Properties

Label 415.4.b.a.84.122
Level $415$
Weight $4$
Character 415.84
Analytic conductor $24.486$
Analytic rank $0$
Dimension $124$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [415,4,Mod(84,415)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("415.84"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(415, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 415 = 5 \cdot 83 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 415.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4857926524\)
Analytic rank: \(0\)
Dimension: \(124\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 84.122
Character \(\chi\) \(=\) 415.84
Dual form 415.4.b.a.84.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.43165i q^{2} +5.71216i q^{3} -21.5028 q^{4} +(10.3260 - 4.28658i) q^{5} -31.0264 q^{6} -16.9337i q^{7} -73.3426i q^{8} -5.62872 q^{9} +(23.2832 + 56.0869i) q^{10} +50.7444 q^{11} -122.827i q^{12} -11.1969i q^{13} +91.9778 q^{14} +(24.4856 + 58.9834i) q^{15} +226.349 q^{16} -90.3524i q^{17} -30.5732i q^{18} -16.3166 q^{19} +(-222.037 + 92.1735i) q^{20} +96.7278 q^{21} +275.626i q^{22} -142.132i q^{23} +418.944 q^{24} +(88.2505 - 88.5260i) q^{25} +60.8176 q^{26} +122.076i q^{27} +364.122i q^{28} +160.663 q^{29} +(-320.377 + 132.997i) q^{30} -70.0129 q^{31} +642.705i q^{32} +289.860i q^{33} +490.763 q^{34} +(-72.5875 - 174.856i) q^{35} +121.033 q^{36} +226.468i q^{37} -88.6260i q^{38} +63.9584 q^{39} +(-314.389 - 757.332i) q^{40} -219.178 q^{41} +525.391i q^{42} -525.750i q^{43} -1091.15 q^{44} +(-58.1219 + 24.1279i) q^{45} +772.013 q^{46} -256.333i q^{47} +1292.94i q^{48} +56.2505 q^{49} +(480.842 + 479.346i) q^{50} +516.107 q^{51} +240.765i q^{52} -462.654i q^{53} -663.074 q^{54} +(523.985 - 217.520i) q^{55} -1241.96 q^{56} -93.2029i q^{57} +872.663i q^{58} -161.025 q^{59} +(-526.509 - 1268.31i) q^{60} -219.277 q^{61} -380.286i q^{62} +95.3149i q^{63} -1680.16 q^{64} +(-47.9964 - 115.619i) q^{65} -1574.42 q^{66} +806.850i q^{67} +1942.83i q^{68} +811.882 q^{69} +(949.758 - 394.270i) q^{70} +643.214 q^{71} +412.824i q^{72} -718.854i q^{73} -1230.09 q^{74} +(505.674 + 504.101i) q^{75} +350.852 q^{76} -859.290i q^{77} +347.400i q^{78} +952.969 q^{79} +(2337.26 - 970.260i) q^{80} -849.293 q^{81} -1190.50i q^{82} -83.0000i q^{83} -2079.92 q^{84} +(-387.303 - 932.975i) q^{85} +2855.69 q^{86} +917.730i q^{87} -3721.73i q^{88} -1243.99 q^{89} +(-131.054 - 315.698i) q^{90} -189.605 q^{91} +3056.25i q^{92} -399.925i q^{93} +1392.31 q^{94} +(-168.484 + 69.9423i) q^{95} -3671.23 q^{96} +1251.39i q^{97} +305.533i q^{98} -285.626 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 124 q - 504 q^{4} + 6 q^{5} - 1088 q^{9} + 62 q^{10} + 60 q^{11} + 124 q^{14} - 120 q^{15} + 2080 q^{16} + 124 q^{19} - 206 q^{20} + 24 q^{21} + 368 q^{24} - 430 q^{25} - 176 q^{26} + 208 q^{29} - 52 q^{30}+ \cdots + 2668 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/415\mathbb{Z}\right)^\times\).

\(n\) \(167\) \(251\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.43165i 1.92038i 0.279351 + 0.960189i \(0.409881\pi\)
−0.279351 + 0.960189i \(0.590119\pi\)
\(3\) 5.71216i 1.09930i 0.835393 + 0.549652i \(0.185240\pi\)
−0.835393 + 0.549652i \(0.814760\pi\)
\(4\) −21.5028 −2.68785
\(5\) 10.3260 4.28658i 0.923581 0.383403i
\(6\) −31.0264 −2.11108
\(7\) 16.9337i 0.914333i −0.889381 0.457166i \(-0.848864\pi\)
0.889381 0.457166i \(-0.151136\pi\)
\(8\) 73.3426i 3.24131i
\(9\) −5.62872 −0.208471
\(10\) 23.2832 + 56.0869i 0.736279 + 1.77362i
\(11\) 50.7444 1.39091 0.695456 0.718569i \(-0.255203\pi\)
0.695456 + 0.718569i \(0.255203\pi\)
\(12\) 122.827i 2.95477i
\(13\) 11.1969i 0.238882i −0.992841 0.119441i \(-0.961890\pi\)
0.992841 0.119441i \(-0.0381102\pi\)
\(14\) 91.9778 1.75586
\(15\) 24.4856 + 58.9834i 0.421477 + 1.01530i
\(16\) 226.349 3.53670
\(17\) 90.3524i 1.28904i −0.764587 0.644520i \(-0.777057\pi\)
0.764587 0.644520i \(-0.222943\pi\)
\(18\) 30.5732i 0.400343i
\(19\) −16.3166 −0.197015 −0.0985074 0.995136i \(-0.531407\pi\)
−0.0985074 + 0.995136i \(0.531407\pi\)
\(20\) −222.037 + 92.1735i −2.48245 + 1.03053i
\(21\) 96.7278 1.00513
\(22\) 275.626i 2.67108i
\(23\) 142.132i 1.28855i −0.764794 0.644275i \(-0.777159\pi\)
0.764794 0.644275i \(-0.222841\pi\)
\(24\) 418.944 3.56319
\(25\) 88.2505 88.5260i 0.706004 0.708208i
\(26\) 60.8176 0.458743
\(27\) 122.076i 0.870132i
\(28\) 364.122i 2.45759i
\(29\) 160.663 1.02877 0.514384 0.857560i \(-0.328020\pi\)
0.514384 + 0.857560i \(0.328020\pi\)
\(30\) −320.377 + 132.997i −1.94975 + 0.809395i
\(31\) −70.0129 −0.405635 −0.202818 0.979217i \(-0.565010\pi\)
−0.202818 + 0.979217i \(0.565010\pi\)
\(32\) 642.705i 3.55048i
\(33\) 289.860i 1.52904i
\(34\) 490.763 2.47544
\(35\) −72.5875 174.856i −0.350558 0.844460i
\(36\) 121.033 0.560339
\(37\) 226.468i 1.00624i 0.864215 + 0.503122i \(0.167815\pi\)
−0.864215 + 0.503122i \(0.832185\pi\)
\(38\) 88.6260i 0.378343i
\(39\) 63.9584 0.262604
\(40\) −314.389 757.332i −1.24273 2.99362i
\(41\) −219.178 −0.834873 −0.417437 0.908706i \(-0.637071\pi\)
−0.417437 + 0.908706i \(0.637071\pi\)
\(42\) 525.391i 1.93023i
\(43\) 525.750i 1.86456i −0.361734 0.932281i \(-0.617815\pi\)
0.361734 0.932281i \(-0.382185\pi\)
\(44\) −1091.15 −3.73856
\(45\) −58.1219 + 24.1279i −0.192540 + 0.0799284i
\(46\) 772.013 2.47450
\(47\) 256.333i 0.795533i −0.917487 0.397767i \(-0.869785\pi\)
0.917487 0.397767i \(-0.130215\pi\)
\(48\) 1292.94i 3.88791i
\(49\) 56.2505 0.163996
\(50\) 480.842 + 479.346i 1.36003 + 1.35579i
\(51\) 516.107 1.41705
\(52\) 240.765i 0.642078i
\(53\) 462.654i 1.19906i −0.800351 0.599532i \(-0.795354\pi\)
0.800351 0.599532i \(-0.204646\pi\)
\(54\) −663.074 −1.67098
\(55\) 523.985 217.520i 1.28462 0.533280i
\(56\) −1241.96 −2.96364
\(57\) 93.2029i 0.216579i
\(58\) 872.663i 1.97562i
\(59\) −161.025 −0.355317 −0.177658 0.984092i \(-0.556852\pi\)
−0.177658 + 0.984092i \(0.556852\pi\)
\(60\) −526.509 1268.31i −1.13287 2.72897i
\(61\) −219.277 −0.460255 −0.230128 0.973160i \(-0.573914\pi\)
−0.230128 + 0.973160i \(0.573914\pi\)
\(62\) 380.286i 0.778973i
\(63\) 95.3149i 0.190612i
\(64\) −1680.16 −3.28157
\(65\) −47.9964 115.619i −0.0915879 0.220626i
\(66\) −1574.42 −2.93633
\(67\) 806.850i 1.47123i 0.677400 + 0.735615i \(0.263107\pi\)
−0.677400 + 0.735615i \(0.736893\pi\)
\(68\) 1942.83i 3.46475i
\(69\) 811.882 1.41651
\(70\) 949.758 394.270i 1.62168 0.673204i
\(71\) 643.214 1.07515 0.537574 0.843217i \(-0.319341\pi\)
0.537574 + 0.843217i \(0.319341\pi\)
\(72\) 412.824i 0.675720i
\(73\) 718.854i 1.15254i −0.817259 0.576270i \(-0.804508\pi\)
0.817259 0.576270i \(-0.195492\pi\)
\(74\) −1230.09 −1.93237
\(75\) 505.674 + 504.101i 0.778536 + 0.776114i
\(76\) 350.852 0.529547
\(77\) 859.290i 1.27176i
\(78\) 347.400i 0.504298i
\(79\) 952.969 1.35718 0.678591 0.734516i \(-0.262591\pi\)
0.678591 + 0.734516i \(0.262591\pi\)
\(80\) 2337.26 970.260i 3.26643 1.35598i
\(81\) −849.293 −1.16501
\(82\) 1190.50i 1.60327i
\(83\) 83.0000i 0.109764i
\(84\) −2079.92 −2.70164
\(85\) −387.303 932.975i −0.494222 1.19053i
\(86\) 2855.69 3.58066
\(87\) 917.730i 1.13093i
\(88\) 3721.73i 4.50838i
\(89\) −1243.99 −1.48160 −0.740802 0.671723i \(-0.765554\pi\)
−0.740802 + 0.671723i \(0.765554\pi\)
\(90\) −131.054 315.698i −0.153493 0.369749i
\(91\) −189.605 −0.218417
\(92\) 3056.25i 3.46343i
\(93\) 399.925i 0.445917i
\(94\) 1392.31 1.52772
\(95\) −168.484 + 69.9423i −0.181959 + 0.0755361i
\(96\) −3671.23 −3.90306
\(97\) 1251.39i 1.30990i 0.755674 + 0.654948i \(0.227309\pi\)
−0.755674 + 0.654948i \(0.772691\pi\)
\(98\) 305.533i 0.314934i
\(99\) −285.626 −0.289965
\(100\) −1897.63 + 1903.56i −1.89763 + 1.90356i
\(101\) −1022.30 −1.00716 −0.503580 0.863949i \(-0.667984\pi\)
−0.503580 + 0.863949i \(0.667984\pi\)
\(102\) 2803.31i 2.72127i
\(103\) 421.633i 0.403347i −0.979453 0.201674i \(-0.935362\pi\)
0.979453 0.201674i \(-0.0646380\pi\)
\(104\) −821.209 −0.774290
\(105\) 998.806 414.631i 0.928319 0.385370i
\(106\) 2512.97 2.30265
\(107\) 1123.54i 1.01511i 0.861620 + 0.507555i \(0.169450\pi\)
−0.861620 + 0.507555i \(0.830550\pi\)
\(108\) 2624.98i 2.33878i
\(109\) −1076.48 −0.945948 −0.472974 0.881076i \(-0.656820\pi\)
−0.472974 + 0.881076i \(0.656820\pi\)
\(110\) 1181.49 + 2846.10i 1.02410 + 2.46696i
\(111\) −1293.62 −1.10617
\(112\) 3832.91i 3.23372i
\(113\) 797.445i 0.663870i 0.943302 + 0.331935i \(0.107701\pi\)
−0.943302 + 0.331935i \(0.892299\pi\)
\(114\) 506.245 0.415914
\(115\) −609.262 1467.65i −0.494034 1.19008i
\(116\) −3454.70 −2.76518
\(117\) 63.0242i 0.0497999i
\(118\) 874.632i 0.682342i
\(119\) −1530.00 −1.17861
\(120\) 4326.00 1795.84i 3.29090 1.36614i
\(121\) 1244.00 0.934635
\(122\) 1191.04i 0.883864i
\(123\) 1251.98i 0.917780i
\(124\) 1505.47 1.09029
\(125\) 531.797 1292.41i 0.380523 0.924771i
\(126\) −517.717 −0.366047
\(127\) 1776.02i 1.24091i 0.784240 + 0.620457i \(0.213053\pi\)
−0.784240 + 0.620457i \(0.786947\pi\)
\(128\) 3984.41i 2.75137i
\(129\) 3003.17 2.04972
\(130\) 628.000 260.699i 0.423686 0.175883i
\(131\) 541.816 0.361364 0.180682 0.983542i \(-0.442169\pi\)
0.180682 + 0.983542i \(0.442169\pi\)
\(132\) 6232.81i 4.10982i
\(133\) 276.300i 0.180137i
\(134\) −4382.53 −2.82532
\(135\) 523.289 + 1260.55i 0.333611 + 0.803637i
\(136\) −6626.68 −4.17818
\(137\) 2314.73i 1.44351i 0.692150 + 0.721753i \(0.256663\pi\)
−0.692150 + 0.721753i \(0.743337\pi\)
\(138\) 4409.86i 2.72023i
\(139\) −628.096 −0.383269 −0.191634 0.981466i \(-0.561379\pi\)
−0.191634 + 0.981466i \(0.561379\pi\)
\(140\) 1560.84 + 3759.90i 0.942248 + 2.26978i
\(141\) 1464.22 0.874534
\(142\) 3493.71i 2.06469i
\(143\) 568.180i 0.332263i
\(144\) −1274.05 −0.737298
\(145\) 1658.99 688.693i 0.950151 0.394433i
\(146\) 3904.56 2.21331
\(147\) 321.312i 0.180281i
\(148\) 4869.69i 2.70464i
\(149\) 1379.27 0.758348 0.379174 0.925325i \(-0.376208\pi\)
0.379174 + 0.925325i \(0.376208\pi\)
\(150\) −2738.10 + 2746.64i −1.49043 + 1.49508i
\(151\) 352.495 0.189971 0.0949856 0.995479i \(-0.469719\pi\)
0.0949856 + 0.995479i \(0.469719\pi\)
\(152\) 1196.70i 0.638587i
\(153\) 508.568i 0.268728i
\(154\) 4667.36 2.44225
\(155\) −722.950 + 300.116i −0.374637 + 0.155522i
\(156\) −1375.29 −0.705840
\(157\) 265.419i 0.134922i 0.997722 + 0.0674610i \(0.0214898\pi\)
−0.997722 + 0.0674610i \(0.978510\pi\)
\(158\) 5176.19i 2.60630i
\(159\) 2642.75 1.31814
\(160\) 2755.01 + 6636.54i 1.36126 + 3.27916i
\(161\) −2406.82 −1.17816
\(162\) 4613.06i 2.23726i
\(163\) 2727.24i 1.31052i 0.755406 + 0.655258i \(0.227440\pi\)
−0.755406 + 0.655258i \(0.772560\pi\)
\(164\) 4712.94 2.24402
\(165\) 1242.51 + 2993.08i 0.586237 + 1.41219i
\(166\) 450.827 0.210789
\(167\) 975.207i 0.451879i 0.974141 + 0.225940i \(0.0725452\pi\)
−0.974141 + 0.225940i \(0.927455\pi\)
\(168\) 7094.26i 3.25794i
\(169\) 2071.63 0.942936
\(170\) 5067.59 2103.69i 2.28627 0.949093i
\(171\) 91.8414 0.0410719
\(172\) 11305.1i 5.01167i
\(173\) 918.398i 0.403610i 0.979426 + 0.201805i \(0.0646807\pi\)
−0.979426 + 0.201805i \(0.935319\pi\)
\(174\) −4984.79 −2.17181
\(175\) −1499.07 1494.41i −0.647537 0.645523i
\(176\) 11485.9 4.91923
\(177\) 919.800i 0.390601i
\(178\) 6756.92i 2.84524i
\(179\) 2559.18 1.06862 0.534308 0.845290i \(-0.320572\pi\)
0.534308 + 0.845290i \(0.320572\pi\)
\(180\) 1249.78 518.818i 0.517519 0.214836i
\(181\) −801.727 −0.329237 −0.164619 0.986357i \(-0.552639\pi\)
−0.164619 + 0.986357i \(0.552639\pi\)
\(182\) 1029.87i 0.419444i
\(183\) 1252.55i 0.505961i
\(184\) −10424.4 −4.17660
\(185\) 970.770 + 2338.49i 0.385797 + 0.929348i
\(186\) 2172.25 0.856329
\(187\) 4584.88i 1.79294i
\(188\) 5511.89i 2.13828i
\(189\) 2067.20 0.795590
\(190\) −379.902 915.147i −0.145058 0.349430i
\(191\) 4365.70 1.65388 0.826940 0.562290i \(-0.190079\pi\)
0.826940 + 0.562290i \(0.190079\pi\)
\(192\) 9597.35i 3.60744i
\(193\) 360.181i 0.134334i −0.997742 0.0671669i \(-0.978604\pi\)
0.997742 0.0671669i \(-0.0213960\pi\)
\(194\) −6797.14 −2.51549
\(195\) 660.431 274.163i 0.242536 0.100683i
\(196\) −1209.54 −0.440796
\(197\) 3730.39i 1.34913i −0.738214 0.674567i \(-0.764330\pi\)
0.738214 0.674567i \(-0.235670\pi\)
\(198\) 1551.42i 0.556842i
\(199\) −3088.29 −1.10011 −0.550057 0.835127i \(-0.685394\pi\)
−0.550057 + 0.835127i \(0.685394\pi\)
\(200\) −6492.72 6472.52i −2.29552 2.28838i
\(201\) −4608.85 −1.61733
\(202\) 5552.80i 1.93413i
\(203\) 2720.61i 0.940637i
\(204\) −11097.8 −3.80882
\(205\) −2263.22 + 939.522i −0.771073 + 0.320093i
\(206\) 2290.16 0.774579
\(207\) 800.023i 0.268625i
\(208\) 2534.40i 0.844851i
\(209\) −827.976 −0.274030
\(210\) 2252.13 + 5425.17i 0.740056 + 1.78272i
\(211\) 4260.36 1.39002 0.695012 0.718998i \(-0.255399\pi\)
0.695012 + 0.718998i \(0.255399\pi\)
\(212\) 9948.35i 3.22290i
\(213\) 3674.14i 1.18191i
\(214\) −6102.67 −1.94939
\(215\) −2253.67 5428.87i −0.714879 1.72207i
\(216\) 8953.37 2.82037
\(217\) 1185.58i 0.370885i
\(218\) 5847.08i 1.81658i
\(219\) 4106.20 1.26699
\(220\) −11267.1 + 4677.29i −3.45287 + 1.43338i
\(221\) −1011.67 −0.307928
\(222\) 7026.48i 2.12426i
\(223\) 1561.00i 0.468755i −0.972146 0.234378i \(-0.924695\pi\)
0.972146 0.234378i \(-0.0753052\pi\)
\(224\) 10883.4 3.24632
\(225\) −496.737 + 498.288i −0.147181 + 0.147641i
\(226\) −4331.44 −1.27488
\(227\) 2438.36i 0.712950i −0.934305 0.356475i \(-0.883979\pi\)
0.934305 0.356475i \(-0.116021\pi\)
\(228\) 2004.12i 0.582133i
\(229\) −6771.10 −1.95392 −0.976958 0.213429i \(-0.931537\pi\)
−0.976958 + 0.213429i \(0.931537\pi\)
\(230\) 7971.77 3309.30i 2.28540 0.948732i
\(231\) 4908.40 1.39805
\(232\) 11783.4i 3.33456i
\(233\) 2764.75i 0.777359i 0.921373 + 0.388679i \(0.127069\pi\)
−0.921373 + 0.388679i \(0.872931\pi\)
\(234\) −342.325 −0.0956346
\(235\) −1098.79 2646.89i −0.305010 0.734740i
\(236\) 3462.49 0.955038
\(237\) 5443.51i 1.49196i
\(238\) 8310.42i 2.26338i
\(239\) 158.861 0.0429952 0.0214976 0.999769i \(-0.493157\pi\)
0.0214976 + 0.999769i \(0.493157\pi\)
\(240\) 5542.28 + 13350.8i 1.49064 + 3.59080i
\(241\) 6522.30 1.74331 0.871656 0.490119i \(-0.163047\pi\)
0.871656 + 0.490119i \(0.163047\pi\)
\(242\) 6756.96i 1.79485i
\(243\) 1555.24i 0.410570i
\(244\) 4715.08 1.23710
\(245\) 580.840 241.122i 0.151463 0.0628765i
\(246\) 6800.30 1.76248
\(247\) 182.695i 0.0470632i
\(248\) 5134.93i 1.31479i
\(249\) 474.109 0.120664
\(250\) 7019.90 + 2888.54i 1.77591 + 0.730748i
\(251\) −3908.68 −0.982924 −0.491462 0.870899i \(-0.663537\pi\)
−0.491462 + 0.870899i \(0.663537\pi\)
\(252\) 2049.54i 0.512336i
\(253\) 7212.43i 1.79226i
\(254\) −9646.71 −2.38303
\(255\) 5329.30 2212.33i 1.30876 0.543301i
\(256\) 8200.61 2.00210
\(257\) 2309.60i 0.560579i −0.959915 0.280290i \(-0.909570\pi\)
0.959915 0.280290i \(-0.0904305\pi\)
\(258\) 16312.2i 3.93624i
\(259\) 3834.93 0.920042
\(260\) 1032.06 + 2486.13i 0.246175 + 0.593011i
\(261\) −904.324 −0.214468
\(262\) 2942.96i 0.693956i
\(263\) 5385.33i 1.26264i 0.775523 + 0.631319i \(0.217486\pi\)
−0.775523 + 0.631319i \(0.782514\pi\)
\(264\) 21259.1 4.95608
\(265\) −1983.20 4777.34i −0.459725 1.10743i
\(266\) −1500.76 −0.345931
\(267\) 7105.87i 1.62873i
\(268\) 17349.5i 3.95445i
\(269\) 5596.72 1.26854 0.634271 0.773111i \(-0.281300\pi\)
0.634271 + 0.773111i \(0.281300\pi\)
\(270\) −6846.87 + 2842.32i −1.54329 + 0.640660i
\(271\) 2451.43 0.549497 0.274749 0.961516i \(-0.411405\pi\)
0.274749 + 0.961516i \(0.411405\pi\)
\(272\) 20451.1i 4.55894i
\(273\) 1083.05i 0.240107i
\(274\) −12572.8 −2.77208
\(275\) 4478.22 4492.20i 0.981989 0.985054i
\(276\) −17457.8 −3.80737
\(277\) 4657.27i 1.01021i 0.863058 + 0.505105i \(0.168546\pi\)
−0.863058 + 0.505105i \(0.831454\pi\)
\(278\) 3411.59i 0.736021i
\(279\) 394.083 0.0845632
\(280\) −12824.4 + 5323.75i −2.73716 + 1.13627i
\(281\) −5615.34 −1.19211 −0.596056 0.802943i \(-0.703266\pi\)
−0.596056 + 0.802943i \(0.703266\pi\)
\(282\) 7953.11i 1.67944i
\(283\) 3941.89i 0.827990i 0.910279 + 0.413995i \(0.135867\pi\)
−0.910279 + 0.413995i \(0.864133\pi\)
\(284\) −13830.9 −2.88984
\(285\) −399.521 962.408i −0.0830372 0.200029i
\(286\) 3086.16 0.638071
\(287\) 3711.48i 0.763352i
\(288\) 3617.61i 0.740172i
\(289\) −3250.56 −0.661625
\(290\) 3740.74 + 9011.07i 0.757461 + 1.82465i
\(291\) −7148.16 −1.43997
\(292\) 15457.4i 3.09786i
\(293\) 9749.32i 1.94390i −0.235197 0.971948i \(-0.575574\pi\)
0.235197 0.971948i \(-0.424426\pi\)
\(294\) −1745.25 −0.346208
\(295\) −1662.74 + 690.246i −0.328164 + 0.136229i
\(296\) 16609.7 3.26155
\(297\) 6194.68i 1.21028i
\(298\) 7491.69i 1.45632i
\(299\) −1591.44 −0.307811
\(300\) −10873.4 10839.6i −2.09259 2.08608i
\(301\) −8902.89 −1.70483
\(302\) 1914.63i 0.364817i
\(303\) 5839.56i 1.10718i
\(304\) −3693.23 −0.696781
\(305\) −2264.25 + 939.948i −0.425083 + 0.176463i
\(306\) −2762.36 −0.516058
\(307\) 143.211i 0.0266236i −0.999911 0.0133118i \(-0.995763\pi\)
0.999911 0.0133118i \(-0.00423741\pi\)
\(308\) 18477.2i 3.41829i
\(309\) 2408.43 0.443401
\(310\) −1630.12 3926.81i −0.298661 0.719445i
\(311\) 6811.30 1.24191 0.620954 0.783847i \(-0.286745\pi\)
0.620954 + 0.783847i \(0.286745\pi\)
\(312\) 4690.87i 0.851181i
\(313\) 4897.45i 0.884410i 0.896914 + 0.442205i \(0.145804\pi\)
−0.896914 + 0.442205i \(0.854196\pi\)
\(314\) −1441.66 −0.259101
\(315\) 408.575 + 984.217i 0.0730812 + 0.176046i
\(316\) −20491.5 −3.64790
\(317\) 9377.66i 1.66152i −0.556631 0.830760i \(-0.687906\pi\)
0.556631 0.830760i \(-0.312094\pi\)
\(318\) 14354.5i 2.53132i
\(319\) 8152.73 1.43093
\(320\) −17349.3 + 7202.14i −3.03079 + 1.25816i
\(321\) −6417.83 −1.11591
\(322\) 13073.0i 2.26252i
\(323\) 1474.24i 0.253960i
\(324\) 18262.2 3.13138
\(325\) −991.216 988.132i −0.169178 0.168651i
\(326\) −14813.4 −2.51668
\(327\) 6149.03i 1.03989i
\(328\) 16075.0i 2.70609i
\(329\) −4340.67 −0.727382
\(330\) −16257.4 + 6748.87i −2.71194 + 1.12580i
\(331\) −3987.87 −0.662215 −0.331107 0.943593i \(-0.607422\pi\)
−0.331107 + 0.943593i \(0.607422\pi\)
\(332\) 1784.73i 0.295030i
\(333\) 1274.72i 0.209773i
\(334\) −5296.98 −0.867779
\(335\) 3458.63 + 8331.50i 0.564074 + 1.35880i
\(336\) 21894.2 3.55484
\(337\) 966.436i 0.156217i −0.996945 0.0781085i \(-0.975112\pi\)
0.996945 0.0781085i \(-0.0248881\pi\)
\(338\) 11252.4i 1.81079i
\(339\) −4555.13 −0.729795
\(340\) 8328.10 + 20061.6i 1.32840 + 3.19998i
\(341\) −3552.77 −0.564203
\(342\) 498.850i 0.0788735i
\(343\) 6760.78i 1.06428i
\(344\) −38559.9 −6.04363
\(345\) 8383.46 3480.20i 1.30826 0.543094i
\(346\) −4988.42 −0.775084
\(347\) 8497.96i 1.31468i −0.753593 0.657341i \(-0.771681\pi\)
0.753593 0.657341i \(-0.228319\pi\)
\(348\) 19733.8i 3.03977i
\(349\) 11168.6 1.71301 0.856504 0.516141i \(-0.172632\pi\)
0.856504 + 0.516141i \(0.172632\pi\)
\(350\) 8117.09 8142.42i 1.23965 1.24352i
\(351\) 1366.87 0.207858
\(352\) 32613.7i 4.93840i
\(353\) 12010.4i 1.81090i 0.424451 + 0.905451i \(0.360467\pi\)
−0.424451 + 0.905451i \(0.639533\pi\)
\(354\) 4996.03 0.750102
\(355\) 6641.80 2757.19i 0.992986 0.412215i
\(356\) 26749.3 3.98233
\(357\) 8739.59i 1.29565i
\(358\) 13900.6i 2.05215i
\(359\) 555.854 0.0817182 0.0408591 0.999165i \(-0.486991\pi\)
0.0408591 + 0.999165i \(0.486991\pi\)
\(360\) 1769.60 + 4262.81i 0.259073 + 0.624082i
\(361\) −6592.77 −0.961185
\(362\) 4354.70i 0.632260i
\(363\) 7105.91i 1.02745i
\(364\) 4077.03 0.587073
\(365\) −3081.42 7422.85i −0.441888 1.06446i
\(366\) 6803.39 0.971636
\(367\) 3299.31i 0.469271i −0.972083 0.234636i \(-0.924610\pi\)
0.972083 0.234636i \(-0.0753897\pi\)
\(368\) 32171.5i 4.55721i
\(369\) 1233.69 0.174047
\(370\) −12701.9 + 5272.88i −1.78470 + 0.740876i
\(371\) −7834.43 −1.09634
\(372\) 8599.50i 1.19856i
\(373\) 4776.45i 0.663043i 0.943448 + 0.331522i \(0.107562\pi\)
−0.943448 + 0.331522i \(0.892438\pi\)
\(374\) 24903.5 3.44312
\(375\) 7382.43 + 3037.71i 1.01661 + 0.418311i
\(376\) −18800.1 −2.57857
\(377\) 1798.92i 0.245754i
\(378\) 11228.3i 1.52783i
\(379\) 5771.41 0.782210 0.391105 0.920346i \(-0.372093\pi\)
0.391105 + 0.920346i \(0.372093\pi\)
\(380\) 3622.89 1503.96i 0.489079 0.203030i
\(381\) −10144.9 −1.36414
\(382\) 23713.0i 3.17608i
\(383\) 5086.95i 0.678671i −0.940665 0.339336i \(-0.889798\pi\)
0.940665 0.339336i \(-0.110202\pi\)
\(384\) 22759.6 3.02459
\(385\) −3683.41 8872.99i −0.487595 1.17457i
\(386\) 1956.38 0.257971
\(387\) 2959.30i 0.388707i
\(388\) 26908.5i 3.52081i
\(389\) −6396.80 −0.833755 −0.416877 0.908963i \(-0.636876\pi\)
−0.416877 + 0.908963i \(0.636876\pi\)
\(390\) 1489.16 + 3587.23i 0.193350 + 0.465760i
\(391\) −12842.0 −1.66099
\(392\) 4125.56i 0.531562i
\(393\) 3094.94i 0.397249i
\(394\) 20262.2 2.59085
\(395\) 9840.31 4084.97i 1.25347 0.520348i
\(396\) 6141.77 0.779382
\(397\) 10982.2i 1.38836i 0.719802 + 0.694179i \(0.244233\pi\)
−0.719802 + 0.694179i \(0.755767\pi\)
\(398\) 16774.5i 2.11264i
\(399\) −1578.27 −0.198026
\(400\) 19975.4 20037.7i 2.49692 2.50472i
\(401\) 10978.7 1.36721 0.683607 0.729851i \(-0.260410\pi\)
0.683607 + 0.729851i \(0.260410\pi\)
\(402\) 25033.7i 3.10589i
\(403\) 783.927i 0.0968987i
\(404\) 21982.4 2.70710
\(405\) −8769.76 + 3640.56i −1.07598 + 0.446669i
\(406\) 14777.4 1.80638
\(407\) 11492.0i 1.39960i
\(408\) 37852.6i 4.59310i
\(409\) −7617.67 −0.920953 −0.460476 0.887672i \(-0.652321\pi\)
−0.460476 + 0.887672i \(0.652321\pi\)
\(410\) −5103.15 12293.0i −0.614700 1.48075i
\(411\) −13222.1 −1.58685
\(412\) 9066.30i 1.08414i
\(413\) 2726.75i 0.324878i
\(414\) −4345.45 −0.515862
\(415\) −355.786 857.054i −0.0420840 0.101376i
\(416\) 7196.30 0.848144
\(417\) 3587.78i 0.421329i
\(418\) 4497.28i 0.526241i
\(419\) 3269.97 0.381261 0.190631 0.981662i \(-0.438947\pi\)
0.190631 + 0.981662i \(0.438947\pi\)
\(420\) −21477.2 + 8915.74i −2.49518 + 1.03582i
\(421\) −12491.7 −1.44610 −0.723049 0.690797i \(-0.757260\pi\)
−0.723049 + 0.690797i \(0.757260\pi\)
\(422\) 23140.8i 2.66937i
\(423\) 1442.83i 0.165846i
\(424\) −33932.2 −3.88654
\(425\) −7998.54 7973.65i −0.912908 0.910068i
\(426\) −19956.6 −2.26972
\(427\) 3713.17i 0.420826i
\(428\) 24159.3i 2.72846i
\(429\) 3245.53 0.365258
\(430\) 29487.7 12241.1i 3.30703 1.37284i
\(431\) −5673.97 −0.634120 −0.317060 0.948406i \(-0.602696\pi\)
−0.317060 + 0.948406i \(0.602696\pi\)
\(432\) 27631.7i 3.07739i
\(433\) 10027.0i 1.11286i 0.830896 + 0.556428i \(0.187828\pi\)
−0.830896 + 0.556428i \(0.812172\pi\)
\(434\) −6439.63 −0.712240
\(435\) 3933.92 + 9476.43i 0.433602 + 1.04451i
\(436\) 23147.4 2.54257
\(437\) 2319.12i 0.253863i
\(438\) 22303.5i 2.43311i
\(439\) 6417.87 0.697741 0.348870 0.937171i \(-0.386565\pi\)
0.348870 + 0.937171i \(0.386565\pi\)
\(440\) −15953.5 38430.4i −1.72853 4.16385i
\(441\) −316.618 −0.0341883
\(442\) 5495.02i 0.591338i
\(443\) 17033.0i 1.82677i −0.407094 0.913386i \(-0.633458\pi\)
0.407094 0.913386i \(-0.366542\pi\)
\(444\) 27816.4 2.97322
\(445\) −12845.4 + 5332.46i −1.36838 + 0.568052i
\(446\) 8478.82 0.900188
\(447\) 7878.58i 0.833656i
\(448\) 28451.3i 3.00044i
\(449\) −5362.91 −0.563677 −0.281839 0.959462i \(-0.590944\pi\)
−0.281839 + 0.959462i \(0.590944\pi\)
\(450\) −2706.52 2698.10i −0.283526 0.282644i
\(451\) −11122.0 −1.16123
\(452\) 17147.3i 1.78438i
\(453\) 2013.51i 0.208836i
\(454\) 13244.3 1.36913
\(455\) −1957.85 + 812.755i −0.201726 + 0.0837418i
\(456\) −6835.74 −0.702001
\(457\) 505.071i 0.0516985i 0.999666 + 0.0258492i \(0.00822899\pi\)
−0.999666 + 0.0258492i \(0.991771\pi\)
\(458\) 36778.2i 3.75226i
\(459\) 11029.9 1.12163
\(460\) 13100.8 + 31558.7i 1.32789 + 3.19876i
\(461\) 8884.40 0.897587 0.448794 0.893635i \(-0.351854\pi\)
0.448794 + 0.893635i \(0.351854\pi\)
\(462\) 26660.7i 2.68478i
\(463\) 13283.3i 1.33332i 0.745362 + 0.666660i \(0.232277\pi\)
−0.745362 + 0.666660i \(0.767723\pi\)
\(464\) 36365.7 3.63844
\(465\) −1714.31 4129.60i −0.170966 0.411840i
\(466\) −15017.1 −1.49282
\(467\) 6150.88i 0.609484i 0.952435 + 0.304742i \(0.0985702\pi\)
−0.952435 + 0.304742i \(0.901430\pi\)
\(468\) 1355.20i 0.133855i
\(469\) 13662.9 1.34519
\(470\) 14377.0 5968.26i 1.41098 0.585734i
\(471\) −1516.12 −0.148320
\(472\) 11810.0i 1.15169i
\(473\) 26678.9i 2.59344i
\(474\) −29567.2 −2.86512
\(475\) −1439.95 + 1444.44i −0.139093 + 0.139527i
\(476\) 32899.3 3.16793
\(477\) 2604.15i 0.249970i
\(478\) 862.876i 0.0825670i
\(479\) 954.857 0.0910825 0.0455413 0.998962i \(-0.485499\pi\)
0.0455413 + 0.998962i \(0.485499\pi\)
\(480\) −37909.0 + 15737.0i −3.60479 + 1.49644i
\(481\) 2535.73 0.240373
\(482\) 35426.8i 3.34782i
\(483\) 13748.2i 1.29516i
\(484\) −26749.5 −2.51216
\(485\) 5364.20 + 12921.8i 0.502218 + 1.20979i
\(486\) 8447.51 0.788450
\(487\) 116.784i 0.0108665i 0.999985 + 0.00543323i \(0.00172946\pi\)
−0.999985 + 0.00543323i \(0.998271\pi\)
\(488\) 16082.3i 1.49183i
\(489\) −15578.4 −1.44066
\(490\) 1309.69 + 3154.92i 0.120747 + 0.290867i
\(491\) 7087.04 0.651393 0.325696 0.945474i \(-0.394401\pi\)
0.325696 + 0.945474i \(0.394401\pi\)
\(492\) 26921.0i 2.46686i
\(493\) 14516.3i 1.32612i
\(494\) −992.336 −0.0903791
\(495\) −2949.36 + 1224.36i −0.267806 + 0.111173i
\(496\) −15847.3 −1.43461
\(497\) 10892.0i 0.983042i
\(498\) 2575.19i 0.231721i
\(499\) 15393.0 1.38094 0.690468 0.723363i \(-0.257405\pi\)
0.690468 + 0.723363i \(0.257405\pi\)
\(500\) −11435.1 + 27790.4i −1.02279 + 2.48565i
\(501\) −5570.54 −0.496753
\(502\) 21230.6i 1.88759i
\(503\) 3902.29i 0.345914i 0.984929 + 0.172957i \(0.0553321\pi\)
−0.984929 + 0.172957i \(0.944668\pi\)
\(504\) 6990.64 0.617833
\(505\) −10556.3 + 4382.19i −0.930193 + 0.386148i
\(506\) 39175.4 3.44182
\(507\) 11833.5i 1.03657i
\(508\) 38189.4i 3.33540i
\(509\) −10935.8 −0.952303 −0.476152 0.879363i \(-0.657969\pi\)
−0.476152 + 0.879363i \(0.657969\pi\)
\(510\) 12016.6 + 28946.9i 1.04334 + 2.51331i
\(511\) −12172.8 −1.05381
\(512\) 12667.6i 1.09342i
\(513\) 1991.86i 0.171429i
\(514\) 12544.9 1.07652
\(515\) −1807.36 4353.76i −0.154645 0.372524i
\(516\) −64576.6 −5.50935
\(517\) 13007.5i 1.10652i
\(518\) 20830.0i 1.76683i
\(519\) −5246.03 −0.443690
\(520\) −8479.76 + 3520.18i −0.715120 + 0.296865i
\(521\) −863.633 −0.0726228 −0.0363114 0.999341i \(-0.511561\pi\)
−0.0363114 + 0.999341i \(0.511561\pi\)
\(522\) 4911.97i 0.411860i
\(523\) 3289.97i 0.275068i −0.990497 0.137534i \(-0.956082\pi\)
0.990497 0.137534i \(-0.0439176\pi\)
\(524\) −11650.6 −0.971294
\(525\) 8536.28 8562.92i 0.709626 0.711841i
\(526\) −29251.2 −2.42474
\(527\) 6325.84i 0.522880i
\(528\) 65609.4i 5.40773i
\(529\) −8034.62 −0.660362
\(530\) 25948.8 10772.0i 2.12669 0.882845i
\(531\) 906.364 0.0740732
\(532\) 5941.22i 0.484182i
\(533\) 2454.11i 0.199436i
\(534\) 38596.6 3.12779
\(535\) 4816.14 + 11601.6i 0.389196 + 0.937536i
\(536\) 59176.5 4.76872
\(537\) 14618.4i 1.17473i
\(538\) 30399.4i 2.43608i
\(539\) 2854.40 0.228104
\(540\) −11252.2 27105.4i −0.896697 2.16006i
\(541\) 2487.39 0.197673 0.0988366 0.995104i \(-0.468488\pi\)
0.0988366 + 0.995104i \(0.468488\pi\)
\(542\) 13315.3i 1.05524i
\(543\) 4579.59i 0.361932i
\(544\) 58070.0 4.57671
\(545\) −11115.7 + 4614.42i −0.873660 + 0.362679i
\(546\) 5882.75 0.461096
\(547\) 18868.9i 1.47491i −0.675394 0.737457i \(-0.736027\pi\)
0.675394 0.737457i \(-0.263973\pi\)
\(548\) 49773.1i 3.87993i
\(549\) 1234.25 0.0959498
\(550\) 24400.1 + 24324.1i 1.89168 + 1.88579i
\(551\) −2621.46 −0.202683
\(552\) 59545.5i 4.59135i
\(553\) 16137.3i 1.24092i
\(554\) −25296.7 −1.93999
\(555\) −13357.8 + 5545.19i −1.02164 + 0.424109i
\(556\) 13505.8 1.03017
\(557\) 7279.63i 0.553766i 0.960904 + 0.276883i \(0.0893015\pi\)
−0.960904 + 0.276883i \(0.910699\pi\)
\(558\) 2140.52i 0.162393i
\(559\) −5886.77 −0.445410
\(560\) −16430.1 39578.5i −1.23982 2.98660i
\(561\) 26189.6 1.97099
\(562\) 30500.6i 2.28930i
\(563\) 4082.14i 0.305580i 0.988259 + 0.152790i \(0.0488258\pi\)
−0.988259 + 0.152790i \(0.951174\pi\)
\(564\) −31484.8 −2.35062
\(565\) 3418.31 + 8234.38i 0.254530 + 0.613138i
\(566\) −21411.0 −1.59005
\(567\) 14381.7i 1.06521i
\(568\) 47175.0i 3.48489i
\(569\) −11688.2 −0.861154 −0.430577 0.902554i \(-0.641690\pi\)
−0.430577 + 0.902554i \(0.641690\pi\)
\(570\) 5227.46 2170.06i 0.384130 0.159463i
\(571\) −1359.11 −0.0996096 −0.0498048 0.998759i \(-0.515860\pi\)
−0.0498048 + 0.998759i \(0.515860\pi\)
\(572\) 12217.5i 0.893074i
\(573\) 24937.6i 1.81812i
\(574\) −20159.5 −1.46592
\(575\) −12582.4 12543.3i −0.912561 0.909722i
\(576\) 9457.16 0.684111
\(577\) 669.912i 0.0483342i 0.999708 + 0.0241671i \(0.00769337\pi\)
−0.999708 + 0.0241671i \(0.992307\pi\)
\(578\) 17655.9i 1.27057i
\(579\) 2057.41 0.147674
\(580\) −35673.0 + 14808.8i −2.55387 + 1.06018i
\(581\) −1405.50 −0.100361
\(582\) 38826.3i 2.76530i
\(583\) 23477.1i 1.66779i
\(584\) −52722.6 −3.73575
\(585\) 270.158 + 650.784i 0.0190934 + 0.0459942i
\(586\) 52954.9 3.73301
\(587\) 9749.87i 0.685554i −0.939417 0.342777i \(-0.888632\pi\)
0.939417 0.342777i \(-0.111368\pi\)
\(588\) 6909.11i 0.484569i
\(589\) 1142.37 0.0799161
\(590\) −3749.18 9031.40i −0.261612 0.630198i
\(591\) 21308.6 1.48311
\(592\) 51260.6i 3.55878i
\(593\) 25333.1i 1.75431i 0.480205 + 0.877156i \(0.340562\pi\)
−0.480205 + 0.877156i \(0.659438\pi\)
\(594\) −33647.3 −2.32419
\(595\) −15798.7 + 6558.46i −1.08854 + 0.451883i
\(596\) −29658.1 −2.03833
\(597\) 17640.8i 1.20936i
\(598\) 8644.15i 0.591113i
\(599\) 9336.51 0.636861 0.318430 0.947946i \(-0.396844\pi\)
0.318430 + 0.947946i \(0.396844\pi\)
\(600\) 36972.0 37087.4i 2.51563 2.52348i
\(601\) 5696.77 0.386649 0.193325 0.981135i \(-0.438073\pi\)
0.193325 + 0.981135i \(0.438073\pi\)
\(602\) 48357.4i 3.27392i
\(603\) 4541.53i 0.306709i
\(604\) −7579.64 −0.510615
\(605\) 12845.5 5332.50i 0.863211 0.358342i
\(606\) 31718.5 2.12619
\(607\) 8881.61i 0.593894i −0.954894 0.296947i \(-0.904032\pi\)
0.954894 0.296947i \(-0.0959684\pi\)
\(608\) 10486.8i 0.699497i
\(609\) 15540.5 1.03405
\(610\) −5105.47 12298.6i −0.338876 0.816320i
\(611\) −2870.14 −0.190038
\(612\) 10935.6i 0.722300i
\(613\) 8383.75i 0.552393i −0.961101 0.276196i \(-0.910926\pi\)
0.961101 0.276196i \(-0.0890740\pi\)
\(614\) 777.869 0.0511274
\(615\) −5366.70 12927.9i −0.351880 0.847644i
\(616\) −63022.5 −4.12216
\(617\) 4630.92i 0.302162i 0.988521 + 0.151081i \(0.0482754\pi\)
−0.988521 + 0.151081i \(0.951725\pi\)
\(618\) 13081.8i 0.851498i
\(619\) 9349.71 0.607102 0.303551 0.952815i \(-0.401828\pi\)
0.303551 + 0.952815i \(0.401828\pi\)
\(620\) 15545.5 6453.33i 1.00697 0.418019i
\(621\) 17351.0 1.12121
\(622\) 36996.6i 2.38493i
\(623\) 21065.3i 1.35468i
\(624\) 14476.9 0.928749
\(625\) −48.6933 15624.9i −0.00311637 0.999995i
\(626\) −26601.2 −1.69840
\(627\) 4729.53i 0.301243i
\(628\) 5707.26i 0.362650i
\(629\) 20461.9 1.29709
\(630\) −5345.92 + 2219.23i −0.338074 + 0.140343i
\(631\) 5242.29 0.330733 0.165366 0.986232i \(-0.447119\pi\)
0.165366 + 0.986232i \(0.447119\pi\)
\(632\) 69893.2i 4.39905i
\(633\) 24335.8i 1.52806i
\(634\) 50936.2 3.19075
\(635\) 7613.04 + 18339.1i 0.475771 + 1.14609i
\(636\) −56826.5 −3.54295
\(637\) 629.831i 0.0391755i
\(638\) 44282.8i 2.74792i
\(639\) −3620.47 −0.224137
\(640\) −17079.5 41142.8i −1.05488 2.54111i
\(641\) −795.339 −0.0490078 −0.0245039 0.999700i \(-0.507801\pi\)
−0.0245039 + 0.999700i \(0.507801\pi\)
\(642\) 34859.4i 2.14298i
\(643\) 25157.0i 1.54292i −0.636280 0.771458i \(-0.719528\pi\)
0.636280 0.771458i \(-0.280472\pi\)
\(644\) 51753.5 3.16673
\(645\) 31010.6 12873.3i 1.89308 0.785870i
\(646\) −8007.57 −0.487699
\(647\) 21290.9i 1.29371i 0.762612 + 0.646856i \(0.223917\pi\)
−0.762612 + 0.646856i \(0.776083\pi\)
\(648\) 62289.3i 3.77617i
\(649\) −8171.13 −0.494214
\(650\) 5367.19 5383.94i 0.323874 0.324885i
\(651\) −6772.19 −0.407716
\(652\) 58643.3i 3.52247i
\(653\) 12072.4i 0.723473i 0.932280 + 0.361736i \(0.117816\pi\)
−0.932280 + 0.361736i \(0.882184\pi\)
\(654\) 33399.4 1.99697
\(655\) 5594.77 2322.54i 0.333749 0.138548i
\(656\) −49610.5 −2.95269
\(657\) 4046.22i 0.240271i
\(658\) 23577.0i 1.39685i
\(659\) 10344.4 0.611471 0.305736 0.952116i \(-0.401098\pi\)
0.305736 + 0.952116i \(0.401098\pi\)
\(660\) −26717.4 64359.7i −1.57572 3.79575i
\(661\) −27742.2 −1.63245 −0.816223 0.577737i \(-0.803936\pi\)
−0.816223 + 0.577737i \(0.803936\pi\)
\(662\) 21660.7i 1.27170i
\(663\) 5778.80i 0.338507i
\(664\) −6087.43 −0.355780
\(665\) 1184.38 + 2853.06i 0.0690651 + 0.166371i
\(666\) 6923.84 0.402843
\(667\) 22835.4i 1.32562i
\(668\) 20969.7i 1.21458i
\(669\) 8916.69 0.515305
\(670\) −45253.8 + 18786.0i −2.60941 + 1.08324i
\(671\) −11127.1 −0.640174
\(672\) 62167.5i 3.56869i
\(673\) 19752.9i 1.13138i 0.824618 + 0.565689i \(0.191390\pi\)
−0.824618 + 0.565689i \(0.808610\pi\)
\(674\) 5249.34 0.299996
\(675\) 10806.9 + 10773.3i 0.616234 + 0.614317i
\(676\) −44545.9 −2.53447
\(677\) 4090.68i 0.232227i −0.993236 0.116113i \(-0.962956\pi\)
0.993236 0.116113i \(-0.0370436\pi\)
\(678\) 24741.9i 1.40148i
\(679\) 21190.7 1.19768
\(680\) −68426.8 + 28405.8i −3.85889 + 1.60193i
\(681\) 13928.3 0.783749
\(682\) 19297.4i 1.08348i
\(683\) 10438.9i 0.584822i 0.956293 + 0.292411i \(0.0944576\pi\)
−0.956293 + 0.292411i \(0.905542\pi\)
\(684\) −1974.85 −0.110395
\(685\) 9922.25 + 23901.7i 0.553445 + 1.33320i
\(686\) 36722.2 2.04382
\(687\) 38677.6i 2.14795i
\(688\) 119003.i 6.59439i
\(689\) −5180.28 −0.286434
\(690\) 18903.2 + 45536.0i 1.04295 + 2.51236i
\(691\) −32006.9 −1.76208 −0.881042 0.473038i \(-0.843157\pi\)
−0.881042 + 0.473038i \(0.843157\pi\)
\(692\) 19748.2i 1.08484i
\(693\) 4836.70i 0.265124i
\(694\) 46158.0 2.52469
\(695\) −6485.68 + 2692.38i −0.353980 + 0.146946i
\(696\) 67308.6 3.66570
\(697\) 19803.2i 1.07619i
\(698\) 60663.7i 3.28962i
\(699\) −15792.7 −0.854554
\(700\) 32234.2 + 32133.9i 1.74048 + 1.73507i
\(701\) 27100.4 1.46015 0.730077 0.683364i \(-0.239484\pi\)
0.730077 + 0.683364i \(0.239484\pi\)
\(702\) 7424.38i 0.399167i
\(703\) 3695.18i 0.198245i
\(704\) −85258.9 −4.56437
\(705\) 15119.4 6276.48i 0.807703 0.335299i
\(706\) −65236.2 −3.47762
\(707\) 17311.4i 0.920879i
\(708\) 19778.3i 1.04988i
\(709\) −1290.48 −0.0683569 −0.0341785 0.999416i \(-0.510881\pi\)
−0.0341785 + 0.999416i \(0.510881\pi\)
\(710\) 14976.1 + 36075.9i 0.791608 + 1.90691i
\(711\) −5363.99 −0.282933
\(712\) 91237.5i 4.80234i
\(713\) 9951.10i 0.522681i
\(714\) 47470.4 2.48814
\(715\) −2435.55 5867.00i −0.127391 0.306872i
\(716\) −55029.6 −2.87228
\(717\) 907.438i 0.0472648i
\(718\) 3019.20i 0.156930i
\(719\) 35368.8 1.83454 0.917270 0.398267i \(-0.130388\pi\)
0.917270 + 0.398267i \(0.130388\pi\)
\(720\) −13155.8 + 5461.32i −0.680955 + 0.282683i
\(721\) −7139.80 −0.368793
\(722\) 35809.6i 1.84584i
\(723\) 37256.4i 1.91643i
\(724\) 17239.4 0.884941
\(725\) 14178.6 14222.8i 0.726315 0.728582i
\(726\) −38596.8 −1.97309
\(727\) 21339.0i 1.08861i 0.838887 + 0.544305i \(0.183207\pi\)
−0.838887 + 0.544305i \(0.816793\pi\)
\(728\) 13906.1i 0.707959i
\(729\) −14047.1 −0.713669
\(730\) 40318.3 16737.2i 2.04417 0.848591i
\(731\) −47502.8 −2.40350
\(732\) 26933.2i 1.35995i
\(733\) 12359.9i 0.622815i 0.950277 + 0.311407i \(0.100800\pi\)
−0.950277 + 0.311407i \(0.899200\pi\)
\(734\) 17920.7 0.901178
\(735\) 1377.33 + 3317.85i 0.0691204 + 0.166504i
\(736\) 91349.3 4.57497
\(737\) 40943.2i 2.04635i
\(738\) 6700.97i 0.334236i
\(739\) −35695.7 −1.77684 −0.888421 0.459029i \(-0.848197\pi\)
−0.888421 + 0.459029i \(0.848197\pi\)
\(740\) −20874.3 50284.2i −1.03697 2.49795i
\(741\) −1043.58 −0.0517368
\(742\) 42553.9i 2.10539i
\(743\) 3339.05i 0.164869i −0.996596 0.0824346i \(-0.973730\pi\)
0.996596 0.0824346i \(-0.0262695\pi\)
\(744\) −29331.5 −1.44536
\(745\) 14242.2 5912.33i 0.700396 0.290753i
\(746\) −25944.0 −1.27329
\(747\) 467.183i 0.0228827i
\(748\) 98587.9i 4.81916i
\(749\) 19025.7 0.928148
\(750\) −16499.8 + 40098.8i −0.803315 + 1.95227i
\(751\) −9278.11 −0.450816 −0.225408 0.974264i \(-0.572372\pi\)
−0.225408 + 0.974264i \(0.572372\pi\)
\(752\) 58020.7i 2.81356i
\(753\) 22327.0i 1.08053i
\(754\) 9771.11 0.471940
\(755\) 3639.85 1511.00i 0.175454 0.0728356i
\(756\) −44450.6 −2.13843
\(757\) 1472.08i 0.0706787i −0.999375 0.0353393i \(-0.988749\pi\)
0.999375 0.0353393i \(-0.0112512\pi\)
\(758\) 31348.3i 1.50214i
\(759\) 41198.5 1.97024
\(760\) 5129.75 + 12357.1i 0.244836 + 0.589787i
\(761\) −8823.27 −0.420293 −0.210147 0.977670i \(-0.567394\pi\)
−0.210147 + 0.977670i \(0.567394\pi\)
\(762\) 55103.5i 2.61967i
\(763\) 18228.8i 0.864911i
\(764\) −93874.9 −4.44539
\(765\) 2180.02 + 5251.45i 0.103031 + 0.248192i
\(766\) 27630.5 1.30331
\(767\) 1802.98i 0.0848786i
\(768\) 46843.2i 2.20092i
\(769\) −27106.6 −1.27112 −0.635558 0.772053i \(-0.719230\pi\)
−0.635558 + 0.772053i \(0.719230\pi\)
\(770\) 48195.0 20007.0i 2.25562 0.936367i
\(771\) 13192.8 0.616247
\(772\) 7744.91i 0.361069i
\(773\) 18170.6i 0.845473i 0.906253 + 0.422736i \(0.138930\pi\)
−0.906253 + 0.422736i \(0.861070\pi\)
\(774\) −16073.9 −0.746465
\(775\) −6178.67 + 6197.96i −0.286380 + 0.287274i
\(776\) 91780.5 4.24578
\(777\) 21905.7i 1.01141i
\(778\) 34745.2i 1.60112i
\(779\) 3576.23 0.164482
\(780\) −14201.1 + 5895.27i −0.651900 + 0.270621i
\(781\) 32639.5 1.49543
\(782\) 69753.3i 3.18974i
\(783\) 19613.1i 0.895164i
\(784\) 12732.2 0.580003
\(785\) 1137.74 + 2740.70i 0.0517295 + 0.124611i
\(786\) −16810.6 −0.762869
\(787\) 39458.2i 1.78721i −0.448854 0.893605i \(-0.648168\pi\)
0.448854 0.893605i \(-0.351832\pi\)
\(788\) 80213.9i 3.62627i
\(789\) −30761.9 −1.38802
\(790\) 22188.1 + 53449.1i 0.999264 + 2.40713i
\(791\) 13503.7 0.606998
\(792\) 20948.5i 0.939866i
\(793\) 2455.22i 0.109946i
\(794\) −59651.2 −2.66617
\(795\) 27288.9 11328.3i 1.21741 0.505377i
\(796\) 66406.8 2.95694
\(797\) 39744.6i 1.76640i 0.468992 + 0.883202i \(0.344617\pi\)
−0.468992 + 0.883202i \(0.655383\pi\)
\(798\) 8572.59i 0.380284i
\(799\) −23160.3 −1.02547
\(800\) 56896.1 + 56719.1i 2.51448 + 2.50665i
\(801\) 7002.07 0.308872
\(802\) 59632.7i 2.62557i
\(803\) 36477.8i 1.60308i
\(804\) 99103.3 4.34715
\(805\) −24852.8 + 10317.0i −1.08813 + 0.451712i
\(806\) −4258.02 −0.186082
\(807\) 31969.3i 1.39451i
\(808\) 74978.4i 3.26452i
\(809\) −34428.6 −1.49622 −0.748112 0.663573i \(-0.769039\pi\)
−0.748112 + 0.663573i \(0.769039\pi\)
\(810\) −19774.2 47634.2i −0.857773 2.06629i
\(811\) −8239.84 −0.356769 −0.178385 0.983961i \(-0.557087\pi\)
−0.178385 + 0.983961i \(0.557087\pi\)
\(812\) 58500.7i 2.52829i
\(813\) 14003.0i 0.604065i
\(814\) −62420.3 −2.68775
\(815\) 11690.5 + 28161.3i 0.502456 + 1.21037i
\(816\) 116820. 5.01167
\(817\) 8578.45i 0.367346i
\(818\) 41376.5i 1.76858i
\(819\) 1067.23 0.0455337
\(820\) 48665.6 20202.4i 2.07253 0.860362i
\(821\) −24987.6 −1.06221 −0.531104 0.847307i \(-0.678223\pi\)
−0.531104 + 0.847307i \(0.678223\pi\)
\(822\) 71817.7i 3.04736i
\(823\) 18313.9i 0.775678i −0.921727 0.387839i \(-0.873222\pi\)
0.921727 0.387839i \(-0.126778\pi\)
\(824\) −30923.7 −1.30737
\(825\) 25660.1 + 25580.3i 1.08287 + 1.07951i
\(826\) −14810.7 −0.623888
\(827\) 1622.47i 0.0682209i 0.999418 + 0.0341104i \(0.0108598\pi\)
−0.999418 + 0.0341104i \(0.989140\pi\)
\(828\) 17202.7i 0.722025i
\(829\) 6758.88 0.283167 0.141584 0.989926i \(-0.454781\pi\)
0.141584 + 0.989926i \(0.454781\pi\)
\(830\) 4655.22 1932.50i 0.194681 0.0808171i
\(831\) −26603.1 −1.11053
\(832\) 18812.6i 0.783906i
\(833\) 5082.37i 0.211397i
\(834\) 19487.6 0.809111
\(835\) 4180.30 + 10069.9i 0.173252 + 0.417347i
\(836\) 17803.8 0.736552
\(837\) 8546.90i 0.352956i
\(838\) 17761.3i 0.732166i
\(839\) 28954.2 1.19143 0.595715 0.803196i \(-0.296869\pi\)
0.595715 + 0.803196i \(0.296869\pi\)
\(840\) −30410.1 73255.0i −1.24911 3.00897i
\(841\) 1423.47 0.0583650
\(842\) 67850.4i 2.77705i
\(843\) 32075.7i 1.31049i
\(844\) −91609.7 −3.73618
\(845\) 21391.5 8880.20i 0.870878 0.361524i
\(846\) −7836.94 −0.318486
\(847\) 21065.5i 0.854567i
\(848\) 104721.i 4.24072i
\(849\) −22516.7 −0.910213
\(850\) 43310.1 43445.2i 1.74767 1.75313i
\(851\) 32188.4 1.29660
\(852\) 79004.3i 3.17681i
\(853\) 32830.1i 1.31780i −0.752231 0.658899i \(-0.771022\pi\)
0.752231 0.658899i \(-0.228978\pi\)
\(854\) −20168.6 −0.808146
\(855\) 948.350 393.685i 0.0379332 0.0157471i
\(856\) 82403.3 3.29029
\(857\) 28174.0i 1.12299i 0.827479 + 0.561497i \(0.189774\pi\)
−0.827479 + 0.561497i \(0.810226\pi\)
\(858\) 17628.6i 0.701434i
\(859\) −788.825 −0.0313322 −0.0156661 0.999877i \(-0.504987\pi\)
−0.0156661 + 0.999877i \(0.504987\pi\)
\(860\) 48460.2 + 116736.i 1.92149 + 4.62868i
\(861\) −21200.6 −0.839156
\(862\) 30819.0i 1.21775i
\(863\) 3457.73i 0.136388i −0.997672 0.0681938i \(-0.978276\pi\)
0.997672 0.0681938i \(-0.0217236\pi\)
\(864\) −78459.0 −3.08938
\(865\) 3936.79 + 9483.34i 0.154745 + 0.372767i
\(866\) −54463.1 −2.13710
\(867\) 18567.7i 0.727327i
\(868\) 25493.2i 0.996885i
\(869\) 48357.9 1.88772
\(870\) −51472.6 + 21367.7i −2.00585 + 0.832680i
\(871\) 9034.22 0.351450
\(872\) 78952.0i 3.06611i
\(873\) 7043.75i 0.273075i
\(874\) −12596.6 −0.487514
\(875\) −21885.2 9005.28i −0.845549 0.347925i
\(876\) −88294.9 −3.40549
\(877\) 23671.4i 0.911432i 0.890125 + 0.455716i \(0.150617\pi\)
−0.890125 + 0.455716i \(0.849383\pi\)
\(878\) 34859.6i 1.33993i
\(879\) 55689.6 2.13693
\(880\) 118603. 49235.3i 4.54331 1.88605i
\(881\) 14351.7 0.548832 0.274416 0.961611i \(-0.411515\pi\)
0.274416 + 0.961611i \(0.411515\pi\)
\(882\) 1719.76i 0.0656546i
\(883\) 17104.0i 0.651864i 0.945393 + 0.325932i \(0.105678\pi\)
−0.945393 + 0.325932i \(0.894322\pi\)
\(884\) 21753.7 0.827665
\(885\) −3942.79 9497.81i −0.149758 0.360752i
\(886\) 92517.0 3.50809
\(887\) 680.407i 0.0257563i 0.999917 + 0.0128781i \(0.00409935\pi\)
−0.999917 + 0.0128781i \(0.995901\pi\)
\(888\) 94877.2i 3.58544i
\(889\) 30074.5 1.13461
\(890\) −28964.1 69771.7i −1.09087 2.62781i
\(891\) −43096.9 −1.62043
\(892\) 33565.9i 1.25994i
\(893\) 4182.49i 0.156732i
\(894\) −42793.7 −1.60093
\(895\) 26426.0 10970.1i 0.986953 0.409711i
\(896\) −67470.7 −2.51567
\(897\) 9090.56i 0.338378i
\(898\) 29129.4i 1.08247i
\(899\) −11248.5 −0.417305
\(900\) 10681.2 10714.6i 0.395602 0.396837i
\(901\) −41801.9 −1.54564
\(902\) 60411.1i 2.23001i
\(903\) 50854.7i 1.87413i
\(904\) 58486.6 2.15181
\(905\) −8278.60 + 3436.67i −0.304077 + 0.126231i
\(906\) −10936.7 −0.401045
\(907\) 21786.8i 0.797596i −0.917039 0.398798i \(-0.869427\pi\)
0.917039 0.398798i \(-0.130573\pi\)
\(908\) 52431.6i 1.91630i
\(909\) 5754.26 0.209964
\(910\) −4414.60 10634.3i −0.160816 0.387390i
\(911\) 36241.5 1.31804 0.659020 0.752125i \(-0.270971\pi\)
0.659020 + 0.752125i \(0.270971\pi\)
\(912\) 21096.3i 0.765975i
\(913\) 4211.79i 0.152672i
\(914\) −2743.37 −0.0992806
\(915\) −5369.13 12933.7i −0.193987 0.467296i
\(916\) 145598. 5.25184
\(917\) 9174.94i 0.330407i
\(918\) 59910.4i 2.15396i
\(919\) 38708.3 1.38941 0.694706 0.719293i \(-0.255534\pi\)
0.694706 + 0.719293i \(0.255534\pi\)
\(920\) −107641. + 44684.8i −3.85742 + 1.60132i
\(921\) 818.041 0.0292675
\(922\) 48256.9i 1.72371i
\(923\) 7202.00i 0.256833i
\(924\) −105544. −3.75774
\(925\) 20048.3 + 19985.9i 0.712630 + 0.710412i
\(926\) −72150.2 −2.56048
\(927\) 2373.25i 0.0840862i
\(928\) 103259.i 3.65262i
\(929\) 32082.9 1.13305 0.566526 0.824044i \(-0.308287\pi\)
0.566526 + 0.824044i \(0.308287\pi\)
\(930\) 22430.5 9311.52i 0.790889 0.328319i
\(931\) −917.816 −0.0323096
\(932\) 59449.8i 2.08943i
\(933\) 38907.2i 1.36523i
\(934\) −33409.4 −1.17044
\(935\) −19653.5 47343.3i −0.687419 1.65593i
\(936\) 4622.35 0.161417
\(937\) 218.425i 0.00761539i 0.999993 + 0.00380769i \(0.00121203\pi\)
−0.999993 + 0.00380769i \(0.998788\pi\)
\(938\) 74212.3i 2.58328i
\(939\) −27975.0 −0.972236
\(940\) 23627.1 + 56915.5i 0.819822 + 1.97487i
\(941\) −10322.1 −0.357589 −0.178795 0.983886i \(-0.557220\pi\)
−0.178795 + 0.983886i \(0.557220\pi\)
\(942\) 8235.01i 0.284831i
\(943\) 31152.3i 1.07578i
\(944\) −36447.8 −1.25665
\(945\) 21345.8 8861.20i 0.734792 0.305032i
\(946\) 144910. 4.98039
\(947\) 27221.7i 0.934093i 0.884233 + 0.467047i \(0.154682\pi\)
−0.884233 + 0.467047i \(0.845318\pi\)
\(948\) 117051.i 4.01016i
\(949\) −8048.93 −0.275321
\(950\) −7845.70 7821.29i −0.267945 0.267112i
\(951\) 53566.7 1.82652
\(952\) 112214.i 3.82025i
\(953\) 40514.2i 1.37711i 0.725186 + 0.688553i \(0.241754\pi\)
−0.725186 + 0.688553i \(0.758246\pi\)
\(954\) −14144.8 −0.480037
\(955\) 45080.0 18713.9i 1.52749 0.634103i
\(956\) −3415.95 −0.115565
\(957\) 46569.7i 1.57302i
\(958\) 5186.45i 0.174913i
\(959\) 39196.8 1.31985
\(960\) −41139.8 99101.7i −1.38310 3.33176i
\(961\) −24889.2 −0.835460
\(962\) 13773.2i 0.461607i
\(963\) 6324.09i 0.211621i
\(964\) −140248. −4.68576
\(965\) −1543.94 3719.21i −0.0515040 0.124068i
\(966\) 74675.2 2.48720
\(967\) 41649.8i 1.38508i 0.721382 + 0.692538i \(0.243507\pi\)
−0.721382 + 0.692538i \(0.756493\pi\)
\(968\) 91238.0i 3.02944i
\(969\) −8421.11 −0.279179
\(970\) −70186.9 + 29136.4i −2.32326 + 0.964448i
\(971\) −39344.6 −1.30034 −0.650170 0.759789i \(-0.725302\pi\)
−0.650170 + 0.759789i \(0.725302\pi\)
\(972\) 33442.0i 1.10355i
\(973\) 10636.0i 0.350435i
\(974\) −634.327 −0.0208677
\(975\) 5644.36 5661.98i 0.185399 0.185978i
\(976\) −49633.1 −1.62778
\(977\) 8834.33i 0.289289i −0.989484 0.144644i \(-0.953796\pi\)
0.989484 0.144644i \(-0.0462038\pi\)
\(978\) 84616.5i 2.76660i
\(979\) −63125.6 −2.06078
\(980\) −12489.7 + 5184.81i −0.407111 + 0.169003i
\(981\) 6059.21 0.197203
\(982\) 38494.3i 1.25092i
\(983\) 31253.8i 1.01408i 0.861922 + 0.507041i \(0.169261\pi\)
−0.861922 + 0.507041i \(0.830739\pi\)
\(984\) −91823.2 −2.97481
\(985\) −15990.6 38519.8i −0.517262 1.24603i
\(986\) 78847.2 2.54666
\(987\) 24794.6i 0.799615i
\(988\) 3928.46i 0.126499i
\(989\) −74726.2 −2.40258
\(990\) −6650.28 16019.9i −0.213495 0.514289i
\(991\) −28789.8 −0.922844 −0.461422 0.887181i \(-0.652661\pi\)
−0.461422 + 0.887181i \(0.652661\pi\)
\(992\) 44997.7i 1.44020i
\(993\) 22779.3i 0.727976i
\(994\) 59161.4 1.88781
\(995\) −31889.5 + 13238.2i −1.01604 + 0.421787i
\(996\) −10194.7 −0.324328
\(997\) 29380.4i 0.933285i −0.884446 0.466643i \(-0.845463\pi\)
0.884446 0.466643i \(-0.154537\pi\)
\(998\) 83609.6i 2.65192i
\(999\) −27646.3 −0.875565
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 415.4.b.a.84.122 yes 124
5.2 odd 4 2075.4.a.m.1.3 62
5.3 odd 4 2075.4.a.n.1.60 62
5.4 even 2 inner 415.4.b.a.84.3 124
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
415.4.b.a.84.3 124 5.4 even 2 inner
415.4.b.a.84.122 yes 124 1.1 even 1 trivial
2075.4.a.m.1.3 62 5.2 odd 4
2075.4.a.n.1.60 62 5.3 odd 4