Properties

Label 416.3.bb.c.159.13
Level $416$
Weight $3$
Character 416.159
Analytic conductor $11.335$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,3,Mod(159,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.159"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 416.bb (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,-8,0,0,0,80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3351789974\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 159.13
Character \(\chi\) \(=\) 416.159
Dual form 416.3.bb.c.191.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.45657 - 1.99565i) q^{3} +6.36955 q^{5} +(5.32276 + 3.07310i) q^{7} +(3.46526 - 6.00201i) q^{9} +(4.55705 - 2.63102i) q^{11} +(-0.635553 - 12.9845i) q^{13} +(22.0168 - 12.7114i) q^{15} +(-16.0523 + 27.8035i) q^{17} +(4.23804 + 2.44684i) q^{19} +24.5314 q^{21} +(-8.99944 + 5.19583i) q^{23} +15.5712 q^{25} +8.25990i q^{27} +(-18.6765 - 32.3486i) q^{29} +39.4746i q^{31} +(10.5012 - 18.1886i) q^{33} +(33.9036 + 19.5743i) q^{35} +(-16.8593 - 29.2011i) q^{37} +(-28.1093 - 43.6134i) q^{39} +(-15.9547 - 27.6343i) q^{41} +(7.50010 + 4.33019i) q^{43} +(22.0722 - 38.2301i) q^{45} -69.4026i q^{47} +(-5.61212 - 9.72047i) q^{49} +128.140i q^{51} -19.7488 q^{53} +(29.0264 - 16.7584i) q^{55} +19.5321 q^{57} +(80.1928 + 46.2993i) q^{59} +(29.2216 - 50.6133i) q^{61} +(36.8896 - 21.2982i) q^{63} +(-4.04819 - 82.7052i) q^{65} +(-113.408 + 65.4759i) q^{67} +(-20.7381 + 35.9195i) q^{69} +(40.2747 + 23.2526i) q^{71} -28.9100 q^{73} +(53.8229 - 31.0747i) q^{75} +32.3415 q^{77} -73.0898i q^{79} +(47.6713 + 82.5691i) q^{81} -6.44306i q^{83} +(-102.246 + 177.096i) q^{85} +(-129.113 - 74.5436i) q^{87} +(-41.4095 - 71.7234i) q^{89} +(36.5196 - 71.0663i) q^{91} +(78.7776 + 136.447i) q^{93} +(26.9944 + 15.5852i) q^{95} +(28.4641 - 49.3012i) q^{97} -36.4687i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 8 q^{5} + 80 q^{9} - 44 q^{13} + 16 q^{17} - 128 q^{21} + 272 q^{25} - 52 q^{29} - 72 q^{33} + 148 q^{37} + 72 q^{41} - 116 q^{45} + 328 q^{49} - 152 q^{53} - 224 q^{57} + 228 q^{61} - 352 q^{65}+ \cdots - 352 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.45657 1.99565i 1.15219 0.665218i 0.202771 0.979226i \(-0.435005\pi\)
0.949420 + 0.314009i \(0.101672\pi\)
\(4\) 0 0
\(5\) 6.36955 1.27391 0.636955 0.770901i \(-0.280194\pi\)
0.636955 + 0.770901i \(0.280194\pi\)
\(6\) 0 0
\(7\) 5.32276 + 3.07310i 0.760395 + 0.439014i 0.829438 0.558599i \(-0.188661\pi\)
−0.0690426 + 0.997614i \(0.521994\pi\)
\(8\) 0 0
\(9\) 3.46526 6.00201i 0.385029 0.666890i
\(10\) 0 0
\(11\) 4.55705 2.63102i 0.414278 0.239183i −0.278348 0.960480i \(-0.589787\pi\)
0.692626 + 0.721297i \(0.256454\pi\)
\(12\) 0 0
\(13\) −0.635553 12.9845i −0.0488887 0.998804i
\(14\) 0 0
\(15\) 22.0168 12.7114i 1.46779 0.847428i
\(16\) 0 0
\(17\) −16.0523 + 27.8035i −0.944255 + 1.63550i −0.187019 + 0.982356i \(0.559883\pi\)
−0.757236 + 0.653142i \(0.773451\pi\)
\(18\) 0 0
\(19\) 4.23804 + 2.44684i 0.223055 + 0.128781i 0.607364 0.794424i \(-0.292227\pi\)
−0.384309 + 0.923204i \(0.625560\pi\)
\(20\) 0 0
\(21\) 24.5314 1.16816
\(22\) 0 0
\(23\) −8.99944 + 5.19583i −0.391280 + 0.225906i −0.682715 0.730685i \(-0.739201\pi\)
0.291435 + 0.956591i \(0.405867\pi\)
\(24\) 0 0
\(25\) 15.5712 0.622847
\(26\) 0 0
\(27\) 8.25990i 0.305922i
\(28\) 0 0
\(29\) −18.6765 32.3486i −0.644017 1.11547i −0.984528 0.175229i \(-0.943933\pi\)
0.340511 0.940241i \(-0.389400\pi\)
\(30\) 0 0
\(31\) 39.4746i 1.27337i 0.771122 + 0.636687i \(0.219696\pi\)
−0.771122 + 0.636687i \(0.780304\pi\)
\(32\) 0 0
\(33\) 10.5012 18.1886i 0.318218 0.551170i
\(34\) 0 0
\(35\) 33.9036 + 19.5743i 0.968675 + 0.559265i
\(36\) 0 0
\(37\) −16.8593 29.2011i −0.455656 0.789219i 0.543070 0.839688i \(-0.317262\pi\)
−0.998726 + 0.0504683i \(0.983929\pi\)
\(38\) 0 0
\(39\) −28.1093 43.6134i −0.720751 1.11829i
\(40\) 0 0
\(41\) −15.9547 27.6343i −0.389139 0.674008i 0.603195 0.797594i \(-0.293894\pi\)
−0.992334 + 0.123586i \(0.960561\pi\)
\(42\) 0 0
\(43\) 7.50010 + 4.33019i 0.174421 + 0.100702i 0.584669 0.811272i \(-0.301224\pi\)
−0.410248 + 0.911974i \(0.634558\pi\)
\(44\) 0 0
\(45\) 22.0722 38.2301i 0.490493 0.849558i
\(46\) 0 0
\(47\) 69.4026i 1.47665i −0.674445 0.738325i \(-0.735617\pi\)
0.674445 0.738325i \(-0.264383\pi\)
\(48\) 0 0
\(49\) −5.61212 9.72047i −0.114533 0.198377i
\(50\) 0 0
\(51\) 128.140i 2.51254i
\(52\) 0 0
\(53\) −19.7488 −0.372619 −0.186310 0.982491i \(-0.559653\pi\)
−0.186310 + 0.982491i \(0.559653\pi\)
\(54\) 0 0
\(55\) 29.0264 16.7584i 0.527752 0.304698i
\(56\) 0 0
\(57\) 19.5321 0.342669
\(58\) 0 0
\(59\) 80.1928 + 46.2993i 1.35920 + 0.784734i 0.989516 0.144423i \(-0.0461328\pi\)
0.369684 + 0.929158i \(0.379466\pi\)
\(60\) 0 0
\(61\) 29.2216 50.6133i 0.479043 0.829727i −0.520668 0.853759i \(-0.674317\pi\)
0.999711 + 0.0240323i \(0.00765044\pi\)
\(62\) 0 0
\(63\) 36.8896 21.2982i 0.585549 0.338067i
\(64\) 0 0
\(65\) −4.04819 82.7052i −0.0622798 1.27239i
\(66\) 0 0
\(67\) −113.408 + 65.4759i −1.69265 + 0.977252i −0.740284 + 0.672294i \(0.765309\pi\)
−0.952366 + 0.304957i \(0.901358\pi\)
\(68\) 0 0
\(69\) −20.7381 + 35.9195i −0.300553 + 0.520573i
\(70\) 0 0
\(71\) 40.2747 + 23.2526i 0.567250 + 0.327502i 0.756050 0.654514i \(-0.227127\pi\)
−0.188800 + 0.982015i \(0.560460\pi\)
\(72\) 0 0
\(73\) −28.9100 −0.396027 −0.198014 0.980199i \(-0.563449\pi\)
−0.198014 + 0.980199i \(0.563449\pi\)
\(74\) 0 0
\(75\) 53.8229 31.0747i 0.717639 0.414329i
\(76\) 0 0
\(77\) 32.3415 0.420019
\(78\) 0 0
\(79\) 73.0898i 0.925187i −0.886570 0.462594i \(-0.846919\pi\)
0.886570 0.462594i \(-0.153081\pi\)
\(80\) 0 0
\(81\) 47.6713 + 82.5691i 0.588534 + 1.01937i
\(82\) 0 0
\(83\) 6.44306i 0.0776272i −0.999246 0.0388136i \(-0.987642\pi\)
0.999246 0.0388136i \(-0.0123579\pi\)
\(84\) 0 0
\(85\) −102.246 + 177.096i −1.20290 + 2.08348i
\(86\) 0 0
\(87\) −129.113 74.5436i −1.48406 0.856823i
\(88\) 0 0
\(89\) −41.4095 71.7234i −0.465276 0.805881i 0.533938 0.845523i \(-0.320711\pi\)
−0.999214 + 0.0396423i \(0.987378\pi\)
\(90\) 0 0
\(91\) 36.5196 71.0663i 0.401315 0.780949i
\(92\) 0 0
\(93\) 78.7776 + 136.447i 0.847071 + 1.46717i
\(94\) 0 0
\(95\) 26.9944 + 15.5852i 0.284152 + 0.164055i
\(96\) 0 0
\(97\) 28.4641 49.3012i 0.293444 0.508260i −0.681178 0.732118i \(-0.738532\pi\)
0.974622 + 0.223858i \(0.0718652\pi\)
\(98\) 0 0
\(99\) 36.4687i 0.368370i
\(100\) 0 0
\(101\) 81.7174 + 141.539i 0.809083 + 1.40137i 0.913500 + 0.406839i \(0.133369\pi\)
−0.104417 + 0.994534i \(0.533298\pi\)
\(102\) 0 0
\(103\) 8.24875i 0.0800849i −0.999198 0.0400425i \(-0.987251\pi\)
0.999198 0.0400425i \(-0.0127493\pi\)
\(104\) 0 0
\(105\) 156.254 1.48813
\(106\) 0 0
\(107\) 8.04003 4.64191i 0.0751404 0.0433823i −0.461959 0.886901i \(-0.652853\pi\)
0.537099 + 0.843519i \(0.319520\pi\)
\(108\) 0 0
\(109\) −29.1142 −0.267103 −0.133551 0.991042i \(-0.542638\pi\)
−0.133551 + 0.991042i \(0.542638\pi\)
\(110\) 0 0
\(111\) −116.551 67.2905i −1.05001 0.606221i
\(112\) 0 0
\(113\) −55.0757 + 95.3939i −0.487395 + 0.844194i −0.999895 0.0144939i \(-0.995386\pi\)
0.512500 + 0.858687i \(0.328720\pi\)
\(114\) 0 0
\(115\) −57.3224 + 33.0951i −0.498455 + 0.287783i
\(116\) 0 0
\(117\) −80.1352 41.1800i −0.684916 0.351965i
\(118\) 0 0
\(119\) −170.886 + 98.6609i −1.43601 + 0.829083i
\(120\) 0 0
\(121\) −46.6555 + 80.8097i −0.385583 + 0.667849i
\(122\) 0 0
\(123\) −110.297 63.6800i −0.896724 0.517724i
\(124\) 0 0
\(125\) −60.0573 −0.480459
\(126\) 0 0
\(127\) 217.522 125.586i 1.71277 0.988869i 0.781993 0.623287i \(-0.214203\pi\)
0.930779 0.365582i \(-0.119130\pi\)
\(128\) 0 0
\(129\) 34.5662 0.267955
\(130\) 0 0
\(131\) 46.9658i 0.358518i −0.983802 0.179259i \(-0.942630\pi\)
0.983802 0.179259i \(-0.0573700\pi\)
\(132\) 0 0
\(133\) 15.0387 + 26.0479i 0.113073 + 0.195849i
\(134\) 0 0
\(135\) 52.6119i 0.389718i
\(136\) 0 0
\(137\) −123.862 + 214.535i −0.904099 + 1.56595i −0.0819774 + 0.996634i \(0.526124\pi\)
−0.822122 + 0.569312i \(0.807210\pi\)
\(138\) 0 0
\(139\) −48.7862 28.1667i −0.350980 0.202638i 0.314137 0.949378i \(-0.398285\pi\)
−0.665117 + 0.746739i \(0.731618\pi\)
\(140\) 0 0
\(141\) −138.503 239.895i −0.982294 1.70138i
\(142\) 0 0
\(143\) −37.0586 57.4987i −0.259151 0.402089i
\(144\) 0 0
\(145\) −118.961 206.046i −0.820420 1.42101i
\(146\) 0 0
\(147\) −38.7974 22.3997i −0.263928 0.152379i
\(148\) 0 0
\(149\) 22.6213 39.1812i 0.151821 0.262961i −0.780076 0.625685i \(-0.784820\pi\)
0.931897 + 0.362724i \(0.118153\pi\)
\(150\) 0 0
\(151\) 213.294i 1.41254i 0.707943 + 0.706270i \(0.249624\pi\)
−0.707943 + 0.706270i \(0.750376\pi\)
\(152\) 0 0
\(153\) 111.251 + 192.693i 0.727132 + 1.25943i
\(154\) 0 0
\(155\) 251.436i 1.62216i
\(156\) 0 0
\(157\) 117.158 0.746227 0.373114 0.927786i \(-0.378290\pi\)
0.373114 + 0.927786i \(0.378290\pi\)
\(158\) 0 0
\(159\) −68.2632 + 39.4118i −0.429328 + 0.247873i
\(160\) 0 0
\(161\) −63.8692 −0.396703
\(162\) 0 0
\(163\) 45.2131 + 26.1038i 0.277381 + 0.160146i 0.632237 0.774775i \(-0.282137\pi\)
−0.354856 + 0.934921i \(0.615470\pi\)
\(164\) 0 0
\(165\) 66.8879 115.853i 0.405381 0.702141i
\(166\) 0 0
\(167\) −109.301 + 63.1049i −0.654496 + 0.377874i −0.790177 0.612879i \(-0.790011\pi\)
0.135680 + 0.990753i \(0.456678\pi\)
\(168\) 0 0
\(169\) −168.192 + 16.5046i −0.995220 + 0.0976605i
\(170\) 0 0
\(171\) 29.3719 16.9579i 0.171765 0.0991687i
\(172\) 0 0
\(173\) −22.3761 + 38.7565i −0.129342 + 0.224026i −0.923422 0.383787i \(-0.874620\pi\)
0.794080 + 0.607813i \(0.207953\pi\)
\(174\) 0 0
\(175\) 82.8817 + 47.8518i 0.473610 + 0.273439i
\(176\) 0 0
\(177\) 369.590 2.08808
\(178\) 0 0
\(179\) −252.618 + 145.849i −1.41128 + 0.814801i −0.995509 0.0946703i \(-0.969820\pi\)
−0.415767 + 0.909471i \(0.636487\pi\)
\(180\) 0 0
\(181\) −236.676 −1.30760 −0.653802 0.756666i \(-0.726827\pi\)
−0.653802 + 0.756666i \(0.726827\pi\)
\(182\) 0 0
\(183\) 233.265i 1.27467i
\(184\) 0 0
\(185\) −107.386 185.998i −0.580465 1.00539i
\(186\) 0 0
\(187\) 168.936i 0.903400i
\(188\) 0 0
\(189\) −25.3835 + 43.9655i −0.134304 + 0.232622i
\(190\) 0 0
\(191\) −313.094 180.765i −1.63923 0.946413i −0.981097 0.193515i \(-0.938011\pi\)
−0.658137 0.752898i \(-0.728655\pi\)
\(192\) 0 0
\(193\) −93.6618 162.227i −0.485294 0.840555i 0.514563 0.857453i \(-0.327954\pi\)
−0.999857 + 0.0168980i \(0.994621\pi\)
\(194\) 0 0
\(195\) −179.044 277.798i −0.918173 1.42460i
\(196\) 0 0
\(197\) 83.5515 + 144.716i 0.424119 + 0.734597i 0.996338 0.0855049i \(-0.0272503\pi\)
−0.572218 + 0.820101i \(0.693917\pi\)
\(198\) 0 0
\(199\) 112.560 + 64.9863i 0.565626 + 0.326564i 0.755400 0.655263i \(-0.227442\pi\)
−0.189775 + 0.981828i \(0.560776\pi\)
\(200\) 0 0
\(201\) −261.334 + 452.644i −1.30017 + 2.25196i
\(202\) 0 0
\(203\) 229.579i 1.13093i
\(204\) 0 0
\(205\) −101.624 176.018i −0.495728 0.858625i
\(206\) 0 0
\(207\) 72.0196i 0.347921i
\(208\) 0 0
\(209\) 25.7506 0.123209
\(210\) 0 0
\(211\) 294.929 170.277i 1.39777 0.807002i 0.403610 0.914931i \(-0.367755\pi\)
0.994159 + 0.107930i \(0.0344221\pi\)
\(212\) 0 0
\(213\) 185.617 0.871440
\(214\) 0 0
\(215\) 47.7723 + 27.5813i 0.222197 + 0.128285i
\(216\) 0 0
\(217\) −121.309 + 210.114i −0.559030 + 0.968268i
\(218\) 0 0
\(219\) −99.9295 + 57.6943i −0.456299 + 0.263444i
\(220\) 0 0
\(221\) 371.215 + 190.760i 1.67971 + 0.863169i
\(222\) 0 0
\(223\) 205.586 118.695i 0.921912 0.532266i 0.0376675 0.999290i \(-0.488007\pi\)
0.884245 + 0.467024i \(0.154674\pi\)
\(224\) 0 0
\(225\) 53.9582 93.4584i 0.239814 0.415371i
\(226\) 0 0
\(227\) 103.665 + 59.8513i 0.456676 + 0.263662i 0.710646 0.703550i \(-0.248403\pi\)
−0.253970 + 0.967212i \(0.581736\pi\)
\(228\) 0 0
\(229\) 192.387 0.840118 0.420059 0.907497i \(-0.362009\pi\)
0.420059 + 0.907497i \(0.362009\pi\)
\(230\) 0 0
\(231\) 111.791 64.5424i 0.483943 0.279404i
\(232\) 0 0
\(233\) 299.621 1.28593 0.642963 0.765897i \(-0.277705\pi\)
0.642963 + 0.765897i \(0.277705\pi\)
\(234\) 0 0
\(235\) 442.063i 1.88112i
\(236\) 0 0
\(237\) −145.862 252.640i −0.615451 1.06599i
\(238\) 0 0
\(239\) 318.987i 1.33468i 0.744755 + 0.667338i \(0.232566\pi\)
−0.744755 + 0.667338i \(0.767434\pi\)
\(240\) 0 0
\(241\) 96.6529 167.408i 0.401049 0.694638i −0.592803 0.805347i \(-0.701979\pi\)
0.993853 + 0.110709i \(0.0353122\pi\)
\(242\) 0 0
\(243\) 265.179 + 153.101i 1.09127 + 0.630046i
\(244\) 0 0
\(245\) −35.7467 61.9150i −0.145905 0.252714i
\(246\) 0 0
\(247\) 29.0773 56.5838i 0.117722 0.229084i
\(248\) 0 0
\(249\) −12.8581 22.2709i −0.0516390 0.0894414i
\(250\) 0 0
\(251\) 373.908 + 215.876i 1.48967 + 0.860063i 0.999930 0.0118049i \(-0.00375772\pi\)
0.489742 + 0.871868i \(0.337091\pi\)
\(252\) 0 0
\(253\) −27.3406 + 47.3553i −0.108066 + 0.187175i
\(254\) 0 0
\(255\) 816.192i 3.20075i
\(256\) 0 0
\(257\) 176.804 + 306.234i 0.687954 + 1.19157i 0.972499 + 0.232909i \(0.0748244\pi\)
−0.284544 + 0.958663i \(0.591842\pi\)
\(258\) 0 0
\(259\) 207.241i 0.800158i
\(260\) 0 0
\(261\) −258.876 −0.991861
\(262\) 0 0
\(263\) 83.9181 48.4501i 0.319080 0.184221i −0.331902 0.943314i \(-0.607690\pi\)
0.650983 + 0.759093i \(0.274357\pi\)
\(264\) 0 0
\(265\) −125.791 −0.474683
\(266\) 0 0
\(267\) −286.270 165.278i −1.07217 0.619019i
\(268\) 0 0
\(269\) 190.353 329.702i 0.707633 1.22566i −0.258099 0.966118i \(-0.583096\pi\)
0.965733 0.259539i \(-0.0835705\pi\)
\(270\) 0 0
\(271\) 73.3675 42.3587i 0.270729 0.156305i −0.358490 0.933534i \(-0.616708\pi\)
0.629219 + 0.777228i \(0.283375\pi\)
\(272\) 0 0
\(273\) −15.5910 318.526i −0.0571098 1.16676i
\(274\) 0 0
\(275\) 70.9587 40.9680i 0.258032 0.148975i
\(276\) 0 0
\(277\) 101.853 176.415i 0.367702 0.636878i −0.621504 0.783411i \(-0.713478\pi\)
0.989206 + 0.146533i \(0.0468114\pi\)
\(278\) 0 0
\(279\) 236.927 + 136.790i 0.849201 + 0.490286i
\(280\) 0 0
\(281\) 296.079 1.05366 0.526831 0.849970i \(-0.323380\pi\)
0.526831 + 0.849970i \(0.323380\pi\)
\(282\) 0 0
\(283\) 98.8953 57.0972i 0.349453 0.201757i −0.314991 0.949095i \(-0.602002\pi\)
0.664445 + 0.747338i \(0.268668\pi\)
\(284\) 0 0
\(285\) 124.411 0.436530
\(286\) 0 0
\(287\) 196.121i 0.683350i
\(288\) 0 0
\(289\) −370.855 642.340i −1.28324 2.22263i
\(290\) 0 0
\(291\) 227.218i 0.780817i
\(292\) 0 0
\(293\) −245.335 + 424.933i −0.837322 + 1.45028i 0.0548042 + 0.998497i \(0.482547\pi\)
−0.892126 + 0.451787i \(0.850787\pi\)
\(294\) 0 0
\(295\) 510.792 + 294.906i 1.73150 + 0.999681i
\(296\) 0 0
\(297\) 21.7319 + 37.6408i 0.0731715 + 0.126737i
\(298\) 0 0
\(299\) 73.1846 + 113.551i 0.244765 + 0.379768i
\(300\) 0 0
\(301\) 26.6142 + 46.0971i 0.0884192 + 0.153147i
\(302\) 0 0
\(303\) 564.924 + 326.159i 1.86444 + 1.07643i
\(304\) 0 0
\(305\) 186.129 322.384i 0.610258 1.05700i
\(306\) 0 0
\(307\) 369.169i 1.20251i −0.799059 0.601253i \(-0.794669\pi\)
0.799059 0.601253i \(-0.205331\pi\)
\(308\) 0 0
\(309\) −16.4616 28.5124i −0.0532739 0.0922731i
\(310\) 0 0
\(311\) 63.7658i 0.205035i −0.994731 0.102517i \(-0.967310\pi\)
0.994731 0.102517i \(-0.0326897\pi\)
\(312\) 0 0
\(313\) 360.648 1.15223 0.576115 0.817368i \(-0.304568\pi\)
0.576115 + 0.817368i \(0.304568\pi\)
\(314\) 0 0
\(315\) 234.970 135.660i 0.745936 0.430667i
\(316\) 0 0
\(317\) −48.1951 −0.152035 −0.0760176 0.997106i \(-0.524221\pi\)
−0.0760176 + 0.997106i \(0.524221\pi\)
\(318\) 0 0
\(319\) −170.220 98.2763i −0.533603 0.308076i
\(320\) 0 0
\(321\) 18.5273 32.0902i 0.0577174 0.0999695i
\(322\) 0 0
\(323\) −136.061 + 78.5548i −0.421241 + 0.243204i
\(324\) 0 0
\(325\) −9.89631 202.183i −0.0304502 0.622103i
\(326\) 0 0
\(327\) −100.635 + 58.1019i −0.307754 + 0.177682i
\(328\) 0 0
\(329\) 213.281 369.413i 0.648270 1.12284i
\(330\) 0 0
\(331\) −506.834 292.621i −1.53122 0.884051i −0.999306 0.0372535i \(-0.988139\pi\)
−0.531915 0.846798i \(-0.678528\pi\)
\(332\) 0 0
\(333\) −233.687 −0.701763
\(334\) 0 0
\(335\) −722.355 + 417.052i −2.15628 + 1.24493i
\(336\) 0 0
\(337\) −42.7329 −0.126804 −0.0634019 0.997988i \(-0.520195\pi\)
−0.0634019 + 0.997988i \(0.520195\pi\)
\(338\) 0 0
\(339\) 439.648i 1.29690i
\(340\) 0 0
\(341\) 103.858 + 179.888i 0.304570 + 0.527530i
\(342\) 0 0
\(343\) 370.150i 1.07915i
\(344\) 0 0
\(345\) −132.093 + 228.791i −0.382877 + 0.663163i
\(346\) 0 0
\(347\) −235.840 136.163i −0.679656 0.392399i 0.120070 0.992765i \(-0.461688\pi\)
−0.799725 + 0.600366i \(0.795022\pi\)
\(348\) 0 0
\(349\) −85.4989 148.088i −0.244983 0.424322i 0.717144 0.696925i \(-0.245449\pi\)
−0.962127 + 0.272603i \(0.912116\pi\)
\(350\) 0 0
\(351\) 107.250 5.24961i 0.305557 0.0149561i
\(352\) 0 0
\(353\) −108.204 187.414i −0.306526 0.530919i 0.671074 0.741391i \(-0.265833\pi\)
−0.977600 + 0.210472i \(0.932500\pi\)
\(354\) 0 0
\(355\) 256.532 + 148.109i 0.722625 + 0.417208i
\(356\) 0 0
\(357\) −393.786 + 682.057i −1.10304 + 1.91052i
\(358\) 0 0
\(359\) 301.873i 0.840871i 0.907322 + 0.420435i \(0.138123\pi\)
−0.907322 + 0.420435i \(0.861877\pi\)
\(360\) 0 0
\(361\) −168.526 291.896i −0.466831 0.808575i
\(362\) 0 0
\(363\) 372.433i 1.02599i
\(364\) 0 0
\(365\) −184.144 −0.504503
\(366\) 0 0
\(367\) −201.170 + 116.146i −0.548148 + 0.316474i −0.748375 0.663276i \(-0.769166\pi\)
0.200226 + 0.979750i \(0.435832\pi\)
\(368\) 0 0
\(369\) −221.149 −0.599319
\(370\) 0 0
\(371\) −105.118 60.6901i −0.283338 0.163585i
\(372\) 0 0
\(373\) 135.082 233.969i 0.362150 0.627262i −0.626165 0.779691i \(-0.715376\pi\)
0.988314 + 0.152429i \(0.0487096\pi\)
\(374\) 0 0
\(375\) −207.593 + 119.854i −0.553580 + 0.319610i
\(376\) 0 0
\(377\) −408.159 + 263.063i −1.08265 + 0.697781i
\(378\) 0 0
\(379\) −461.926 + 266.693i −1.21880 + 0.703675i −0.964662 0.263492i \(-0.915126\pi\)
−0.254140 + 0.967167i \(0.581792\pi\)
\(380\) 0 0
\(381\) 501.254 868.197i 1.31563 2.27873i
\(382\) 0 0
\(383\) −135.650 78.3177i −0.354178 0.204485i 0.312346 0.949968i \(-0.398885\pi\)
−0.666524 + 0.745484i \(0.732219\pi\)
\(384\) 0 0
\(385\) 206.001 0.535067
\(386\) 0 0
\(387\) 51.9797 30.0105i 0.134314 0.0775464i
\(388\) 0 0
\(389\) −143.862 −0.369826 −0.184913 0.982755i \(-0.559200\pi\)
−0.184913 + 0.982755i \(0.559200\pi\)
\(390\) 0 0
\(391\) 333.621i 0.853250i
\(392\) 0 0
\(393\) −93.7275 162.341i −0.238492 0.413081i
\(394\) 0 0
\(395\) 465.549i 1.17861i
\(396\) 0 0
\(397\) −189.348 + 327.961i −0.476948 + 0.826098i −0.999651 0.0264167i \(-0.991590\pi\)
0.522703 + 0.852515i \(0.324924\pi\)
\(398\) 0 0
\(399\) 103.965 + 60.0242i 0.260564 + 0.150437i
\(400\) 0 0
\(401\) 329.115 + 570.045i 0.820737 + 1.42156i 0.905134 + 0.425126i \(0.139770\pi\)
−0.0843975 + 0.996432i \(0.526897\pi\)
\(402\) 0 0
\(403\) 512.556 25.0882i 1.27185 0.0622536i
\(404\) 0 0
\(405\) 303.645 + 525.928i 0.749740 + 1.29859i
\(406\) 0 0
\(407\) −153.657 88.7140i −0.377536 0.217971i
\(408\) 0 0
\(409\) −80.8009 + 139.951i −0.197557 + 0.342179i −0.947736 0.319056i \(-0.896634\pi\)
0.750179 + 0.661235i \(0.229967\pi\)
\(410\) 0 0
\(411\) 988.739i 2.40569i
\(412\) 0 0
\(413\) 284.565 + 492.881i 0.689019 + 1.19342i
\(414\) 0 0
\(415\) 41.0394i 0.0988901i
\(416\) 0 0
\(417\) −224.844 −0.539194
\(418\) 0 0
\(419\) 688.383 397.438i 1.64292 0.948540i 0.663131 0.748503i \(-0.269227\pi\)
0.979788 0.200037i \(-0.0641063\pi\)
\(420\) 0 0
\(421\) 71.6524 0.170196 0.0850979 0.996373i \(-0.472880\pi\)
0.0850979 + 0.996373i \(0.472880\pi\)
\(422\) 0 0
\(423\) −416.555 240.498i −0.984764 0.568553i
\(424\) 0 0
\(425\) −249.954 + 432.933i −0.588127 + 1.01867i
\(426\) 0 0
\(427\) 311.080 179.602i 0.728524 0.420613i
\(428\) 0 0
\(429\) −242.843 124.792i −0.566068 0.290891i
\(430\) 0 0
\(431\) 234.206 135.219i 0.543402 0.313733i −0.203055 0.979167i \(-0.565087\pi\)
0.746457 + 0.665434i \(0.231754\pi\)
\(432\) 0 0
\(433\) 150.640 260.917i 0.347899 0.602579i −0.637977 0.770056i \(-0.720228\pi\)
0.985876 + 0.167476i \(0.0535618\pi\)
\(434\) 0 0
\(435\) −822.394 474.809i −1.89056 1.09152i
\(436\) 0 0
\(437\) −50.8533 −0.116369
\(438\) 0 0
\(439\) 100.433 57.9852i 0.228777 0.132085i −0.381231 0.924480i \(-0.624500\pi\)
0.610008 + 0.792395i \(0.291166\pi\)
\(440\) 0 0
\(441\) −77.7898 −0.176394
\(442\) 0 0
\(443\) 574.602i 1.29707i 0.761185 + 0.648535i \(0.224618\pi\)
−0.761185 + 0.648535i \(0.775382\pi\)
\(444\) 0 0
\(445\) −263.760 456.846i −0.592720 1.02662i
\(446\) 0 0
\(447\) 180.577i 0.403975i
\(448\) 0 0
\(449\) 144.175 249.719i 0.321104 0.556168i −0.659612 0.751606i \(-0.729280\pi\)
0.980716 + 0.195438i \(0.0626129\pi\)
\(450\) 0 0
\(451\) −145.413 83.9541i −0.322423 0.186151i
\(452\) 0 0
\(453\) 425.660 + 737.265i 0.939647 + 1.62752i
\(454\) 0 0
\(455\) 232.614 452.661i 0.511239 0.994858i
\(456\) 0 0
\(457\) −89.6069 155.204i −0.196076 0.339614i 0.751176 0.660101i \(-0.229487\pi\)
−0.947253 + 0.320487i \(0.896153\pi\)
\(458\) 0 0
\(459\) −229.654 132.591i −0.500335 0.288869i
\(460\) 0 0
\(461\) 253.467 439.018i 0.549820 0.952316i −0.448466 0.893800i \(-0.648030\pi\)
0.998286 0.0585166i \(-0.0186370\pi\)
\(462\) 0 0
\(463\) 464.130i 1.00244i −0.865320 0.501220i \(-0.832885\pi\)
0.865320 0.501220i \(-0.167115\pi\)
\(464\) 0 0
\(465\) 501.778 + 869.105i 1.07909 + 1.86904i
\(466\) 0 0
\(467\) 246.434i 0.527697i 0.964564 + 0.263848i \(0.0849918\pi\)
−0.964564 + 0.263848i \(0.915008\pi\)
\(468\) 0 0
\(469\) −804.856 −1.71611
\(470\) 0 0
\(471\) 404.964 233.806i 0.859796 0.496404i
\(472\) 0 0
\(473\) 45.5712 0.0963449
\(474\) 0 0
\(475\) 65.9913 + 38.1001i 0.138929 + 0.0802108i
\(476\) 0 0
\(477\) −68.4348 + 118.533i −0.143469 + 0.248496i
\(478\) 0 0
\(479\) 112.600 65.0096i 0.235073 0.135719i −0.377837 0.925872i \(-0.623332\pi\)
0.612910 + 0.790153i \(0.289999\pi\)
\(480\) 0 0
\(481\) −368.446 + 237.467i −0.765999 + 0.493695i
\(482\) 0 0
\(483\) −220.768 + 127.461i −0.457078 + 0.263894i
\(484\) 0 0
\(485\) 181.303 314.027i 0.373822 0.647478i
\(486\) 0 0
\(487\) −362.273 209.158i −0.743887 0.429483i 0.0795939 0.996827i \(-0.474638\pi\)
−0.823481 + 0.567344i \(0.807971\pi\)
\(488\) 0 0
\(489\) 208.376 0.426128
\(490\) 0 0
\(491\) −64.3021 + 37.1249i −0.130962 + 0.0756107i −0.564049 0.825741i \(-0.690757\pi\)
0.433088 + 0.901352i \(0.357424\pi\)
\(492\) 0 0
\(493\) 1199.21 2.43246
\(494\) 0 0
\(495\) 232.289i 0.469271i
\(496\) 0 0
\(497\) 142.915 + 247.537i 0.287556 + 0.498061i
\(498\) 0 0
\(499\) 520.278i 1.04264i 0.853361 + 0.521320i \(0.174560\pi\)
−0.853361 + 0.521320i \(0.825440\pi\)
\(500\) 0 0
\(501\) −251.871 + 436.253i −0.502737 + 0.870765i
\(502\) 0 0
\(503\) 152.046 + 87.7838i 0.302278 + 0.174521i 0.643466 0.765475i \(-0.277496\pi\)
−0.341188 + 0.939995i \(0.610829\pi\)
\(504\) 0 0
\(505\) 520.503 + 901.538i 1.03070 + 1.78522i
\(506\) 0 0
\(507\) −548.431 + 392.703i −1.08172 + 0.774561i
\(508\) 0 0
\(509\) −117.308 203.183i −0.230467 0.399180i 0.727479 0.686130i \(-0.240692\pi\)
−0.957946 + 0.286950i \(0.907359\pi\)
\(510\) 0 0
\(511\) −153.881 88.8433i −0.301137 0.173862i
\(512\) 0 0
\(513\) −20.2106 + 35.0058i −0.0393969 + 0.0682375i
\(514\) 0 0
\(515\) 52.5408i 0.102021i
\(516\) 0 0
\(517\) −182.599 316.271i −0.353190 0.611743i
\(518\) 0 0
\(519\) 178.620i 0.344161i
\(520\) 0 0
\(521\) −319.194 −0.612656 −0.306328 0.951926i \(-0.599100\pi\)
−0.306328 + 0.951926i \(0.599100\pi\)
\(522\) 0 0
\(523\) 774.518 447.168i 1.48091 0.855006i 0.481147 0.876640i \(-0.340220\pi\)
0.999766 + 0.0216341i \(0.00688688\pi\)
\(524\) 0 0
\(525\) 381.982 0.727585
\(526\) 0 0
\(527\) −1097.53 633.660i −2.08260 1.20239i
\(528\) 0 0
\(529\) −210.507 + 364.608i −0.397933 + 0.689241i
\(530\) 0 0
\(531\) 555.778 320.879i 1.04666 0.604291i
\(532\) 0 0
\(533\) −348.677 + 224.726i −0.654177 + 0.421625i
\(534\) 0 0
\(535\) 51.2114 29.5669i 0.0957222 0.0552652i
\(536\) 0 0
\(537\) −582.129 + 1008.28i −1.08404 + 1.87761i
\(538\) 0 0
\(539\) −51.1494 29.5311i −0.0948969 0.0547887i
\(540\) 0 0
\(541\) 663.170 1.22582 0.612911 0.790152i \(-0.289998\pi\)
0.612911 + 0.790152i \(0.289998\pi\)
\(542\) 0 0
\(543\) −818.089 + 472.324i −1.50661 + 0.869841i
\(544\) 0 0
\(545\) −185.445 −0.340265
\(546\) 0 0
\(547\) 279.261i 0.510531i 0.966871 + 0.255266i \(0.0821629\pi\)
−0.966871 + 0.255266i \(0.917837\pi\)
\(548\) 0 0
\(549\) −202.521 350.777i −0.368891 0.638938i
\(550\) 0 0
\(551\) 182.793i 0.331748i
\(552\) 0 0
\(553\) 224.612 389.040i 0.406170 0.703508i
\(554\) 0 0
\(555\) −742.375 428.610i −1.33761 0.772271i
\(556\) 0 0
\(557\) −360.197 623.880i −0.646674 1.12007i −0.983912 0.178653i \(-0.942826\pi\)
0.337238 0.941419i \(-0.390507\pi\)
\(558\) 0 0
\(559\) 51.4584 100.137i 0.0920544 0.179136i
\(560\) 0 0
\(561\) 337.137 + 583.939i 0.600958 + 1.04089i
\(562\) 0 0
\(563\) 335.019 + 193.423i 0.595060 + 0.343558i 0.767096 0.641533i \(-0.221701\pi\)
−0.172036 + 0.985091i \(0.555034\pi\)
\(564\) 0 0
\(565\) −350.807 + 607.616i −0.620898 + 1.07543i
\(566\) 0 0
\(567\) 585.994i 1.03350i
\(568\) 0 0
\(569\) −319.829 553.961i −0.562090 0.973569i −0.997314 0.0732464i \(-0.976664\pi\)
0.435224 0.900322i \(-0.356669\pi\)
\(570\) 0 0
\(571\) 70.3895i 0.123274i −0.998099 0.0616370i \(-0.980368\pi\)
0.998099 0.0616370i \(-0.0196321\pi\)
\(572\) 0 0
\(573\) −1442.98 −2.51828
\(574\) 0 0
\(575\) −140.132 + 80.9052i −0.243708 + 0.140705i
\(576\) 0 0
\(577\) −99.4850 −0.172418 −0.0862089 0.996277i \(-0.527475\pi\)
−0.0862089 + 0.996277i \(0.527475\pi\)
\(578\) 0 0
\(579\) −647.498 373.833i −1.11830 0.645653i
\(580\) 0 0
\(581\) 19.8002 34.2949i 0.0340795 0.0590274i
\(582\) 0 0
\(583\) −89.9964 + 51.9594i −0.154368 + 0.0891243i
\(584\) 0 0
\(585\) −510.425 262.298i −0.872522 0.448372i
\(586\) 0 0
\(587\) 130.564 75.3811i 0.222426 0.128418i −0.384647 0.923064i \(-0.625677\pi\)
0.607073 + 0.794646i \(0.292344\pi\)
\(588\) 0 0
\(589\) −96.5879 + 167.295i −0.163986 + 0.284032i
\(590\) 0 0
\(591\) 577.604 + 333.480i 0.977333 + 0.564264i
\(592\) 0 0
\(593\) 14.1594 0.0238775 0.0119388 0.999929i \(-0.496200\pi\)
0.0119388 + 0.999929i \(0.496200\pi\)
\(594\) 0 0
\(595\) −1088.46 + 628.425i −1.82935 + 1.05618i
\(596\) 0 0
\(597\) 518.760 0.868945
\(598\) 0 0
\(599\) 49.5504i 0.0827219i 0.999144 + 0.0413610i \(0.0131694\pi\)
−0.999144 + 0.0413610i \(0.986831\pi\)
\(600\) 0 0
\(601\) 71.9058 + 124.545i 0.119644 + 0.207229i 0.919626 0.392794i \(-0.128491\pi\)
−0.799983 + 0.600023i \(0.795158\pi\)
\(602\) 0 0
\(603\) 907.564i 1.50508i
\(604\) 0 0
\(605\) −297.175 + 514.722i −0.491198 + 0.850780i
\(606\) 0 0
\(607\) 493.343 + 284.832i 0.812756 + 0.469245i 0.847912 0.530137i \(-0.177859\pi\)
−0.0351558 + 0.999382i \(0.511193\pi\)
\(608\) 0 0
\(609\) −458.160 793.556i −0.752315 1.30305i
\(610\) 0 0
\(611\) −901.154 + 44.1090i −1.47488 + 0.0721915i
\(612\) 0 0
\(613\) −15.0863 26.1302i −0.0246106 0.0426267i 0.853458 0.521162i \(-0.174501\pi\)
−0.878068 + 0.478535i \(0.841168\pi\)
\(614\) 0 0
\(615\) −702.543 405.613i −1.14235 0.659534i
\(616\) 0 0
\(617\) 155.101 268.644i 0.251380 0.435403i −0.712526 0.701646i \(-0.752449\pi\)
0.963906 + 0.266243i \(0.0857823\pi\)
\(618\) 0 0
\(619\) 514.549i 0.831259i 0.909534 + 0.415629i \(0.136439\pi\)
−0.909534 + 0.415629i \(0.863561\pi\)
\(620\) 0 0
\(621\) −42.9170 74.3345i −0.0691096 0.119701i
\(622\) 0 0
\(623\) 509.023i 0.817051i
\(624\) 0 0
\(625\) −771.818 −1.23491
\(626\) 0 0
\(627\) 89.0090 51.3894i 0.141960 0.0819607i
\(628\) 0 0
\(629\) 1082.52 1.72102
\(630\) 0 0
\(631\) −366.774 211.757i −0.581259 0.335590i 0.180375 0.983598i \(-0.442269\pi\)
−0.761633 + 0.648008i \(0.775602\pi\)
\(632\) 0 0
\(633\) 679.629 1177.15i 1.07366 1.85964i
\(634\) 0 0
\(635\) 1385.52 799.929i 2.18192 1.25973i
\(636\) 0 0
\(637\) −122.648 + 79.0481i −0.192540 + 0.124094i
\(638\) 0 0
\(639\) 279.125 161.153i 0.436815 0.252196i
\(640\) 0 0
\(641\) 593.215 1027.48i 0.925453 1.60293i 0.134621 0.990897i \(-0.457018\pi\)
0.790832 0.612034i \(-0.209648\pi\)
\(642\) 0 0
\(643\) 96.1108 + 55.4896i 0.149472 + 0.0862980i 0.572871 0.819646i \(-0.305830\pi\)
−0.423398 + 0.905944i \(0.639163\pi\)
\(644\) 0 0
\(645\) 220.171 0.341351
\(646\) 0 0
\(647\) −659.017 + 380.484i −1.01857 + 0.588074i −0.913690 0.406411i \(-0.866780\pi\)
−0.104883 + 0.994485i \(0.533447\pi\)
\(648\) 0 0
\(649\) 487.257 0.750781
\(650\) 0 0
\(651\) 968.366i 1.48751i
\(652\) 0 0
\(653\) 165.207 + 286.147i 0.252997 + 0.438203i 0.964349 0.264632i \(-0.0852505\pi\)
−0.711353 + 0.702835i \(0.751917\pi\)
\(654\) 0 0
\(655\) 299.151i 0.456719i
\(656\) 0 0
\(657\) −100.181 + 173.518i −0.152482 + 0.264107i
\(658\) 0 0
\(659\) 1022.23 + 590.184i 1.55118 + 0.895575i 0.998046 + 0.0624831i \(0.0199020\pi\)
0.553135 + 0.833092i \(0.313431\pi\)
\(660\) 0 0
\(661\) −430.720 746.029i −0.651619 1.12864i −0.982730 0.185046i \(-0.940757\pi\)
0.331111 0.943592i \(-0.392577\pi\)
\(662\) 0 0
\(663\) 1663.82 81.4395i 2.50954 0.122835i
\(664\) 0 0
\(665\) 95.7900 + 165.913i 0.144045 + 0.249493i
\(666\) 0 0
\(667\) 336.156 + 194.080i 0.503982 + 0.290974i
\(668\) 0 0
\(669\) 473.749 820.558i 0.708146 1.22654i
\(670\) 0 0
\(671\) 307.530i 0.458316i
\(672\) 0 0
\(673\) −340.739 590.176i −0.506298 0.876934i −0.999973 0.00728760i \(-0.997680\pi\)
0.493675 0.869646i \(-0.335653\pi\)
\(674\) 0 0
\(675\) 128.616i 0.190543i
\(676\) 0 0
\(677\) 308.569 0.455789 0.227894 0.973686i \(-0.426816\pi\)
0.227894 + 0.973686i \(0.426816\pi\)
\(678\) 0 0
\(679\) 303.015 174.946i 0.446267 0.257652i
\(680\) 0 0
\(681\) 477.769 0.701570
\(682\) 0 0
\(683\) 172.109 + 99.3669i 0.251989 + 0.145486i 0.620675 0.784068i \(-0.286859\pi\)
−0.368686 + 0.929554i \(0.620192\pi\)
\(684\) 0 0
\(685\) −788.943 + 1366.49i −1.15174 + 1.99487i
\(686\) 0 0
\(687\) 664.999 383.938i 0.967976 0.558861i
\(688\) 0 0
\(689\) 12.5514 + 256.428i 0.0182169 + 0.372174i
\(690\) 0 0
\(691\) −86.2576 + 49.8009i −0.124830 + 0.0720707i −0.561115 0.827738i \(-0.689627\pi\)
0.436285 + 0.899809i \(0.356294\pi\)
\(692\) 0 0
\(693\) 112.072 194.114i 0.161720 0.280107i
\(694\) 0 0
\(695\) −310.746 179.409i −0.447117 0.258143i
\(696\) 0 0
\(697\) 1024.44 1.46978
\(698\) 0 0
\(699\) 1035.66 597.939i 1.48163 0.855421i
\(700\) 0 0
\(701\) −90.4437 −0.129021 −0.0645105 0.997917i \(-0.520549\pi\)
−0.0645105 + 0.997917i \(0.520549\pi\)
\(702\) 0 0
\(703\) 165.007i 0.234719i
\(704\) 0 0
\(705\) −882.205 1528.02i −1.25135 2.16741i
\(706\) 0 0
\(707\) 1004.50i 1.42080i
\(708\) 0 0
\(709\) 680.857 1179.28i 0.960306 1.66330i 0.238577 0.971124i \(-0.423319\pi\)
0.721729 0.692175i \(-0.243348\pi\)
\(710\) 0 0
\(711\) −438.686 253.275i −0.616998 0.356224i
\(712\) 0 0
\(713\) −205.103 355.249i −0.287662 0.498246i
\(714\) 0 0
\(715\) −236.046 366.241i −0.330135 0.512225i
\(716\) 0 0
\(717\) 636.588 + 1102.60i 0.887850 + 1.53780i
\(718\) 0 0
\(719\) 41.7335 + 24.0949i 0.0580438 + 0.0335116i 0.528741 0.848783i \(-0.322664\pi\)
−0.470697 + 0.882295i \(0.655998\pi\)
\(720\) 0 0
\(721\) 25.3492 43.9062i 0.0351584 0.0608962i
\(722\) 0 0
\(723\) 771.543i 1.06714i
\(724\) 0 0
\(725\) −290.815 503.706i −0.401124 0.694767i
\(726\) 0 0
\(727\) 1279.06i 1.75937i 0.475554 + 0.879687i \(0.342248\pi\)
−0.475554 + 0.879687i \(0.657752\pi\)
\(728\) 0 0
\(729\) 364.064 0.499402
\(730\) 0 0
\(731\) −240.788 + 139.019i −0.329396 + 0.190177i
\(732\) 0 0
\(733\) −1170.50 −1.59687 −0.798434 0.602082i \(-0.794338\pi\)
−0.798434 + 0.602082i \(0.794338\pi\)
\(734\) 0 0
\(735\) −247.122 142.676i −0.336220 0.194117i
\(736\) 0 0
\(737\) −344.536 + 596.754i −0.467485 + 0.809707i
\(738\) 0 0
\(739\) 1136.93 656.406i 1.53847 0.888236i 0.539541 0.841959i \(-0.318598\pi\)
0.998929 0.0462762i \(-0.0147354\pi\)
\(740\) 0 0
\(741\) −12.4137 253.614i −0.0167526 0.342259i
\(742\) 0 0
\(743\) −292.325 + 168.774i −0.393439 + 0.227152i −0.683649 0.729811i \(-0.739608\pi\)
0.290210 + 0.956963i \(0.406275\pi\)
\(744\) 0 0
\(745\) 144.087 249.567i 0.193406 0.334989i
\(746\) 0 0
\(747\) −38.6713 22.3269i −0.0517688 0.0298888i
\(748\) 0 0
\(749\) 57.0602 0.0761819
\(750\) 0 0
\(751\) 986.025 569.282i 1.31295 0.758032i 0.330366 0.943853i \(-0.392828\pi\)
0.982584 + 0.185821i \(0.0594946\pi\)
\(752\) 0 0
\(753\) 1723.25 2.28852
\(754\) 0 0
\(755\) 1358.58i 1.79945i
\(756\) 0 0
\(757\) 272.960 + 472.781i 0.360581 + 0.624545i 0.988057 0.154091i \(-0.0492450\pi\)
−0.627475 + 0.778636i \(0.715912\pi\)
\(758\) 0 0
\(759\) 218.249i 0.287549i
\(760\) 0 0
\(761\) −580.449 + 1005.37i −0.762745 + 1.32111i 0.178686 + 0.983906i \(0.442816\pi\)
−0.941431 + 0.337207i \(0.890518\pi\)
\(762\) 0 0
\(763\) −154.968 89.4709i −0.203104 0.117262i
\(764\) 0 0
\(765\) 708.620 + 1227.37i 0.926300 + 1.60440i
\(766\) 0 0
\(767\) 550.205 1070.69i 0.717346 1.39594i
\(768\) 0 0
\(769\) 332.076 + 575.173i 0.431828 + 0.747949i 0.997031 0.0770035i \(-0.0245353\pi\)
−0.565202 + 0.824952i \(0.691202\pi\)
\(770\) 0 0
\(771\) 1222.27 + 705.680i 1.58531 + 0.915279i
\(772\) 0 0
\(773\) −115.578 + 200.187i −0.149519 + 0.258974i −0.931050 0.364893i \(-0.881106\pi\)
0.781531 + 0.623866i \(0.214439\pi\)
\(774\) 0 0
\(775\) 614.666i 0.793118i
\(776\) 0 0
\(777\) −413.581 716.343i −0.532279 0.921935i
\(778\) 0 0
\(779\) 156.154i 0.200454i
\(780\) 0 0
\(781\) 244.712 0.313332
\(782\) 0 0
\(783\) 267.197 154.266i 0.341247 0.197019i
\(784\) 0 0
\(785\) 746.242 0.950627
\(786\) 0 0
\(787\) −684.091 394.960i −0.869238 0.501855i −0.00214338 0.999998i \(-0.500682\pi\)
−0.867095 + 0.498143i \(0.834016\pi\)
\(788\) 0 0
\(789\) 193.379 334.943i 0.245094 0.424516i
\(790\) 0 0
\(791\) −586.310 + 338.506i −0.741226 + 0.427947i
\(792\) 0 0
\(793\) −675.759 347.259i −0.852155 0.437906i
\(794\) 0 0
\(795\) −434.806 + 251.035i −0.546926 + 0.315768i
\(796\) 0 0
\(797\) −28.8314 + 49.9374i −0.0361749 + 0.0626568i −0.883546 0.468344i \(-0.844851\pi\)
0.847371 + 0.531001i \(0.178184\pi\)
\(798\) 0 0
\(799\) 1929.63 + 1114.07i 2.41506 + 1.39433i
\(800\) 0 0
\(801\) −573.980 −0.716579
\(802\) 0 0
\(803\) −131.744 + 76.0626i −0.164065 + 0.0947231i
\(804\) 0 0
\(805\) −406.818 −0.505364
\(806\) 0 0
\(807\) 1519.52i 1.88292i
\(808\) 0 0
\(809\) 389.647 + 674.888i 0.481640 + 0.834225i 0.999778 0.0210719i \(-0.00670790\pi\)
−0.518138 + 0.855297i \(0.673375\pi\)
\(810\) 0 0
\(811\) 1205.71i 1.48669i −0.668906 0.743347i \(-0.733237\pi\)
0.668906 0.743347i \(-0.266763\pi\)
\(812\) 0 0
\(813\) 169.067 292.832i 0.207954 0.360187i
\(814\) 0 0
\(815\) 287.987 + 166.269i 0.353358 + 0.204011i
\(816\) 0 0
\(817\) 21.1905 + 36.7030i 0.0259370 + 0.0449241i
\(818\) 0 0
\(819\) −299.991 465.455i −0.366289 0.568321i
\(820\) 0 0
\(821\) −462.021 800.244i −0.562754 0.974718i −0.997255 0.0740468i \(-0.976409\pi\)
0.434501 0.900671i \(-0.356925\pi\)
\(822\) 0 0
\(823\) −928.989 536.352i −1.12878 0.651703i −0.185155 0.982709i \(-0.559279\pi\)
−0.943629 + 0.331006i \(0.892612\pi\)
\(824\) 0 0
\(825\) 163.516 283.218i 0.198201 0.343295i
\(826\) 0 0
\(827\) 193.910i 0.234474i 0.993104 + 0.117237i \(0.0374037\pi\)
−0.993104 + 0.117237i \(0.962596\pi\)
\(828\) 0 0
\(829\) 221.962 + 384.449i 0.267746 + 0.463750i 0.968279 0.249870i \(-0.0803878\pi\)
−0.700533 + 0.713620i \(0.747055\pi\)
\(830\) 0 0
\(831\) 813.056i 0.978407i
\(832\) 0 0
\(833\) 360.350 0.432593
\(834\) 0 0
\(835\) −696.198 + 401.950i −0.833770 + 0.481377i
\(836\) 0 0
\(837\) −326.056 −0.389554
\(838\) 0 0
\(839\) 220.248 + 127.160i 0.262513 + 0.151562i 0.625480 0.780240i \(-0.284903\pi\)
−0.362967 + 0.931802i \(0.618236\pi\)
\(840\) 0 0
\(841\) −277.122 + 479.990i −0.329515 + 0.570737i
\(842\) 0 0
\(843\) 1023.42 590.871i 1.21402 0.700915i
\(844\) 0 0
\(845\) −1071.31 + 105.127i −1.26782 + 0.124411i
\(846\) 0 0
\(847\) −496.673 + 286.754i −0.586390 + 0.338553i
\(848\) 0 0
\(849\) 227.893 394.722i 0.268425 0.464925i
\(850\) 0 0
\(851\) 303.448 + 175.196i 0.356578 + 0.205870i
\(852\) 0 0
\(853\) −684.756 −0.802762 −0.401381 0.915911i \(-0.631470\pi\)
−0.401381 + 0.915911i \(0.631470\pi\)
\(854\) 0 0
\(855\) 187.086 108.014i 0.218814 0.126332i
\(856\) 0 0
\(857\) −807.484 −0.942221 −0.471111 0.882074i \(-0.656147\pi\)
−0.471111 + 0.882074i \(0.656147\pi\)
\(858\) 0 0
\(859\) 691.998i 0.805586i −0.915291 0.402793i \(-0.868039\pi\)
0.915291 0.402793i \(-0.131961\pi\)
\(860\) 0 0
\(861\) −391.390 677.908i −0.454576 0.787349i
\(862\) 0 0
\(863\) 488.730i 0.566315i 0.959073 + 0.283158i \(0.0913820\pi\)
−0.959073 + 0.283158i \(0.908618\pi\)
\(864\) 0 0
\(865\) −142.526 + 246.862i −0.164770 + 0.285389i
\(866\) 0 0
\(867\) −2563.78 1480.20i −2.95706 1.70726i
\(868\) 0 0
\(869\) −192.300 333.074i −0.221289 0.383284i
\(870\) 0 0
\(871\) 922.245 + 1430.92i 1.05883 + 1.64285i
\(872\) 0 0
\(873\) −197.271 341.684i −0.225969 0.391390i
\(874\) 0 0
\(875\) −319.671 184.562i −0.365338 0.210928i
\(876\) 0 0
\(877\) 521.429 903.142i 0.594560 1.02981i −0.399049 0.916930i \(-0.630660\pi\)
0.993609 0.112878i \(-0.0360070\pi\)
\(878\) 0 0
\(879\) 1958.42i 2.22801i
\(880\) 0 0
\(881\) 516.530 + 894.656i 0.586299 + 1.01550i 0.994712 + 0.102703i \(0.0327491\pi\)
−0.408413 + 0.912797i \(0.633918\pi\)
\(882\) 0 0
\(883\) 1565.94i 1.77343i 0.462316 + 0.886715i \(0.347019\pi\)
−0.462316 + 0.886715i \(0.652981\pi\)
\(884\) 0 0
\(885\) 2354.12 2.66002
\(886\) 0 0
\(887\) −886.201 + 511.648i −0.999099 + 0.576830i −0.907981 0.419010i \(-0.862377\pi\)
−0.0911172 + 0.995840i \(0.529044\pi\)
\(888\) 0 0
\(889\) 1543.76 1.73651
\(890\) 0 0
\(891\) 434.481 + 250.848i 0.487633 + 0.281535i
\(892\) 0 0
\(893\) 169.817 294.131i 0.190164 0.329374i
\(894\) 0 0
\(895\) −1609.07 + 928.995i −1.79784 + 1.03798i
\(896\) 0 0
\(897\) 479.575 + 246.445i 0.534644 + 0.274743i
\(898\) 0 0
\(899\) 1276.95 737.247i 1.42041 0.820075i
\(900\) 0 0
\(901\) 317.015 549.085i 0.351848 0.609418i
\(902\) 0 0
\(903\) 183.988 + 106.225i 0.203752 + 0.117636i
\(904\) 0 0
\(905\) −1507.52 −1.66577
\(906\) 0 0
\(907\) 300.595 173.549i 0.331417 0.191344i −0.325053 0.945696i \(-0.605382\pi\)
0.656470 + 0.754352i \(0.272049\pi\)
\(908\) 0 0
\(909\) 1132.69 1.24608
\(910\) 0 0
\(911\) 280.057i 0.307417i 0.988116 + 0.153708i \(0.0491216\pi\)
−0.988116 + 0.153708i \(0.950878\pi\)
\(912\) 0 0
\(913\) −16.9518 29.3614i −0.0185671 0.0321592i
\(914\) 0 0
\(915\) 1485.79i 1.62382i
\(916\) 0 0
\(917\) 144.331 249.988i 0.157394 0.272615i
\(918\) 0 0
\(919\) 966.759 + 558.159i 1.05197 + 0.607354i 0.923200 0.384320i \(-0.125564\pi\)
0.128769 + 0.991675i \(0.458897\pi\)
\(920\) 0 0
\(921\) −736.733 1276.06i −0.799928 1.38552i
\(922\) 0 0
\(923\) 276.326 537.724i 0.299378 0.582583i
\(924\) 0 0
\(925\) −262.519 454.696i −0.283804 0.491563i
\(926\) 0 0
\(927\) −49.5091 28.5841i −0.0534079 0.0308350i
\(928\) 0 0
\(929\) −461.597 + 799.509i −0.496875 + 0.860612i −0.999994 0.00360505i \(-0.998852\pi\)
0.503119 + 0.864217i \(0.332186\pi\)
\(930\) 0 0
\(931\) 54.9277i 0.0589986i
\(932\) 0 0
\(933\) −127.254 220.411i −0.136393 0.236239i
\(934\) 0 0
\(935\) 1076.05i 1.15085i
\(936\) 0 0
\(937\) −1107.45 −1.18191 −0.590955 0.806705i \(-0.701249\pi\)
−0.590955 + 0.806705i \(0.701249\pi\)
\(938\) 0 0
\(939\) 1246.61 719.729i 1.32759 0.766484i
\(940\) 0 0
\(941\) 227.712 0.241989 0.120994 0.992653i \(-0.461392\pi\)
0.120994 + 0.992653i \(0.461392\pi\)
\(942\) 0 0
\(943\) 287.166 + 165.796i 0.304524 + 0.175817i
\(944\) 0 0
\(945\) −161.682 + 280.041i −0.171092 + 0.296339i
\(946\) 0 0
\(947\) −889.479 + 513.541i −0.939260 + 0.542282i −0.889728 0.456490i \(-0.849106\pi\)
−0.0495318 + 0.998773i \(0.515773\pi\)
\(948\) 0 0
\(949\) 18.3738 + 375.380i 0.0193612 + 0.395554i
\(950\) 0 0
\(951\) −166.590 + 96.1808i −0.175173 + 0.101136i
\(952\) 0 0
\(953\) 342.572 593.352i 0.359467 0.622615i −0.628405 0.777887i \(-0.716292\pi\)
0.987872 + 0.155271i \(0.0496252\pi\)
\(954\) 0 0
\(955\) −1994.27 1151.39i −2.08824 1.20564i
\(956\) 0 0
\(957\) −784.501 −0.819751
\(958\) 0 0
\(959\) −1318.57 + 761.278i −1.37495 + 0.793825i
\(960\) 0 0
\(961\) −597.245 −0.621482
\(962\) 0 0
\(963\) 64.3418i 0.0668139i
\(964\) 0 0
\(965\) −596.584 1033.31i −0.618222 1.07079i
\(966\) 0 0
\(967\) 237.349i 0.245449i 0.992441 + 0.122724i \(0.0391631\pi\)
−0.992441 + 0.122724i \(0.960837\pi\)
\(968\) 0 0
\(969\) −313.536 + 543.061i −0.323567 + 0.560435i
\(970\) 0 0
\(971\) 850.603 + 491.096i 0.876007 + 0.505763i 0.869340 0.494215i \(-0.164544\pi\)
0.00666729 + 0.999978i \(0.497878\pi\)
\(972\) 0 0
\(973\) −173.118 299.850i −0.177922 0.308170i
\(974\) 0 0
\(975\) −437.695 679.112i −0.448918 0.696525i
\(976\) 0 0
\(977\) 605.979 + 1049.59i 0.620245 + 1.07430i 0.989440 + 0.144944i \(0.0463002\pi\)
−0.369195 + 0.929352i \(0.620366\pi\)
\(978\) 0 0
\(979\) −377.411 217.898i −0.385507 0.222572i
\(980\) 0 0
\(981\) −100.888 + 174.744i −0.102842 + 0.178128i
\(982\) 0 0
\(983\) 106.912i 0.108760i −0.998520 0.0543802i \(-0.982682\pi\)
0.998520 0.0543802i \(-0.0173183\pi\)
\(984\) 0 0
\(985\) 532.186 + 921.773i 0.540290 + 0.935810i
\(986\) 0 0
\(987\) 1702.54i 1.72496i
\(988\) 0 0
\(989\) −89.9956 −0.0909966
\(990\) 0 0
\(991\) −752.804 + 434.632i −0.759641 + 0.438579i −0.829167 0.559001i \(-0.811185\pi\)
0.0695258 + 0.997580i \(0.477851\pi\)
\(992\) 0 0
\(993\) −2335.88 −2.35235
\(994\) 0 0
\(995\) 716.954 + 413.933i 0.720556 + 0.416013i
\(996\) 0 0
\(997\) −228.875 + 396.423i −0.229564 + 0.397616i −0.957679 0.287839i \(-0.907063\pi\)
0.728115 + 0.685455i \(0.240397\pi\)
\(998\) 0 0
\(999\) 241.198 139.256i 0.241440 0.139395i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.3.bb.c.159.13 yes 32
4.3 odd 2 inner 416.3.bb.c.159.4 32
13.9 even 3 inner 416.3.bb.c.191.4 yes 32
52.35 odd 6 inner 416.3.bb.c.191.13 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.3.bb.c.159.4 32 4.3 odd 2 inner
416.3.bb.c.159.13 yes 32 1.1 even 1 trivial
416.3.bb.c.191.4 yes 32 13.9 even 3 inner
416.3.bb.c.191.13 yes 32 52.35 odd 6 inner