{81} -146.677i q^{83} +(-34.6978 + 60.0983i) q^{85} +(6.57128 + 3.79393i) q^{87} +(25.8544 + 44.7812i) q^{89} +(20.5163 - 15.2627i) q^{91} +(-16.2904 - 28.2158i) q^{93} +(49.3157 + 28.4724i) q^{95} +(-35.3285 + 61.1907i) q^{97} -58.1003i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 8 q^{5} + 80 q^{9} - 44 q^{13} + 16 q^{17} - 128 q^{21} + 272 q^{25} - 52 q^{29} - 72 q^{33} + 148 q^{37} + 72 q^{41} - 116 q^{45} + 328 q^{49} - 152 q^{53} - 224 q^{57} + 228 q^{61} - 352 q^{65}+ \cdots - 352 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.576566 + 0.332881i −0.192189 + 0.110960i −0.593007 0.805197i \(-0.702059\pi\)
0.400818 + 0.916158i \(0.368726\pi\)
\(4\) 0 0
\(5\) −2.21788 −0.443576 −0.221788 0.975095i \(-0.571189\pi\)
−0.221788 + 0.975095i \(0.571189\pi\)
\(6\) 0 0
\(7\) 1.70346 + 0.983494i 0.243352 + 0.140499i 0.616716 0.787186i \(-0.288463\pi\)
−0.373365 + 0.927685i \(0.621796\pi\)
\(8\) 0 0
\(9\) −4.27838 + 7.41037i −0.475376 + 0.823375i
\(10\) 0 0
\(11\) −5.88030 + 3.39500i −0.534573 + 0.308636i −0.742877 0.669428i \(-0.766539\pi\)
0.208304 + 0.978064i \(0.433206\pi\)
\(12\) 0 0
\(13\) 5.15319 11.9350i 0.396399 0.918078i
\(14\) 0 0
\(15\) 1.27875 0.738289i 0.0852502 0.0492192i
\(16\) 0 0
\(17\) 15.6446 27.0972i 0.920270 1.59395i 0.121274 0.992619i \(-0.461302\pi\)
0.798997 0.601336i \(-0.205365\pi\)
\(18\) 0 0
\(19\) −22.2355 12.8377i −1.17029 0.675668i −0.216542 0.976273i \(-0.569478\pi\)
−0.953748 + 0.300606i \(0.902811\pi\)
\(20\) 0 0
\(21\) −1.30955 −0.0623593
\(22\) 0 0
\(23\) −22.3874 + 12.9254i −0.973364 + 0.561972i −0.900260 0.435352i \(-0.856624\pi\)
−0.0731040 + 0.997324i \(0.523291\pi\)
\(24\) 0 0
\(25\) −20.0810 −0.803241
\(26\) 0 0
\(27\) 11.6886i 0.432912i
\(28\) 0 0
\(29\) −5.69864 9.87033i −0.196505 0.340356i 0.750888 0.660429i \(-0.229626\pi\)
−0.947393 + 0.320073i \(0.896292\pi\)
\(30\) 0 0
\(31\) 48.9377i 1.57863i 0.613985 + 0.789317i \(0.289565\pi\)
−0.613985 + 0.789317i \(0.710435\pi\)
\(32\) 0 0
\(33\) 2.26026 3.91488i 0.0684926 0.118633i
\(34\) 0 0
\(35\) −3.77807 2.18127i −0.107945 0.0623220i
\(36\) 0 0
\(37\) −18.5864 32.1926i −0.502335 0.870070i −0.999996 0.00269853i \(-0.999141\pi\)
0.497661 0.867372i \(-0.334192\pi\)
\(38\) 0 0
\(39\) 1.00178 + 8.59673i 0.0256867 + 0.220429i
\(40\) 0 0
\(41\) −3.15967 5.47272i −0.0770652 0.133481i 0.824917 0.565253i \(-0.191222\pi\)
−0.901983 + 0.431773i \(0.857888\pi\)
\(42\) 0 0
\(43\) −70.4488 40.6737i −1.63835 0.945899i −0.981403 0.191958i \(-0.938516\pi\)
−0.656942 0.753941i \(-0.728150\pi\)
\(44\) 0 0
\(45\) 9.48892 16.4353i 0.210865 0.365229i
\(46\) 0 0
\(47\) 48.9746i 1.04201i −0.853553 0.521006i \(-0.825557\pi\)
0.853553 0.521006i \(-0.174443\pi\)
\(48\) 0 0
\(49\) −22.5655 39.0846i −0.460520 0.797644i
\(50\) 0 0
\(51\) 20.8311i 0.408454i
\(52\) 0 0
\(53\) 20.7411 0.391341 0.195671 0.980670i \(-0.437312\pi\)
0.195671 + 0.980670i \(0.437312\pi\)
\(54\) 0 0
\(55\) 13.0418 7.52968i 0.237124 0.136903i
\(56\) 0 0
\(57\) 17.0937 0.299889
\(58\) 0 0
\(59\) −2.77794 1.60385i −0.0470837 0.0271838i 0.476273 0.879297i \(-0.341987\pi\)
−0.523357 + 0.852113i \(0.675321\pi\)
\(60\) 0 0
\(61\) −8.27717 + 14.3365i −0.135691 + 0.235024i −0.925861 0.377863i \(-0.876659\pi\)
0.790170 + 0.612888i \(0.209992\pi\)
\(62\) 0 0
\(63\) −14.5761 + 8.41553i −0.231367 + 0.133580i
\(64\) 0 0
\(65\) −11.4291 + 26.4704i −0.175833 + 0.407237i
\(66\) 0 0
\(67\) −47.1880 + 27.2440i −0.704298 + 0.406627i −0.808946 0.587883i \(-0.799962\pi\)
0.104648 + 0.994509i \(0.466628\pi\)
\(68\) 0 0
\(69\) 8.60520 14.9047i 0.124713 0.216009i
\(70\) 0 0
\(71\) 67.4819 + 38.9607i 0.950449 + 0.548742i 0.893220 0.449619i \(-0.148440\pi\)
0.0572288 + 0.998361i \(0.481774\pi\)
\(72\) 0 0
\(73\) 56.2186 0.770118 0.385059 0.922892i \(-0.374181\pi\)
0.385059 + 0.922892i \(0.374181\pi\)
\(74\) 0 0
\(75\) 11.5780 6.68458i 0.154374 0.0891278i
\(76\) 0 0
\(77\) −13.3558 −0.173452
\(78\) 0 0
\(79\) 126.553i 1.60193i 0.598711 + 0.800965i \(0.295680\pi\)
−0.598711 + 0.800965i \(0.704320\pi\)
\(80\) 0 0
\(81\) −34.6145 59.9541i −0.427340 0.740174i
\(82\) 0 0
\(83\) 146.677i 1.76719i −0.468252 0.883595i \(-0.655116\pi\)
0.468252 0.883595i \(-0.344884\pi\)
\(84\) 0 0
\(85\) −34.6978 + 60.0983i −0.408209 + 0.707039i
\(86\) 0 0
\(87\) 6.57128 + 3.79393i 0.0755320 + 0.0436084i
\(88\) 0 0
\(89\) 25.8544 + 44.7812i 0.290499 + 0.503159i 0.973928 0.226858i \(-0.0728454\pi\)
−0.683429 + 0.730017i \(0.739512\pi\)
\(90\) 0 0
\(91\) 20.5163 15.2627i 0.225454 0.167722i
\(92\) 0 0
\(93\) −16.2904 28.2158i −0.175166 0.303396i
\(94\) 0 0
\(95\) 49.3157 + 28.4724i 0.519112 + 0.299710i
\(96\) 0 0
\(97\) −35.3285 + 61.1907i −0.364211 + 0.630832i −0.988649 0.150242i \(-0.951995\pi\)
0.624438 + 0.781074i \(0.285328\pi\)
\(98\) 0 0
\(99\) 58.1003i 0.586872i
\(100\) 0 0
\(101\) 38.3011 + 66.3394i 0.379219 + 0.656826i 0.990949 0.134240i \(-0.0428595\pi\)
−0.611730 + 0.791067i \(0.709526\pi\)
\(102\) 0 0
\(103\) 15.4021i 0.149535i 0.997201 + 0.0747674i \(0.0238214\pi\)
−0.997201 + 0.0747674i \(0.976179\pi\)
\(104\) 0 0
\(105\) 2.90441 0.0276611
\(106\) 0 0
\(107\) −79.1106 + 45.6746i −0.739352 + 0.426865i −0.821834 0.569728i \(-0.807049\pi\)
0.0824818 + 0.996593i \(0.473715\pi\)
\(108\) 0 0
\(109\) −9.13850 −0.0838394 −0.0419197 0.999121i \(-0.513347\pi\)
−0.0419197 + 0.999121i \(0.513347\pi\)
\(110\) 0 0
\(111\) 21.4326 + 12.3741i 0.193086 + 0.111478i
\(112\) 0 0
\(113\) 35.4919 61.4738i 0.314088 0.544016i −0.665155 0.746705i \(-0.731635\pi\)
0.979243 + 0.202689i \(0.0649681\pi\)
\(114\) 0 0
\(115\) 49.6525 28.6669i 0.431761 0.249277i
\(116\) 0 0
\(117\) 66.3956 + 89.2496i 0.567484 + 0.762817i
\(118\) 0 0
\(119\) 53.2999 30.7727i 0.447899 0.258594i
\(120\) 0 0
\(121\) −37.4480 + 64.8619i −0.309488 + 0.536048i
\(122\) 0 0
\(123\) 3.64352 + 2.10359i 0.0296221 + 0.0171024i
\(124\) 0 0
\(125\) 99.9842 0.799873
\(126\) 0 0
\(127\) 165.732 95.6854i 1.30498 0.753428i 0.323723 0.946152i \(-0.395065\pi\)
0.981253 + 0.192723i \(0.0617320\pi\)
\(128\) 0 0
\(129\) 54.1579 0.419829
\(130\) 0 0
\(131\) 40.2174i 0.307003i −0.988148 0.153502i \(-0.950945\pi\)
0.988148 0.153502i \(-0.0490550\pi\)
\(132\) 0 0
\(133\) −25.2516 43.7370i −0.189861 0.328850i
\(134\) 0 0
\(135\) 25.9239i 0.192029i
\(136\) 0 0
\(137\) −61.1993 + 106.000i −0.446710 + 0.773724i −0.998170 0.0604771i \(-0.980738\pi\)
0.551460 + 0.834202i \(0.314071\pi\)
\(138\) 0 0
\(139\) 100.067 + 57.7738i 0.719908 + 0.415639i 0.814719 0.579856i \(-0.196891\pi\)
−0.0948110 + 0.995495i \(0.530225\pi\)
\(140\) 0 0
\(141\) 16.3027 + 28.2371i 0.115622 + 0.200263i
\(142\) 0 0
\(143\) 10.2170 + 87.6766i 0.0714476 + 0.613123i
\(144\) 0 0
\(145\) 12.6389 + 21.8912i 0.0871647 + 0.150974i
\(146\) 0 0
\(147\) 26.0210 + 15.0232i 0.177014 + 0.102199i
\(148\) 0 0
\(149\) −96.4775 + 167.104i −0.647500 + 1.12150i 0.336218 + 0.941784i \(0.390852\pi\)
−0.983718 + 0.179719i \(0.942481\pi\)
\(150\) 0 0
\(151\) 36.3232i 0.240551i 0.992741 + 0.120276i \(0.0383778\pi\)
−0.992741 + 0.120276i \(0.961622\pi\)
\(152\) 0 0
\(153\) 133.867 + 231.865i 0.874948 + 1.51545i
\(154\) 0 0
\(155\) 108.538i 0.700244i
\(156\) 0 0
\(157\) −198.926 −1.26705 −0.633524 0.773723i \(-0.718392\pi\)
−0.633524 + 0.773723i \(0.718392\pi\)
\(158\) 0 0
\(159\) −11.9586 + 6.90431i −0.0752114 + 0.0434233i
\(160\) 0 0
\(161\) −50.8481 −0.315826
\(162\) 0 0
\(163\) 146.565 + 84.6196i 0.899174 + 0.519138i 0.876932 0.480614i \(-0.159586\pi\)
0.0222420 + 0.999753i \(0.492920\pi\)
\(164\) 0 0
\(165\) −5.01297 + 8.68272i −0.0303817 + 0.0526226i
\(166\) 0 0
\(167\) 175.923 101.569i 1.05343 0.608199i 0.129824 0.991537i \(-0.458559\pi\)
0.923608 + 0.383338i \(0.125226\pi\)
\(168\) 0 0
\(169\) −115.889 123.007i −0.685735 0.727851i
\(170\) 0 0
\(171\) 190.264 109.849i 1.11266 0.642392i
\(172\) 0 0
\(173\) 77.0704 133.490i 0.445493 0.771617i −0.552593 0.833451i \(-0.686362\pi\)
0.998086 + 0.0618339i \(0.0196949\pi\)
\(174\) 0 0
\(175\) −34.2073 19.7496i −0.195470 0.112855i
\(176\) 0 0
\(177\) 2.13556 0.0120653
\(178\) 0 0
\(179\) −85.1909 + 49.1850i −0.475927 + 0.274776i −0.718717 0.695302i \(-0.755271\pi\)
0.242791 + 0.970079i \(0.421937\pi\)
\(180\) 0 0
\(181\) 188.078 1.03911 0.519554 0.854438i \(-0.326098\pi\)
0.519554 + 0.854438i \(0.326098\pi\)
\(182\) 0 0
\(183\) 11.0212i 0.0602254i
\(184\) 0 0
\(185\) 41.2224 + 71.3992i 0.222824 + 0.385942i
\(186\) 0 0
\(187\) 212.453i 1.13611i
\(188\) 0 0
\(189\) 11.4957 19.9111i 0.0608237 0.105350i
\(190\) 0 0
\(191\) −211.924 122.355i −1.10955 0.640600i −0.170839 0.985299i \(-0.554648\pi\)
−0.938713 + 0.344699i \(0.887981\pi\)
\(192\) 0 0
\(193\) −101.903 176.501i −0.527996 0.914515i −0.999467 0.0326342i \(-0.989610\pi\)
0.471472 0.881881i \(-0.343723\pi\)
\(194\) 0 0
\(195\) −2.22183 19.0665i −0.0113940 0.0977768i
\(196\) 0 0
\(197\) 106.116 + 183.798i 0.538660 + 0.932986i 0.998977 + 0.0452315i \(0.0144025\pi\)
−0.460317 + 0.887755i \(0.652264\pi\)
\(198\) 0 0
\(199\) −273.754 158.052i −1.37565 0.794232i −0.384018 0.923326i \(-0.625460\pi\)
−0.991632 + 0.129094i \(0.958793\pi\)
\(200\) 0 0
\(201\) 18.1380 31.4159i 0.0902387 0.156298i
\(202\) 0 0
\(203\) 22.4183i 0.110435i
\(204\) 0 0
\(205\) 7.00777 + 12.1378i 0.0341842 + 0.0592089i
\(206\) 0 0
\(207\) 221.198i 1.06859i
\(208\) 0 0
\(209\) 174.336 0.834141
\(210\) 0 0
\(211\) −291.910 + 168.534i −1.38346 + 0.798741i −0.992568 0.121695i \(-0.961167\pi\)
−0.390893 + 0.920436i \(0.627834\pi\)
\(212\) 0 0
\(213\) −51.8770 −0.243554
\(214\) 0 0
\(215\) 156.247 + 90.2092i 0.726730 + 0.419578i
\(216\) 0 0
\(217\) −48.1299 + 83.3635i −0.221797 + 0.384163i
\(218\) 0 0
\(219\) −32.4137 + 18.7141i −0.148008 + 0.0854524i
\(220\) 0 0
\(221\) −242.786 326.356i −1.09858 1.47672i
\(222\) 0 0
\(223\) −128.077 + 73.9456i −0.574339 + 0.331595i −0.758880 0.651230i \(-0.774253\pi\)
0.184542 + 0.982825i \(0.440920\pi\)
\(224\) 0 0
\(225\) 85.9142 148.808i 0.381841 0.661368i
\(226\) 0 0
\(227\) 299.989 + 173.199i 1.32154 + 0.762991i 0.983974 0.178311i \(-0.0570633\pi\)
0.337565 + 0.941302i \(0.390397\pi\)
\(228\) 0 0
\(229\) −140.263 −0.612501 −0.306251 0.951951i \(-0.599075\pi\)
−0.306251 + 0.951951i \(0.599075\pi\)
\(230\) 0 0
\(231\) 7.70052 4.44590i 0.0333356 0.0192463i
\(232\) 0 0
\(233\) −37.6195 −0.161457 −0.0807285 0.996736i \(-0.525725\pi\)
−0.0807285 + 0.996736i \(0.525725\pi\)
\(234\) 0 0
\(235\) 108.620i 0.462211i
\(236\) 0 0
\(237\) −42.1269 72.9659i −0.177751 0.307873i
\(238\) 0 0
\(239\) 141.695i 0.592865i −0.955054 0.296433i \(-0.904203\pi\)
0.955054 0.296433i \(-0.0957970\pi\)
\(240\) 0 0
\(241\) −51.0492 + 88.4197i −0.211822 + 0.366887i −0.952285 0.305211i \(-0.901273\pi\)
0.740463 + 0.672098i \(0.234606\pi\)
\(242\) 0 0
\(243\) 131.019 + 75.6438i 0.539172 + 0.311291i
\(244\) 0 0
\(245\) 50.0475 + 86.6848i 0.204275 + 0.353815i
\(246\) 0 0
\(247\) −267.802 + 199.226i −1.08422 + 0.806584i
\(248\) 0 0
\(249\) 48.8259 + 84.5689i 0.196088 + 0.339634i
\(250\) 0 0
\(251\) −149.068 86.0642i −0.593895 0.342885i 0.172741 0.984967i \(-0.444738\pi\)
−0.766636 + 0.642082i \(0.778071\pi\)
\(252\) 0 0
\(253\) 87.7631 152.010i 0.346890 0.600830i
\(254\) 0 0
\(255\) 46.2009i 0.181180i
\(256\) 0 0
\(257\) −85.5022 148.094i −0.332693 0.576242i 0.650346 0.759639i \(-0.274624\pi\)
−0.983039 + 0.183396i \(0.941291\pi\)
\(258\) 0 0
\(259\) 73.1185i 0.282311i
\(260\) 0 0
\(261\) 97.5237 0.373654
\(262\) 0 0
\(263\) −128.083 + 73.9485i −0.487006 + 0.281173i −0.723332 0.690501i \(-0.757390\pi\)
0.236326 + 0.971674i \(0.424057\pi\)
\(264\) 0 0
\(265\) −46.0012 −0.173589
\(266\) 0 0
\(267\) −29.8136 17.2129i −0.111661 0.0644677i
\(268\) 0 0
\(269\) 161.211 279.226i 0.599298 1.03802i −0.393626 0.919271i \(-0.628780\pi\)
0.992925 0.118745i \(-0.0378871\pi\)
\(270\) 0 0
\(271\) −123.017 + 71.0240i −0.453938 + 0.262081i −0.709492 0.704714i \(-0.751075\pi\)
0.255554 + 0.966795i \(0.417742\pi\)
\(272\) 0 0
\(273\) −6.74833 + 15.6294i −0.0247192 + 0.0572507i
\(274\) 0 0
\(275\) 118.083 68.1750i 0.429391 0.247909i
\(276\) 0 0
\(277\) 46.7361 80.9493i 0.168722 0.292236i −0.769249 0.638950i \(-0.779369\pi\)
0.937971 + 0.346714i \(0.112703\pi\)
\(278\) 0 0
\(279\) −362.646 209.374i −1.29981 0.750444i
\(280\) 0 0
\(281\) 373.711 1.32993 0.664966 0.746874i \(-0.268446\pi\)
0.664966 + 0.746874i \(0.268446\pi\)
\(282\) 0 0
\(283\) −80.8275 + 46.6658i −0.285610 + 0.164897i −0.635960 0.771722i \(-0.719396\pi\)
0.350351 + 0.936619i \(0.386062\pi\)
\(284\) 0 0
\(285\) −37.9117 −0.133023
\(286\) 0 0
\(287\) 12.4301i 0.0433104i
\(288\) 0 0
\(289\) −345.007 597.569i −1.19379 2.06771i
\(290\) 0 0
\(291\) 47.0407i 0.161652i
\(292\) 0 0
\(293\) −243.521 + 421.790i −0.831128 + 1.43956i 0.0660162 + 0.997819i \(0.478971\pi\)
−0.897144 + 0.441738i \(0.854362\pi\)
\(294\) 0 0
\(295\) 6.16113 + 3.55713i 0.0208852 + 0.0120581i
\(296\) 0 0
\(297\) 39.6828 + 68.7326i 0.133612 + 0.231423i
\(298\) 0 0
\(299\) 38.8980 + 333.801i 0.130094 + 1.11639i
\(300\) 0 0
\(301\) −80.0046 138.572i −0.265796 0.460372i
\(302\) 0 0
\(303\) −44.1662 25.4994i −0.145763 0.0841564i
\(304\) 0 0
\(305\) 18.3578 31.7966i 0.0601894 0.104251i
\(306\) 0 0
\(307\) 25.1356i 0.0818749i −0.999162 0.0409374i \(-0.986966\pi\)
0.999162 0.0409374i \(-0.0130344\pi\)
\(308\) 0 0
\(309\) −5.12705 8.88032i −0.0165924 0.0287389i
\(310\) 0 0
\(311\) 272.009i 0.874627i −0.899309 0.437313i \(-0.855930\pi\)
0.899309 0.437313i \(-0.144070\pi\)
\(312\) 0 0
\(313\) −450.157 −1.43820 −0.719101 0.694905i \(-0.755446\pi\)
−0.719101 + 0.694905i \(0.755446\pi\)
\(314\) 0 0
\(315\) 32.3280 18.6646i 0.102629 0.0592527i
\(316\) 0 0
\(317\) 369.276 1.16491 0.582454 0.812863i \(-0.302092\pi\)
0.582454 + 0.812863i \(0.302092\pi\)
\(318\) 0 0
\(319\) 67.0194 + 38.6937i 0.210092 + 0.121297i
\(320\) 0 0
\(321\) 30.4084 52.6688i 0.0947301 0.164077i
\(322\) 0 0
\(323\) −695.731 + 401.681i −2.15397 + 1.24359i
\(324\) 0 0
\(325\) −103.481 + 239.667i −0.318404 + 0.737438i
\(326\) 0 0
\(327\) 5.26895 3.04203i 0.0161130 0.00930284i
\(328\) 0 0
\(329\) 48.1662 83.4263i 0.146402 0.253575i
\(330\) 0 0
\(331\) 304.135 + 175.592i 0.918837 + 0.530491i 0.883264 0.468877i \(-0.155341\pi\)
0.0355728 + 0.999367i \(0.488674\pi\)
\(332\) 0 0
\(333\) 318.079 0.955192
\(334\) 0 0
\(335\) 104.657 60.4238i 0.312409 0.180370i
\(336\) 0 0
\(337\) 354.356 1.05150 0.525751 0.850638i \(-0.323784\pi\)
0.525751 + 0.850638i \(0.323784\pi\)
\(338\) 0 0
\(339\) 47.2583i 0.139405i
\(340\) 0 0
\(341\) −166.143 287.768i −0.487223 0.843896i
\(342\) 0 0
\(343\) 185.155i 0.539809i
\(344\) 0 0
\(345\) −19.0853 + 33.0567i −0.0553197 + 0.0958165i
\(346\) 0 0
\(347\) −66.0668 38.1437i −0.190394 0.109924i 0.401773 0.915739i \(-0.368394\pi\)
−0.592167 + 0.805815i \(0.701727\pi\)
\(348\) 0 0
\(349\) −341.837 592.079i −0.979475 1.69650i −0.664297 0.747469i \(-0.731269\pi\)
−0.315178 0.949032i \(-0.602064\pi\)
\(350\) 0 0
\(351\) −139.504 60.2336i −0.397447 0.171606i
\(352\) 0 0
\(353\) −179.201 310.386i −0.507653 0.879280i −0.999961 0.00885925i \(-0.997180\pi\)
0.492308 0.870421i \(-0.336153\pi\)
\(354\) 0 0
\(355\) −149.667 86.4100i −0.421596 0.243409i
\(356\) 0 0
\(357\) −20.4873 + 35.4850i −0.0573874 + 0.0993979i
\(358\) 0 0
\(359\) 704.809i 1.96326i −0.190806 0.981628i \(-0.561110\pi\)
0.190806 0.981628i \(-0.438890\pi\)
\(360\) 0 0
\(361\) 149.112 + 258.270i 0.413053 + 0.715429i
\(362\) 0 0
\(363\) 49.8629i 0.137363i
\(364\) 0 0
\(365\) −124.686 −0.341605
\(366\) 0 0
\(367\) −348.259 + 201.067i −0.948933 + 0.547867i −0.892749 0.450554i \(-0.851227\pi\)
−0.0561839 + 0.998420i \(0.517893\pi\)
\(368\) 0 0
\(369\) 54.0732 0.146540
\(370\) 0 0
\(371\) 35.3317 + 20.3988i 0.0952336 + 0.0549832i
\(372\) 0 0
\(373\) −149.107 + 258.260i −0.399749 + 0.692386i −0.993695 0.112119i \(-0.964236\pi\)
0.593945 + 0.804505i \(0.297570\pi\)
\(374\) 0 0
\(375\) −57.6475 + 33.2828i −0.153727 + 0.0887541i
\(376\) 0 0
\(377\) −147.169 + 17.1496i −0.390368 + 0.0454898i
\(378\) 0 0
\(379\) −20.1610 + 11.6399i −0.0531952 + 0.0307122i −0.526362 0.850261i \(-0.676444\pi\)
0.473167 + 0.880973i \(0.343111\pi\)
\(380\) 0 0
\(381\) −63.7037 + 110.338i −0.167201 + 0.289601i
\(382\) 0 0
\(383\) 32.6408 + 18.8452i 0.0852239 + 0.0492041i 0.542006 0.840374i \(-0.317665\pi\)
−0.456782 + 0.889578i \(0.650998\pi\)
\(384\) 0 0
\(385\) 29.6216 0.0769392
\(386\) 0 0
\(387\) 602.814 348.035i 1.55766 0.899315i
\(388\) 0 0
\(389\) 318.795 0.819525 0.409762 0.912192i \(-0.365612\pi\)
0.409762 + 0.912192i \(0.365612\pi\)
\(390\) 0 0
\(391\) 808.848i 2.06866i
\(392\) 0 0
\(393\) 13.3876 + 23.1880i 0.0340652 + 0.0590026i
\(394\) 0 0
\(395\) 280.678i 0.710577i
\(396\) 0 0
\(397\) −180.443 + 312.537i −0.454516 + 0.787246i −0.998660 0.0517464i \(-0.983521\pi\)
0.544144 + 0.838992i \(0.316855\pi\)
\(398\) 0 0
\(399\) 29.1184 + 16.8115i 0.0729785 + 0.0421341i
\(400\) 0 0
\(401\) 14.5528 + 25.2062i 0.0362913 + 0.0628585i 0.883601 0.468241i \(-0.155112\pi\)
−0.847309 + 0.531100i \(0.821779\pi\)
\(402\) 0 0
\(403\) 584.072 + 252.185i 1.44931 + 0.625770i
\(404\) 0 0
\(405\) 76.7708 + 132.971i 0.189557 + 0.328323i
\(406\) 0 0
\(407\) 218.587 + 126.201i 0.537070 + 0.310077i
\(408\) 0 0
\(409\) −24.4161 + 42.2899i −0.0596971 + 0.103398i −0.894329 0.447409i \(-0.852347\pi\)
0.834632 + 0.550807i \(0.185680\pi\)
\(410\) 0 0
\(411\) 81.4882i 0.198268i
\(412\) 0 0
\(413\) −3.15475 5.46418i −0.00763861 0.0132305i
\(414\) 0 0
\(415\) 325.311i 0.783882i
\(416\) 0 0
\(417\) −76.9271 −0.184478
\(418\) 0 0
\(419\) −288.275 + 166.436i −0.688008 + 0.397221i −0.802865 0.596161i \(-0.796692\pi\)
0.114858 + 0.993382i \(0.463359\pi\)
\(420\) 0 0
\(421\) 103.721 0.246367 0.123184 0.992384i \(-0.460690\pi\)
0.123184 + 0.992384i \(0.460690\pi\)
\(422\) 0 0
\(423\) 362.920 + 209.532i 0.857966 + 0.495347i
\(424\) 0 0
\(425\) −314.159 + 544.140i −0.739199 + 1.28033i
\(426\) 0 0
\(427\) −28.1997 + 16.2811i −0.0660415 + 0.0381291i
\(428\) 0 0
\(429\) −35.0766 47.1503i −0.0817637 0.109908i
\(430\) 0 0
\(431\) 260.403 150.344i 0.604183 0.348825i −0.166502 0.986041i \(-0.553247\pi\)
0.770685 + 0.637216i \(0.219914\pi\)
\(432\) 0 0
\(433\) 180.652 312.898i 0.417210 0.722629i −0.578448 0.815720i \(-0.696341\pi\)
0.995658 + 0.0930905i \(0.0296746\pi\)
\(434\) 0 0
\(435\) −14.5743 8.41447i −0.0335041 0.0193436i
\(436\) 0 0
\(437\) 663.727 1.51883
\(438\) 0 0
\(439\) −71.4908 + 41.2752i −0.162849 + 0.0940210i −0.579210 0.815179i \(-0.696639\pi\)
0.416361 + 0.909200i \(0.363305\pi\)
\(440\) 0 0
\(441\) 386.175 0.875680
\(442\) 0 0
\(443\) 384.913i 0.868877i −0.900701 0.434439i \(-0.856947\pi\)
0.900701 0.434439i \(-0.143053\pi\)
\(444\) 0 0
\(445\) −57.3419 99.3191i −0.128858 0.223189i
\(446\) 0 0
\(447\) 128.462i 0.287387i
\(448\) 0 0
\(449\) −176.746 + 306.133i −0.393644 + 0.681812i −0.992927 0.118726i \(-0.962119\pi\)
0.599283 + 0.800537i \(0.295452\pi\)
\(450\) 0 0
\(451\) 37.1597 + 21.4542i 0.0823940 + 0.0475702i
\(452\) 0 0
\(453\) −12.0913 20.9427i −0.0266916 0.0462312i
\(454\) 0 0
\(455\) −45.5026 + 33.8508i −0.100006 + 0.0743974i
\(456\) 0 0
\(457\) 351.369 + 608.589i 0.768860 + 1.33171i 0.938181 + 0.346144i \(0.112509\pi\)
−0.169321 + 0.985561i \(0.554157\pi\)
\(458\) 0 0
\(459\) −316.729 182.864i −0.690042 0.398396i
\(460\) 0 0
\(461\) −181.475 + 314.324i −0.393655 + 0.681831i −0.992929 0.118714i \(-0.962123\pi\)
0.599273 + 0.800544i \(0.295456\pi\)
\(462\) 0 0
\(463\) 661.323i 1.42834i −0.699970 0.714172i \(-0.746803\pi\)
0.699970 0.714172i \(-0.253197\pi\)
\(464\) 0 0
\(465\) 36.1301 + 62.5792i 0.0776992 + 0.134579i
\(466\) 0 0
\(467\) 466.706i 0.999371i −0.866207 0.499686i \(-0.833449\pi\)
0.866207 0.499686i \(-0.166551\pi\)
\(468\) 0 0
\(469\) −107.177 −0.228523
\(470\) 0 0
\(471\) 114.694 66.2188i 0.243512 0.140592i
\(472\) 0 0
\(473\) 552.348 1.16775
\(474\) 0 0
\(475\) 446.512 + 257.794i 0.940025 + 0.542724i
\(476\) 0 0
\(477\) −88.7383 + 153.699i −0.186034 + 0.322221i
\(478\) 0 0
\(479\) 478.180 276.077i 0.998287 0.576361i 0.0905462 0.995892i \(-0.471139\pi\)
0.907741 + 0.419531i \(0.137805\pi\)
\(480\) 0 0
\(481\) −479.998 + 55.9345i −0.997918 + 0.116288i
\(482\) 0 0
\(483\) 29.3173 16.9263i 0.0606983 0.0350442i
\(484\) 0 0
\(485\) 78.3542 135.713i 0.161555 0.279822i
\(486\) 0 0
\(487\) −8.49135 4.90248i −0.0174360 0.0100667i 0.491257 0.871015i \(-0.336538\pi\)
−0.508693 + 0.860948i \(0.669871\pi\)
\(488\) 0 0
\(489\) −112.673 −0.230415
\(490\) 0 0
\(491\) 39.5580 22.8388i 0.0805661 0.0465149i −0.459176 0.888345i \(-0.651855\pi\)
0.539742 + 0.841831i \(0.318522\pi\)
\(492\) 0 0
\(493\) −356.611 −0.723350
\(494\) 0 0
\(495\) 128.859i 0.260322i
\(496\) 0 0
\(497\) 76.6352 + 132.736i 0.154196 + 0.267075i
\(498\) 0 0
\(499\) 375.399i 0.752303i 0.926558 + 0.376151i \(0.122753\pi\)
−0.926558 + 0.376151i \(0.877247\pi\)
\(500\) 0 0
\(501\) −67.6209 + 117.123i −0.134972 + 0.233778i
\(502\) 0 0
\(503\) 544.647 + 314.452i 1.08280 + 0.625153i 0.931649 0.363359i \(-0.118370\pi\)
0.151147 + 0.988511i \(0.451703\pi\)
\(504\) 0 0
\(505\) −84.9471 147.133i −0.168212 0.291352i
\(506\) 0 0
\(507\) 107.764 + 32.3443i 0.212553 + 0.0637954i
\(508\) 0 0
\(509\) 360.155 + 623.807i 0.707573 + 1.22555i 0.965755 + 0.259457i \(0.0835434\pi\)
−0.258181 + 0.966096i \(0.583123\pi\)
\(510\) 0 0
\(511\) 95.7662 + 55.2907i 0.187409 + 0.108201i
\(512\) 0 0
\(513\) −150.055 + 259.902i −0.292504 + 0.506632i
\(514\) 0 0
\(515\) 34.1599i 0.0663299i
\(516\) 0 0
\(517\) 166.268 + 287.985i 0.321602 + 0.557032i
\(518\) 0 0
\(519\) 102.621i 0.197728i
\(520\) 0 0
\(521\) −168.221 −0.322880 −0.161440 0.986883i \(-0.551614\pi\)
−0.161440 + 0.986883i \(0.551614\pi\)
\(522\) 0 0
\(523\) −583.289 + 336.762i −1.11528 + 0.643905i −0.940191 0.340648i \(-0.889353\pi\)
−0.175085 + 0.984553i \(0.556020\pi\)
\(524\) 0 0
\(525\) 26.2970 0.0500895
\(526\) 0 0
\(527\) 1326.08 + 765.610i 2.51627 + 1.45277i
\(528\) 0 0
\(529\) 69.6298 120.602i 0.131625 0.227982i
\(530\) 0 0
\(531\) 23.7702 13.7237i 0.0447649 0.0258450i
\(532\) 0 0
\(533\) −81.5994 + 9.50882i −0.153094 + 0.0178402i
\(534\) 0 0
\(535\) 175.458 101.301i 0.327958 0.189347i
\(536\) 0 0
\(537\) 32.7455 56.7168i 0.0609785 0.105618i
\(538\) 0 0
\(539\) 265.384 + 153.219i 0.492363 + 0.284266i
\(540\) 0 0
\(541\) −293.373 −0.542279 −0.271140 0.962540i \(-0.587401\pi\)
−0.271140 + 0.962540i \(0.587401\pi\)
\(542\) 0 0
\(543\) −108.440 + 62.6077i −0.199705 + 0.115300i
\(544\) 0 0
\(545\) 20.2681 0.0371891
\(546\) 0 0
\(547\) 789.553i 1.44342i −0.692194 0.721712i \(-0.743356\pi\)
0.692194 0.721712i \(-0.256644\pi\)
\(548\) 0 0
\(549\) −70.8258 122.674i −0.129009 0.223450i
\(550\) 0 0
\(551\) 292.629i 0.531087i
\(552\) 0 0
\(553\) −124.464 + 215.577i −0.225070 + 0.389833i
\(554\) 0 0
\(555\) −47.5348 27.4443i −0.0856484 0.0494491i
\(556\) 0 0
\(557\) 181.207 + 313.860i 0.325327 + 0.563483i 0.981578 0.191059i \(-0.0611923\pi\)
−0.656252 + 0.754542i \(0.727859\pi\)
\(558\) 0 0
\(559\) −848.477 + 631.209i −1.51785 + 1.12918i
\(560\) 0 0
\(561\) −70.7216 122.493i −0.126063 0.218348i
\(562\) 0 0
\(563\) −873.644 504.398i −1.55176 0.895912i −0.997998 0.0632396i \(-0.979857\pi\)
−0.553766 0.832672i \(-0.686810\pi\)
\(564\) 0 0
\(565\) −78.7167 + 136.341i −0.139322 + 0.241312i
\(566\) 0 0
\(567\) 136.173i 0.240164i
\(568\) 0 0
\(569\) 117.008 + 202.664i 0.205638 + 0.356176i 0.950336 0.311226i \(-0.100740\pi\)
−0.744698 + 0.667402i \(0.767406\pi\)
\(570\) 0 0
\(571\) 1064.96i 1.86508i −0.361064 0.932541i \(-0.617586\pi\)
0.361064 0.932541i \(-0.382414\pi\)
\(572\) 0 0
\(573\) 162.918 0.284325
\(574\) 0 0
\(575\) 449.561 259.554i 0.781846 0.451399i
\(576\) 0 0
\(577\) −449.468 −0.778974 −0.389487 0.921032i \(-0.627348\pi\)
−0.389487 + 0.921032i \(0.627348\pi\)
\(578\) 0 0
\(579\) 117.508 + 67.8432i 0.202950 + 0.117173i
\(580\) 0 0
\(581\) 144.256 249.858i 0.248289 0.430049i
\(582\) 0 0
\(583\) −121.964 + 70.4159i −0.209201 + 0.120782i
\(584\) 0 0
\(585\) −147.257 197.945i −0.251722 0.338367i
\(586\) 0 0
\(587\) 483.681 279.253i 0.823987 0.475729i −0.0278022 0.999613i \(-0.508851\pi\)
0.851790 + 0.523884i \(0.175518\pi\)
\(588\) 0 0
\(589\) 628.246 1088.15i 1.06663 1.84746i
\(590\) 0 0
\(591\) −122.366 70.6479i −0.207049 0.119540i
\(592\) 0 0
\(593\) 1072.40 1.80844 0.904218 0.427070i \(-0.140454\pi\)
0.904218 + 0.427070i \(0.140454\pi\)
\(594\) 0 0
\(595\) −118.213 + 68.2502i −0.198677 + 0.114706i
\(596\) 0 0
\(597\) 210.450 0.352513
\(598\) 0 0
\(599\) 534.811i 0.892840i 0.894824 + 0.446420i \(0.147301\pi\)
−0.894824 + 0.446420i \(0.852699\pi\)
\(600\) 0 0
\(601\) −236.885 410.297i −0.394151 0.682690i 0.598841 0.800868i \(-0.295628\pi\)
−0.992992 + 0.118178i \(0.962295\pi\)
\(602\) 0 0
\(603\) 466.240i 0.773201i
\(604\) 0 0
\(605\) 83.0551 143.856i 0.137281 0.237778i
\(606\) 0 0
\(607\) 99.3019 + 57.3320i 0.163595 + 0.0944514i 0.579562 0.814928i \(-0.303224\pi\)
−0.415967 + 0.909380i \(0.636557\pi\)
\(608\) 0 0
\(609\) 7.46262 + 12.9256i 0.0122539 + 0.0212244i
\(610\) 0 0
\(611\) −584.512 252.375i −0.956648 0.413053i
\(612\) 0 0
\(613\) −53.0135 91.8221i −0.0864820 0.149791i 0.819540 0.573022i \(-0.194229\pi\)
−0.906022 + 0.423231i \(0.860896\pi\)
\(614\) 0 0
\(615\) −8.08089 4.66550i −0.0131397 0.00758618i
\(616\) 0 0
\(617\) −190.348 + 329.692i −0.308506 + 0.534348i −0.978036 0.208437i \(-0.933162\pi\)
0.669530 + 0.742785i \(0.266496\pi\)
\(618\) 0 0
\(619\) 340.038i 0.549334i 0.961539 + 0.274667i \(0.0885676\pi\)
−0.961539 + 0.274667i \(0.911432\pi\)
\(620\) 0 0
\(621\) 151.080 + 261.677i 0.243284 + 0.421381i
\(622\) 0 0
\(623\) 101.711i 0.163260i
\(624\) 0 0
\(625\) 280.273 0.448437
\(626\) 0 0
\(627\) −100.516 + 58.0329i −0.160313 + 0.0925565i
\(628\) 0 0
\(629\) −1163.11 −1.84914
\(630\) 0 0
\(631\) 58.2989 + 33.6589i 0.0923912 + 0.0533421i 0.545484 0.838121i \(-0.316346\pi\)
−0.453093 + 0.891463i \(0.649679\pi\)
\(632\) 0 0
\(633\) 112.204 194.342i 0.177257 0.307018i
\(634\) 0 0
\(635\) −367.573 + 212.219i −0.578856 + 0.334202i
\(636\) 0 0
\(637\) −582.759 + 67.9092i −0.914849 + 0.106608i
\(638\) 0 0
\(639\) −577.426 + 333.377i −0.903641 + 0.521717i
\(640\) 0 0
\(641\) 66.1196 114.522i 0.103151 0.178662i −0.809830 0.586664i \(-0.800441\pi\)
0.912981 + 0.408002i \(0.133774\pi\)
\(642\) 0 0
\(643\) 391.462 + 226.011i 0.608805 + 0.351494i 0.772498 0.635017i \(-0.219007\pi\)
−0.163692 + 0.986511i \(0.552340\pi\)
\(644\) 0 0
\(645\) −120.116 −0.186226
\(646\) 0 0
\(647\) 776.369 448.237i 1.19995 0.692793i 0.239408 0.970919i \(-0.423047\pi\)
0.960545 + 0.278126i \(0.0897133\pi\)
\(648\) 0 0
\(649\) 21.7802 0.0335596
\(650\) 0 0
\(651\) 64.0861i 0.0984425i
\(652\) 0 0
\(653\) −339.075 587.295i −0.519257 0.899379i −0.999750 0.0223805i \(-0.992875\pi\)
0.480493 0.876999i \(-0.340458\pi\)
\(654\) 0 0
\(655\) 89.1973i 0.136179i
\(656\) 0 0
\(657\) −240.525 + 416.601i −0.366095 + 0.634095i
\(658\) 0 0
\(659\) −297.429 171.721i −0.451334 0.260578i 0.257059 0.966396i \(-0.417246\pi\)
−0.708394 + 0.705818i \(0.750580\pi\)
\(660\) 0 0
\(661\) 428.396 + 742.004i 0.648103 + 1.12255i 0.983575 + 0.180497i \(0.0577707\pi\)
−0.335472 + 0.942050i \(0.608896\pi\)
\(662\) 0 0
\(663\) 248.620 + 107.347i 0.374992 + 0.161911i
\(664\) 0 0
\(665\) 56.0049 + 97.0033i 0.0842179 + 0.145870i
\(666\) 0 0
\(667\) 255.155 + 147.314i 0.382541 + 0.220860i
\(668\) 0 0
\(669\) 49.2301 85.2690i 0.0735876 0.127457i
\(670\) 0 0
\(671\) 112.404i 0.167517i
\(672\) 0 0
\(673\) −213.089 369.081i −0.316626 0.548412i 0.663156 0.748481i \(-0.269217\pi\)
−0.979782 + 0.200069i \(0.935883\pi\)
\(674\) 0 0
\(675\) 234.719i 0.347732i
\(676\) 0 0
\(677\) −912.853 −1.34838 −0.674190 0.738558i \(-0.735507\pi\)
−0.674190 + 0.738558i \(0.735507\pi\)
\(678\) 0 0
\(679\) −120.361 + 69.4907i −0.177263 + 0.102343i
\(680\) 0 0
\(681\) −230.618 −0.338647
\(682\) 0 0
\(683\) −815.675 470.930i −1.19425 0.689502i −0.234985 0.971999i \(-0.575504\pi\)
−0.959268 + 0.282497i \(0.908837\pi\)
\(684\) 0 0
\(685\) 135.732 235.096i 0.198150 0.343205i
\(686\) 0 0
\(687\) 80.8708 46.6908i 0.117716 0.0679633i
\(688\) 0 0
\(689\) 106.883 247.545i 0.155127 0.359282i
\(690\) 0 0
\(691\) 382.870 221.050i 0.554081 0.319899i −0.196685 0.980467i \(-0.563018\pi\)
0.750767 + 0.660568i \(0.229684\pi\)
\(692\) 0 0
\(693\) 57.1413 98.9717i 0.0824551 0.142816i
\(694\) 0 0
\(695\) −221.937 128.135i −0.319333 0.184367i
\(696\) 0 0
\(697\) −197.727 −0.283683
\(698\) 0 0
\(699\) 21.6901 12.5228i 0.0310302 0.0179153i
\(700\) 0 0
\(701\) 1153.24 1.64514 0.822569 0.568666i \(-0.192540\pi\)
0.822569 + 0.568666i \(0.192540\pi\)
\(702\) 0 0
\(703\) 954.425i 1.35765i
\(704\) 0 0
\(705\) −36.1574 62.6264i −0.0512870 0.0888317i
\(706\) 0 0
\(707\) 150.676i 0.213120i
\(708\) 0 0
\(709\) −107.186 + 185.652i −0.151179 + 0.261850i −0.931661 0.363328i \(-0.881640\pi\)
0.780482 + 0.625178i \(0.214974\pi\)
\(710\) 0 0
\(711\) −937.801 541.440i −1.31899 0.761519i
\(712\) 0 0
\(713\) −632.537 1095.59i −0.887149 1.53659i
\(714\) 0 0
\(715\) −22.6601 194.456i −0.0316924 0.271966i
\(716\) 0 0
\(717\) 47.1675 + 81.6965i 0.0657845 + 0.113942i
\(718\) 0 0
\(719\) −597.793 345.136i −0.831422 0.480022i 0.0229170 0.999737i \(-0.492705\pi\)
−0.854339 + 0.519715i \(0.826038\pi\)
\(720\) 0 0
\(721\) −15.1479 + 26.2369i −0.0210095 + 0.0363895i
\(722\) 0 0
\(723\) 67.9731i 0.0940154i
\(724\) 0 0
\(725\) 114.434 + 198.206i 0.157841 + 0.273388i
\(726\) 0 0
\(727\) 376.359i 0.517688i 0.965919 + 0.258844i \(0.0833416\pi\)
−0.965919 + 0.258844i \(0.916658\pi\)
\(728\) 0 0
\(729\) 522.340 0.716516
\(730\) 0 0
\(731\) −2204.29 + 1272.65i −3.01544 + 1.74097i
\(732\) 0 0
\(733\) 873.660 1.19190 0.595948 0.803023i \(-0.296776\pi\)
0.595948 + 0.803023i \(0.296776\pi\)
\(734\) 0 0
\(735\) −57.7114 33.3197i −0.0785189 0.0453329i
\(736\) 0 0
\(737\) 184.986 320.406i 0.250999 0.434743i
\(738\) 0 0
\(739\) 66.3127 38.2857i 0.0897331 0.0518074i −0.454462 0.890766i \(-0.650168\pi\)
0.544195 + 0.838959i \(0.316835\pi\)
\(740\) 0 0
\(741\) 88.0869 204.013i 0.118876 0.275321i
\(742\) 0 0
\(743\) −689.527 + 398.099i −0.928031 + 0.535799i −0.886188 0.463325i \(-0.846656\pi\)
−0.0418426 + 0.999124i \(0.513323\pi\)
\(744\) 0 0
\(745\) 213.975 370.616i 0.287215 0.497471i
\(746\) 0 0
\(747\) 1086.93 + 627.539i 1.45506 + 0.840079i
\(748\) 0 0
\(749\) −179.683 −0.239897
\(750\) 0 0
\(751\) 856.943 494.756i 1.14107 0.658796i 0.194374 0.980928i \(-0.437733\pi\)
0.946695 + 0.322131i \(0.104399\pi\)
\(752\) 0 0
\(753\) 114.596 0.152186
\(754\) 0 0
\(755\) 80.5604i 0.106703i
\(756\) 0 0
\(757\) −276.505 478.921i −0.365264 0.632656i 0.623554 0.781780i \(-0.285688\pi\)
−0.988819 + 0.149124i \(0.952355\pi\)
\(758\) 0 0
\(759\) 116.859i 0.153964i
\(760\) 0 0
\(761\) 84.2955 146.004i 0.110769 0.191858i −0.805311 0.592852i \(-0.798002\pi\)
0.916081 + 0.400994i \(0.131335\pi\)
\(762\) 0 0
\(763\) −15.5671 8.98766i −0.0204025 0.0117794i
\(764\) 0 0
\(765\) −296.901 514.247i −0.388106 0.672219i
\(766\) 0 0
\(767\) −33.4572 + 24.8899i −0.0436208 + 0.0324509i
\(768\) 0 0
\(769\) −304.996 528.269i −0.396614 0.686956i 0.596692 0.802471i \(-0.296482\pi\)
−0.993306 + 0.115515i \(0.963148\pi\)
\(770\) 0 0
\(771\) 98.5954 + 56.9241i 0.127880 + 0.0738315i
\(772\) 0 0
\(773\) 554.353 960.168i 0.717145 1.24213i −0.244981 0.969528i \(-0.578782\pi\)
0.962126 0.272604i \(-0.0878848\pi\)
\(774\) 0 0
\(775\) 982.718i 1.26802i
\(776\) 0 0
\(777\) 24.3397 + 42.1576i 0.0313253 + 0.0542569i
\(778\) 0 0
\(779\) 162.252i 0.208282i
\(780\) 0 0
\(781\) −529.085 −0.677446
\(782\) 0 0
\(783\) −115.370 + 66.6091i −0.147344 + 0.0850692i
\(784\) 0 0
\(785\) 441.194 0.562031
\(786\) 0 0
\(787\) −285.999 165.122i −0.363404 0.209812i 0.307169 0.951655i \(-0.400618\pi\)
−0.670573 + 0.741843i \(0.733952\pi\)
\(788\) 0 0
\(789\) 49.2321 85.2724i 0.0623980 0.108077i
\(790\) 0 0
\(791\) 120.918 69.8122i 0.152868 0.0882581i
\(792\) 0 0
\(793\) 128.452 + 172.667i 0.161983 + 0.217739i
\(794\) 0 0
\(795\) 26.5227 15.3129i 0.0333619 0.0192615i
\(796\) 0 0
\(797\) −632.672 + 1095.82i −0.793817 + 1.37493i 0.129771 + 0.991544i \(0.458576\pi\)
−0.923588 + 0.383387i \(0.874758\pi\)
\(798\) 0 0
\(799\) −1327.07 766.187i −1.66092 0.958932i
\(800\) 0 0
\(801\) −442.460 −0.552385
\(802\) 0 0
\(803\) −330.582 + 190.862i −0.411684 + 0.237686i
\(804\) 0 0
\(805\) 112.775 0.140093
\(806\) 0 0
\(807\) 214.657i 0.265993i
\(808\) 0 0
\(809\) −719.267 1245.81i −0.889081 1.53993i −0.840963 0.541092i \(-0.818011\pi\)
−0.0481182 0.998842i \(-0.515322\pi\)
\(810\) 0 0
\(811\) 492.383i 0.607131i −0.952811 0.303566i \(-0.901823\pi\)
0.952811 0.303566i \(-0.0981771\pi\)
\(812\) 0 0
\(813\) 47.2850 81.9001i 0.0581612 0.100738i
\(814\) 0 0
\(815\) −325.064 187.676i −0.398852 0.230277i
\(816\) 0 0
\(817\) 1044.31 + 1808.80i 1.27823 + 2.21395i
\(818\) 0 0
\(819\) 25.3259 + 217.333i 0.0309230 + 0.265364i
\(820\) 0 0
\(821\) −560.611 971.006i −0.682839 1.18271i −0.974111 0.226071i \(-0.927412\pi\)
0.291272 0.956640i \(-0.405922\pi\)
\(822\) 0 0
\(823\) −330.419 190.767i −0.401481 0.231795i 0.285642 0.958336i \(-0.407793\pi\)
−0.687123 + 0.726541i \(0.741127\pi\)
\(824\) 0 0
\(825\) −45.3883 + 78.6148i −0.0550161 + 0.0952906i
\(826\) 0 0
\(827\) 389.604i 0.471105i 0.971862 + 0.235553i \(0.0756900\pi\)
−0.971862 + 0.235553i \(0.924310\pi\)
\(828\) 0 0
\(829\) −339.169 587.457i −0.409130 0.708634i 0.585663 0.810555i \(-0.300834\pi\)
−0.994792 + 0.101921i \(0.967501\pi\)
\(830\) 0 0
\(831\) 62.2302i 0.0748859i
\(832\) 0 0
\(833\) −1412.11 −1.69521
\(834\) 0 0
\(835\) −390.176 + 225.268i −0.467276 + 0.269782i
\(836\) 0 0
\(837\) 572.014 0.683409
\(838\) 0 0
\(839\) 145.458 + 83.9804i 0.173371 + 0.100096i 0.584174 0.811628i \(-0.301418\pi\)
−0.410803 + 0.911724i \(0.634752\pi\)
\(840\) 0 0
\(841\) 355.551 615.833i 0.422772 0.732262i
\(842\) 0 0
\(843\) −215.469 + 124.401i −0.255598 + 0.147570i
\(844\) 0 0
\(845\) 257.028 + 272.814i 0.304175 + 0.322857i
\(846\) 0 0
\(847\) −127.583 + 73.6598i −0.150629 + 0.0869655i
\(848\) 0 0
\(849\) 31.0683 53.8118i 0.0365940 0.0633826i
\(850\) 0 0
\(851\) 832.202 + 480.472i 0.977910 + 0.564597i
\(852\) 0 0
\(853\) 1362.92 1.59779 0.798896 0.601469i \(-0.205418\pi\)
0.798896 + 0.601469i \(0.205418\pi\)
\(854\) 0 0
\(855\) −421.982 + 243.632i −0.493547 + 0.284949i
\(856\) 0 0
\(857\) 387.158 0.451759 0.225880 0.974155i \(-0.427474\pi\)
0.225880 + 0.974155i \(0.427474\pi\)
\(858\) 0 0
\(859\) 383.890i 0.446904i −0.974715 0.223452i \(-0.928267\pi\)
0.974715 0.223452i \(-0.0717326\pi\)
\(860\) 0 0
\(861\) 4.13774 + 7.16677i 0.00480573 + 0.00832377i
\(862\) 0 0
\(863\) 607.026i 0.703390i 0.936115 + 0.351695i \(0.114395\pi\)
−0.936115 + 0.351695i \(0.885605\pi\)
\(864\) 0 0
\(865\) −170.933 + 296.064i −0.197610 + 0.342271i
\(866\) 0 0
\(867\) 397.838 + 229.692i 0.458868 + 0.264927i
\(868\) 0 0
\(869\) −429.645 744.167i −0.494413 0.856349i
\(870\) 0 0
\(871\) 81.9889 + 703.582i 0.0941319 + 0.807787i
\(872\) 0 0
\(873\) −302.297 523.594i −0.346274 0.599764i
\(874\) 0 0
\(875\) 170.319 + 98.3339i 0.194651 + 0.112382i
\(876\) 0 0
\(877\) −721.043 + 1248.88i −0.822170 + 1.42404i 0.0818934 + 0.996641i \(0.473903\pi\)
−0.904063 + 0.427399i \(0.859430\pi\)
\(878\) 0 0
\(879\) 324.253i 0.368889i
\(880\) 0 0
\(881\) 531.728 + 920.980i 0.603551 + 1.04538i 0.992279 + 0.124028i \(0.0395813\pi\)
−0.388728 + 0.921353i \(0.627085\pi\)
\(882\) 0 0
\(883\) 709.951i 0.804021i −0.915635 0.402011i \(-0.868311\pi\)
0.915635 0.402011i \(-0.131689\pi\)
\(884\) 0 0
\(885\) −4.73640 −0.00535187
\(886\) 0 0
\(887\) 1013.11 584.919i 1.14218 0.659436i 0.195207 0.980762i \(-0.437462\pi\)
0.946968 + 0.321326i \(0.104129\pi\)
\(888\) 0 0
\(889\) 376.424 0.423424
\(890\) 0 0
\(891\) 407.088 + 235.032i 0.456889 + 0.263785i
\(892\) 0 0
\(893\) −628.720 + 1088.97i −0.704054 + 1.21946i
\(894\) 0 0
\(895\) 188.943 109.086i 0.211109 0.121884i
\(896\) 0 0
\(897\) −133.543 179.510i −0.148877 0.200122i
\(898\) 0 0
\(899\) 483.031 278.878i 0.537298 0.310209i
\(900\) 0 0
\(901\) 324.486 562.026i 0.360140 0.623781i
\(902\) 0 0
\(903\) 92.2559 + 53.2640i 0.102166 + 0.0589856i
\(904\) 0 0
\(905\) −417.135 −0.460922
\(906\) 0 0
\(907\) 226.051 130.511i 0.249229 0.143893i −0.370182 0.928959i \(-0.620705\pi\)
0.619411 + 0.785067i \(0.287371\pi\)
\(908\) 0 0
\(909\) −655.467 −0.721085
\(910\) 0 0
\(911\) 520.587i 0.571446i 0.958312 + 0.285723i \(0.0922338\pi\)
−0.958312 + 0.285723i \(0.907766\pi\)
\(912\) 0 0
\(913\) 497.967 + 862.504i 0.545418 + 0.944692i
\(914\) 0 0
\(915\) 24.4438i 0.0267145i
\(916\) 0 0
\(917\) 39.5536 68.5089i 0.0431337 0.0747098i
\(918\) 0 0
\(919\) −799.452 461.564i −0.869915 0.502246i −0.00259493 0.999997i \(-0.500826\pi\)
−0.867320 + 0.497751i \(0.834159\pi\)
\(920\) 0 0
\(921\) 8.36715 + 14.4923i 0.00908486 + 0.0157354i
\(922\) 0 0
\(923\) 812.744 604.626i 0.880546 0.655066i
\(924\) 0 0
\(925\) 373.234 + 646.460i 0.403496 + 0.698876i
\(926\) 0 0
\(927\) −114.135 65.8960i −0.123123 0.0710852i
\(928\) 0 0
\(929\) −180.089 + 311.923i −0.193853 + 0.335762i −0.946524 0.322634i \(-0.895432\pi\)
0.752671 + 0.658397i \(0.228765\pi\)
\(930\) 0 0
\(931\) 1158.75i 1.24463i
\(932\) 0 0
\(933\) 90.5465 + 156.831i 0.0970488 + 0.168093i
\(934\) 0 0
\(935\) 471.195i 0.503952i
\(936\) 0 0
\(937\) 143.237 0.152868 0.0764339 0.997075i \(-0.475647\pi\)
0.0764339 + 0.997075i \(0.475647\pi\)
\(938\) 0 0
\(939\) 259.546 149.849i 0.276406 0.159583i
\(940\) 0 0
\(941\) −318.618 −0.338595 −0.169297 0.985565i \(-0.554150\pi\)
−0.169297 + 0.985565i \(0.554150\pi\)
\(942\) 0 0
\(943\) 141.474 + 81.6798i 0.150025 + 0.0866170i
\(944\) 0 0
\(945\) −25.4960 + 44.1604i −0.0269799 + 0.0467306i
\(946\) 0 0
\(947\) −412.918 + 238.398i −0.436028 + 0.251741i −0.701911 0.712264i \(-0.747670\pi\)
0.265884 + 0.964005i \(0.414336\pi\)
\(948\) 0 0
\(949\) 289.705 670.970i 0.305274 0.707028i
\(950\) 0 0
\(951\) −212.912 + 122.925i −0.223882 + 0.129259i
\(952\) 0 0
\(953\) 45.8183 79.3596i 0.0480779 0.0832734i −0.840985 0.541058i \(-0.818024\pi\)
0.889063 + 0.457785i \(0.151357\pi\)
\(954\) 0 0
\(955\) 470.022 + 271.368i 0.492170 + 0.284155i
\(956\) 0 0
\(957\) −51.5215 −0.0538365
\(958\) 0 0
\(959\) −208.501 + 120.378i −0.217415 + 0.125525i
\(960\) 0 0
\(961\) −1433.90 −1.49209
\(962\) 0 0
\(963\) 781.653i 0.811685i
\(964\) 0 0
\(965\) 226.009 + 391.459i 0.234206 + 0.405657i
\(966\) 0 0
\(967\) 1374.98i 1.42191i −0.703240 0.710953i \(-0.748264\pi\)
0.703240 0.710953i \(-0.251736\pi\)
\(968\) 0 0
\(969\) 267.423 463.191i 0.275979 0.478009i
\(970\) 0 0
\(971\) 743.910 + 429.497i 0.766128 + 0.442324i 0.831492 0.555537i \(-0.187487\pi\)
−0.0653638 + 0.997862i \(0.520821\pi\)
\(972\) 0 0
\(973\) 113.640 + 196.831i 0.116794 + 0.202293i
\(974\) 0 0
\(975\) −20.1168 172.631i −0.0206326 0.177057i
\(976\) 0 0
\(977\) 747.534 + 1294.77i 0.765132 + 1.32525i 0.940177 + 0.340687i \(0.110660\pi\)
−0.175045 + 0.984560i \(0.556007\pi\)
\(978\) 0 0
\(979\) −304.064 175.551i −0.310586 0.179317i
\(980\) 0 0
\(981\) 39.0980 67.7197i 0.0398552 0.0690313i
\(982\) 0 0
\(983\) 1629.77i 1.65796i −0.559281 0.828978i \(-0.688923\pi\)
0.559281 0.828978i \(-0.311077\pi\)
\(984\) 0 0
\(985\) −235.352 407.642i −0.238936 0.413850i
\(986\) 0 0
\(987\) 64.1344i 0.0649791i
\(988\) 0 0
\(989\) 2102.89 2.12628
\(990\) 0 0
\(991\) 1498.34 865.070i 1.51195 0.872926i 0.512050 0.858956i \(-0.328886\pi\)
0.999902 0.0139703i \(-0.00444702\pi\)
\(992\) 0 0
\(993\) −233.805 −0.235453
\(994\) 0 0
\(995\) 607.154 + 350.540i 0.610205 + 0.352302i
\(996\) 0 0
\(997\) 56.4324 97.7438i 0.0566022 0.0980379i −0.836336 0.548217i \(-0.815307\pi\)
0.892938 + 0.450179i \(0.148640\pi\)
\(998\) 0 0
\(999\) −376.287 + 217.249i −0.376663 + 0.217467i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.3.bb.c.159.7 32
4.3 odd 2 inner 416.3.bb.c.159.10 yes 32
13.9 even 3 inner 416.3.bb.c.191.10 yes 32
52.35 odd 6 inner 416.3.bb.c.191.7 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.3.bb.c.159.7 32 1.1 even 1 trivial
416.3.bb.c.159.10 yes 32 4.3 odd 2 inner
416.3.bb.c.191.7 yes 32 52.35 odd 6 inner
416.3.bb.c.191.10 yes 32 13.9 even 3 inner