Newspace parameters
| Level: | \( N \) | \(=\) | \( 415 = 5 \cdot 83 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 415.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(24.4857926524\) |
| Analytic rank: | \(0\) |
| Dimension: | \(124\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 84.1 | − | 5.59070i | 9.32458i | −23.2559 | −3.95795 | + | 10.4563i | 52.1309 | 14.9769i | 85.2909i | −59.9478 | 58.4581 | + | 22.1277i | |||||||||||||
| 84.2 | − | 5.58218i | − | 4.95572i | −23.1608 | 0.142604 | − | 11.1794i | −27.6637 | − | 27.5915i | 84.6302i | 2.44088 | −62.4056 | − | 0.796043i | |||||||||||
| 84.3 | − | 5.43165i | − | 5.71216i | −21.5028 | 10.3260 | + | 4.28658i | −31.0264 | 16.9337i | 73.3426i | −5.62872 | 23.2832 | − | 56.0869i | ||||||||||||
| 84.4 | − | 5.36371i | 4.49952i | −20.7693 | 5.77941 | − | 9.57070i | 24.1341 | 33.2479i | 68.4909i | 6.75431 | −51.3344 | − | 30.9991i | |||||||||||||
| 84.5 | − | 5.32811i | 1.15648i | −20.3887 | −4.45888 | + | 10.2527i | 6.16183 | − | 32.9123i | 66.0084i | 25.6626 | 54.6276 | + | 23.7574i | ||||||||||||
| 84.6 | − | 5.22457i | − | 9.01343i | −19.2961 | −9.65647 | + | 5.63494i | −47.0912 | 8.67367i | 59.0173i | −54.2418 | 29.4401 | + | 50.4509i | ||||||||||||
| 84.7 | − | 5.17649i | − | 1.39860i | −18.7961 | −11.1737 | − | 0.386298i | −7.23982 | 10.8286i | 55.8857i | 25.0439 | −1.99967 | + | 57.8404i | ||||||||||||
| 84.8 | − | 5.09381i | 2.66448i | −17.9469 | 6.10790 | + | 9.36448i | 13.5724 | − | 10.1095i | 50.6679i | 19.9006 | 47.7009 | − | 31.1125i | ||||||||||||
| 84.9 | − | 5.06299i | 4.85010i | −17.6339 | 10.1684 | − | 4.64797i | 24.5560 | − | 6.05924i | 48.7763i | 3.47650 | −23.5327 | − | 51.4825i | ||||||||||||
| 84.10 | − | 5.04149i | 0.170131i | −17.4166 | −9.56621 | − | 5.78685i | 0.857713 | 10.4782i | 47.4735i | 26.9711 | −29.1743 | + | 48.2279i | |||||||||||||
| 84.11 | − | 4.98044i | 7.53464i | −16.8048 | −6.99634 | − | 8.72073i | 37.5259 | − | 14.6496i | 43.8520i | −29.7709 | −43.4331 | + | 34.8449i | ||||||||||||
| 84.12 | − | 4.82727i | − | 2.71547i | −15.3025 | 3.18919 | + | 10.7158i | −13.1083 | 13.1614i | 35.2511i | 19.6262 | 51.7282 | − | 15.3951i | ||||||||||||
| 84.13 | − | 4.78707i | − | 8.94432i | −14.9160 | 2.73811 | − | 10.8399i | −42.8171 | 26.2645i | 33.1076i | −53.0009 | −51.8912 | − | 13.1075i | ||||||||||||
| 84.14 | − | 4.54206i | − | 3.36464i | −12.6303 | 10.9753 | − | 2.13132i | −15.2824 | − | 11.6054i | 21.0312i | 15.6792 | −9.68060 | − | 49.8505i | |||||||||||
| 84.15 | − | 4.53810i | 9.82601i | −12.5943 | 10.9214 | + | 2.39235i | 44.5914 | − | 18.0658i | 20.8496i | −69.5504 | 10.8567 | − | 49.5623i | ||||||||||||
| 84.16 | − | 4.48211i | − | 9.62254i | −12.0894 | 9.86295 | + | 5.26518i | −43.1293 | − | 31.5948i | 18.3290i | −65.5932 | 23.5992 | − | 44.2069i | |||||||||||
| 84.17 | − | 4.41429i | 4.21802i | −11.4859 | −8.85731 | + | 6.82261i | 18.6196 | 21.5411i | 15.3879i | 9.20830 | 30.1170 | + | 39.0987i | |||||||||||||
| 84.18 | − | 4.35680i | − | 6.61019i | −10.9817 | −4.93226 | + | 10.0336i | −28.7993 | − | 14.5063i | 12.9909i | −16.6946 | 43.7144 | + | 21.4889i | |||||||||||
| 84.19 | − | 4.19599i | − | 7.96065i | −9.60634 | −6.13690 | − | 9.34550i | −33.4028 | − | 20.2067i | 6.74017i | −36.3720 | −39.2136 | + | 25.7504i | |||||||||||
| 84.20 | − | 4.12476i | − | 3.06656i | −9.01365 | 5.77616 | − | 9.57267i | −12.6488 | 7.17192i | 4.18107i | 17.5962 | −39.4850 | − | 23.8253i | ||||||||||||
| See next 80 embeddings (of 124 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.b | even | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 415.4.b.a | ✓ | 124 |
| 5.b | even | 2 | 1 | inner | 415.4.b.a | ✓ | 124 |
| 5.c | odd | 4 | 1 | 2075.4.a.m | 62 | ||
| 5.c | odd | 4 | 1 | 2075.4.a.n | 62 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 415.4.b.a | ✓ | 124 | 1.a | even | 1 | 1 | trivial |
| 415.4.b.a | ✓ | 124 | 5.b | even | 2 | 1 | inner |
| 2075.4.a.m | 62 | 5.c | odd | 4 | 1 | ||
| 2075.4.a.n | 62 | 5.c | odd | 4 | 1 | ||
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(415, [\chi])\).