Properties

Label 415.4.b.a.84.1
Level $415$
Weight $4$
Character 415.84
Analytic conductor $24.486$
Analytic rank $0$
Dimension $124$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [415,4,Mod(84,415)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("415.84"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(415, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 415 = 5 \cdot 83 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 415.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4857926524\)
Analytic rank: \(0\)
Dimension: \(124\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 84.1
Character \(\chi\) \(=\) 415.84
Dual form 415.4.b.a.84.124

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.59070i q^{2} +9.32458i q^{3} -23.2559 q^{4} +(-3.95795 + 10.4563i) q^{5} +52.1309 q^{6} +14.9769i q^{7} +85.2909i q^{8} -59.9478 q^{9} +(58.4581 + 22.1277i) q^{10} -14.4939 q^{11} -216.851i q^{12} +73.8958i q^{13} +83.7312 q^{14} +(-97.5008 - 36.9062i) q^{15} +290.789 q^{16} +61.2669i q^{17} +335.150i q^{18} +47.8919 q^{19} +(92.0455 - 243.171i) q^{20} -139.653 q^{21} +81.0309i q^{22} -157.044i q^{23} -795.302 q^{24} +(-93.6693 - 82.7711i) q^{25} +413.129 q^{26} -307.224i q^{27} -348.301i q^{28} -100.730 q^{29} +(-206.331 + 545.097i) q^{30} -16.7128 q^{31} -943.383i q^{32} -135.149i q^{33} +342.525 q^{34} +(-156.603 - 59.2777i) q^{35} +1394.14 q^{36} +72.9466i q^{37} -267.749i q^{38} -689.048 q^{39} +(-891.829 - 337.577i) q^{40} +5.60615 q^{41} +780.758i q^{42} +189.430i q^{43} +337.068 q^{44} +(237.270 - 626.834i) q^{45} -877.983 q^{46} +427.438i q^{47} +2711.48i q^{48} +118.693 q^{49} +(-462.748 + 523.677i) q^{50} -571.288 q^{51} -1718.51i q^{52} +424.295i q^{53} -1717.60 q^{54} +(57.3660 - 151.553i) q^{55} -1277.39 q^{56} +446.572i q^{57} +563.150i q^{58} +223.761 q^{59} +(2267.47 + 858.285i) q^{60} +575.383 q^{61} +93.4361i q^{62} -897.831i q^{63} -2947.86 q^{64} +(-772.679 - 292.476i) q^{65} -755.579 q^{66} -1042.02i q^{67} -1424.82i q^{68} +1464.37 q^{69} +(-331.404 + 875.520i) q^{70} -437.616 q^{71} -5113.00i q^{72} -91.6976i q^{73} +407.822 q^{74} +(771.806 - 873.427i) q^{75} -1113.77 q^{76} -217.073i q^{77} +3852.26i q^{78} -24.3050 q^{79} +(-1150.93 + 3040.58i) q^{80} +1246.15 q^{81} -31.3423i q^{82} +83.0000i q^{83} +3247.76 q^{84} +(-640.627 - 242.491i) q^{85} +1059.05 q^{86} -939.264i q^{87} -1236.20i q^{88} +726.778 q^{89} +(-3504.44 - 1326.51i) q^{90} -1106.73 q^{91} +3652.19i q^{92} -155.840i q^{93} +2389.68 q^{94} +(-189.553 + 500.773i) q^{95} +8796.65 q^{96} +887.385i q^{97} -663.576i q^{98} +868.877 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 124 q - 504 q^{4} + 6 q^{5} - 1088 q^{9} + 62 q^{10} + 60 q^{11} + 124 q^{14} - 120 q^{15} + 2080 q^{16} + 124 q^{19} - 206 q^{20} + 24 q^{21} + 368 q^{24} - 430 q^{25} - 176 q^{26} + 208 q^{29} - 52 q^{30}+ \cdots + 2668 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/415\mathbb{Z}\right)^\times\).

\(n\) \(167\) \(251\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.59070i 1.97661i −0.152493 0.988305i \(-0.548730\pi\)
0.152493 0.988305i \(-0.451270\pi\)
\(3\) 9.32458i 1.79452i 0.441506 + 0.897258i \(0.354444\pi\)
−0.441506 + 0.897258i \(0.645556\pi\)
\(4\) −23.2559 −2.90698
\(5\) −3.95795 + 10.4563i −0.354009 + 0.935242i
\(6\) 52.1309 3.54706
\(7\) 14.9769i 0.808676i 0.914610 + 0.404338i \(0.132498\pi\)
−0.914610 + 0.404338i \(0.867502\pi\)
\(8\) 85.2909i 3.76936i
\(9\) −59.9478 −2.22029
\(10\) 58.4581 + 22.1277i 1.84861 + 0.699738i
\(11\) −14.4939 −0.397279 −0.198640 0.980073i \(-0.563652\pi\)
−0.198640 + 0.980073i \(0.563652\pi\)
\(12\) 216.851i 5.21663i
\(13\) 73.8958i 1.57654i 0.615330 + 0.788270i \(0.289023\pi\)
−0.615330 + 0.788270i \(0.710977\pi\)
\(14\) 83.7312 1.59844
\(15\) −97.5008 36.9062i −1.67831 0.635276i
\(16\) 290.789 4.54357
\(17\) 61.2669i 0.874083i 0.899441 + 0.437042i \(0.143974\pi\)
−0.899441 + 0.437042i \(0.856026\pi\)
\(18\) 335.150i 4.38864i
\(19\) 47.8919 0.578271 0.289136 0.957288i \(-0.406632\pi\)
0.289136 + 0.957288i \(0.406632\pi\)
\(20\) 92.0455 243.171i 1.02910 2.71873i
\(21\) −139.653 −1.45118
\(22\) 81.0309i 0.785266i
\(23\) 157.044i 1.42373i −0.702315 0.711867i \(-0.747850\pi\)
0.702315 0.711867i \(-0.252150\pi\)
\(24\) −795.302 −6.76418
\(25\) −93.6693 82.7711i −0.749355 0.662169i
\(26\) 413.129 3.11620
\(27\) 307.224i 2.18983i
\(28\) 348.301i 2.35081i
\(29\) −100.730 −0.645002 −0.322501 0.946569i \(-0.604524\pi\)
−0.322501 + 0.946569i \(0.604524\pi\)
\(30\) −206.331 + 545.097i −1.25569 + 3.31736i
\(31\) −16.7128 −0.0968292 −0.0484146 0.998827i \(-0.515417\pi\)
−0.0484146 + 0.998827i \(0.515417\pi\)
\(32\) 943.383i 5.21150i
\(33\) 135.149i 0.712924i
\(34\) 342.525 1.72772
\(35\) −156.603 59.2777i −0.756308 0.286279i
\(36\) 1394.14 6.45434
\(37\) 72.9466i 0.324118i 0.986781 + 0.162059i \(0.0518134\pi\)
−0.986781 + 0.162059i \(0.948187\pi\)
\(38\) 267.749i 1.14302i
\(39\) −689.048 −2.82913
\(40\) −891.829 337.577i −3.52526 1.33439i
\(41\) 5.60615 0.0213545 0.0106772 0.999943i \(-0.496601\pi\)
0.0106772 + 0.999943i \(0.496601\pi\)
\(42\) 780.758i 2.86842i
\(43\) 189.430i 0.671809i 0.941896 + 0.335905i \(0.109042\pi\)
−0.941896 + 0.335905i \(0.890958\pi\)
\(44\) 337.068 1.15488
\(45\) 237.270 626.834i 0.786003 2.07651i
\(46\) −877.983 −2.81416
\(47\) 427.438i 1.32656i 0.748372 + 0.663280i \(0.230836\pi\)
−0.748372 + 0.663280i \(0.769164\pi\)
\(48\) 2711.48i 8.15351i
\(49\) 118.693 0.346043
\(50\) −462.748 + 523.677i −1.30885 + 1.48118i
\(51\) −571.288 −1.56856
\(52\) 1718.51i 4.58298i
\(53\) 424.295i 1.09965i 0.835280 + 0.549825i \(0.185306\pi\)
−0.835280 + 0.549825i \(0.814694\pi\)
\(54\) −1717.60 −4.32844
\(55\) 57.3660 151.553i 0.140641 0.371552i
\(56\) −1277.39 −3.04819
\(57\) 446.572i 1.03772i
\(58\) 563.150i 1.27492i
\(59\) 223.761 0.493749 0.246875 0.969047i \(-0.420596\pi\)
0.246875 + 0.969047i \(0.420596\pi\)
\(60\) 2267.47 + 858.285i 4.87881 + 1.84674i
\(61\) 575.383 1.20771 0.603854 0.797095i \(-0.293631\pi\)
0.603854 + 0.797095i \(0.293631\pi\)
\(62\) 93.4361i 0.191394i
\(63\) 897.831i 1.79549i
\(64\) −2947.86 −5.75753
\(65\) −772.679 292.476i −1.47445 0.558110i
\(66\) −755.579 −1.40917
\(67\) 1042.02i 1.90004i −0.312189 0.950020i \(-0.601062\pi\)
0.312189 0.950020i \(-0.398938\pi\)
\(68\) 1424.82i 2.54095i
\(69\) 1464.37 2.55491
\(70\) −331.404 + 875.520i −0.565861 + 1.49492i
\(71\) −437.616 −0.731485 −0.365742 0.930716i \(-0.619185\pi\)
−0.365742 + 0.930716i \(0.619185\pi\)
\(72\) 5113.00i 8.36907i
\(73\) 91.6976i 0.147019i −0.997295 0.0735095i \(-0.976580\pi\)
0.997295 0.0735095i \(-0.0234199\pi\)
\(74\) 407.822 0.640654
\(75\) 771.806 873.427i 1.18827 1.34473i
\(76\) −1113.77 −1.68103
\(77\) 217.073i 0.321270i
\(78\) 3852.26i 5.59208i
\(79\) −24.3050 −0.0346143 −0.0173072 0.999850i \(-0.505509\pi\)
−0.0173072 + 0.999850i \(0.505509\pi\)
\(80\) −1150.93 + 3040.58i −1.60847 + 4.24934i
\(81\) 1246.15 1.70939
\(82\) 31.3423i 0.0422095i
\(83\) 83.0000i 0.109764i
\(84\) 3247.76 4.21856
\(85\) −640.627 242.491i −0.817479 0.309434i
\(86\) 1059.05 1.32790
\(87\) 939.264i 1.15747i
\(88\) 1236.20i 1.49749i
\(89\) 726.778 0.865600 0.432800 0.901490i \(-0.357526\pi\)
0.432800 + 0.901490i \(0.357526\pi\)
\(90\) −3504.44 1326.51i −4.10444 1.55362i
\(91\) −1106.73 −1.27491
\(92\) 3652.19i 4.13877i
\(93\) 155.840i 0.173762i
\(94\) 2389.68 2.62209
\(95\) −189.553 + 500.773i −0.204713 + 0.540823i
\(96\) 8796.65 9.35213
\(97\) 887.385i 0.928869i 0.885607 + 0.464434i \(0.153742\pi\)
−0.885607 + 0.464434i \(0.846258\pi\)
\(98\) 663.576i 0.683992i
\(99\) 868.877 0.882075
\(100\) 2178.36 + 1924.91i 2.17836 + 1.92491i
\(101\) −1506.11 −1.48380 −0.741898 0.670513i \(-0.766074\pi\)
−0.741898 + 0.670513i \(0.766074\pi\)
\(102\) 3193.90i 3.10042i
\(103\) 1471.86i 1.40803i −0.710187 0.704013i \(-0.751390\pi\)
0.710187 0.704013i \(-0.248610\pi\)
\(104\) −6302.64 −5.94255
\(105\) 552.740 1460.26i 0.513732 1.35721i
\(106\) 2372.11 2.17358
\(107\) 745.458i 0.673515i 0.941591 + 0.336757i \(0.109330\pi\)
−0.941591 + 0.336757i \(0.890670\pi\)
\(108\) 7144.77i 6.36580i
\(109\) 1675.06 1.47194 0.735970 0.677014i \(-0.236726\pi\)
0.735970 + 0.677014i \(0.236726\pi\)
\(110\) −847.285 320.716i −0.734413 0.277991i
\(111\) −680.197 −0.581634
\(112\) 4355.11i 3.67428i
\(113\) 1422.34i 1.18409i −0.805903 0.592047i \(-0.798320\pi\)
0.805903 0.592047i \(-0.201680\pi\)
\(114\) 2496.65 2.05116
\(115\) 1642.10 + 621.570i 1.33154 + 0.504015i
\(116\) 2342.56 1.87501
\(117\) 4429.89i 3.50037i
\(118\) 1250.98i 0.975949i
\(119\) −917.588 −0.706850
\(120\) 3147.76 8315.93i 2.39458 6.32615i
\(121\) −1120.93 −0.842169
\(122\) 3216.79i 2.38717i
\(123\) 52.2750i 0.0383210i
\(124\) 388.671 0.281481
\(125\) 1236.22 651.833i 0.884567 0.466414i
\(126\) −5019.50 −3.54899
\(127\) 43.6856i 0.0305234i 0.999884 + 0.0152617i \(0.00485814\pi\)
−0.999884 + 0.0152617i \(0.995142\pi\)
\(128\) 8933.51i 6.16889i
\(129\) −1766.35 −1.20557
\(130\) −1635.14 + 4319.81i −1.10317 + 2.91440i
\(131\) 1635.48 1.09079 0.545393 0.838181i \(-0.316381\pi\)
0.545393 + 0.838181i \(0.316381\pi\)
\(132\) 3143.02i 2.07246i
\(133\) 717.271i 0.467634i
\(134\) −5825.60 −3.75564
\(135\) 3212.44 + 1215.98i 2.04802 + 0.775220i
\(136\) −5225.51 −3.29474
\(137\) 1252.41i 0.781027i 0.920597 + 0.390513i \(0.127703\pi\)
−0.920597 + 0.390513i \(0.872297\pi\)
\(138\) 8186.83i 5.05006i
\(139\) 1005.60 0.613624 0.306812 0.951770i \(-0.400738\pi\)
0.306812 + 0.951770i \(0.400738\pi\)
\(140\) 3641.94 + 1378.55i 2.19857 + 0.832208i
\(141\) −3985.68 −2.38053
\(142\) 2446.58i 1.44586i
\(143\) 1071.04i 0.626326i
\(144\) −17432.1 −10.0880
\(145\) 398.683 1053.26i 0.228337 0.603233i
\(146\) −512.653 −0.290599
\(147\) 1106.76i 0.620980i
\(148\) 1696.44i 0.942205i
\(149\) −2038.93 −1.12104 −0.560522 0.828140i \(-0.689399\pi\)
−0.560522 + 0.828140i \(0.689399\pi\)
\(150\) −4883.07 4314.93i −2.65800 2.34875i
\(151\) 1709.73 0.921428 0.460714 0.887549i \(-0.347593\pi\)
0.460714 + 0.887549i \(0.347593\pi\)
\(152\) 4084.74i 2.17971i
\(153\) 3672.82i 1.94072i
\(154\) −1213.59 −0.635025
\(155\) 66.1483 174.754i 0.0342785 0.0905588i
\(156\) 16024.4 8.22422
\(157\) 1866.01i 0.948558i −0.880375 0.474279i \(-0.842709\pi\)
0.880375 0.474279i \(-0.157291\pi\)
\(158\) 135.882i 0.0684190i
\(159\) −3956.38 −1.97334
\(160\) 9864.31 + 3733.86i 4.87402 + 1.84492i
\(161\) 2352.03 1.15134
\(162\) 6966.84i 3.37880i
\(163\) 3457.90i 1.66162i 0.556559 + 0.830808i \(0.312121\pi\)
−0.556559 + 0.830808i \(0.687879\pi\)
\(164\) −130.376 −0.0620772
\(165\) 1413.17 + 534.914i 0.666756 + 0.252382i
\(166\) 464.028 0.216961
\(167\) 1539.61i 0.713407i 0.934218 + 0.356703i \(0.116099\pi\)
−0.934218 + 0.356703i \(0.883901\pi\)
\(168\) 11911.1i 5.47003i
\(169\) −3263.59 −1.48548
\(170\) −1355.69 + 3581.55i −0.611629 + 1.61584i
\(171\) −2871.01 −1.28393
\(172\) 4405.36i 1.95294i
\(173\) 626.204i 0.275199i −0.990488 0.137600i \(-0.956061\pi\)
0.990488 0.137600i \(-0.0439387\pi\)
\(174\) −5251.14 −2.28786
\(175\) 1239.65 1402.87i 0.535480 0.605985i
\(176\) −4214.66 −1.80507
\(177\) 2086.48i 0.886041i
\(178\) 4063.20i 1.71095i
\(179\) −524.737 −0.219110 −0.109555 0.993981i \(-0.534943\pi\)
−0.109555 + 0.993981i \(0.534943\pi\)
\(180\) −5517.92 + 14577.6i −2.28490 + 6.03637i
\(181\) −118.464 −0.0486483 −0.0243242 0.999704i \(-0.507743\pi\)
−0.0243242 + 0.999704i \(0.507743\pi\)
\(182\) 6187.39i 2.52000i
\(183\) 5365.20i 2.16725i
\(184\) 13394.4 5.36657
\(185\) −762.753 288.719i −0.303128 0.114741i
\(186\) −871.253 −0.343459
\(187\) 887.996i 0.347255i
\(188\) 9940.45i 3.85629i
\(189\) 4601.27 1.77086
\(190\) 2799.67 + 1059.74i 1.06900 + 0.404638i
\(191\) −1026.64 −0.388928 −0.194464 0.980910i \(-0.562297\pi\)
−0.194464 + 0.980910i \(0.562297\pi\)
\(192\) 27487.5i 10.3320i
\(193\) 2005.04i 0.747801i 0.927469 + 0.373901i \(0.121980\pi\)
−0.927469 + 0.373901i \(0.878020\pi\)
\(194\) 4961.10 1.83601
\(195\) 2727.21 7204.90i 1.00154 2.64592i
\(196\) −2760.31 −1.00594
\(197\) 445.231i 0.161022i −0.996754 0.0805112i \(-0.974345\pi\)
0.996754 0.0805112i \(-0.0256553\pi\)
\(198\) 4857.62i 1.74352i
\(199\) −390.091 −0.138959 −0.0694795 0.997583i \(-0.522134\pi\)
−0.0694795 + 0.997583i \(0.522134\pi\)
\(200\) 7059.62 7989.14i 2.49595 2.82459i
\(201\) 9716.38 3.40965
\(202\) 8420.19i 2.93288i
\(203\) 1508.62i 0.521598i
\(204\) 13285.8 4.55977
\(205\) −22.1889 + 58.6197i −0.00755969 + 0.0199716i
\(206\) −8228.72 −2.78312
\(207\) 9414.42i 3.16110i
\(208\) 21488.1i 7.16312i
\(209\) −694.140 −0.229735
\(210\) −8163.86 3090.20i −2.68267 1.01545i
\(211\) 1950.45 0.636373 0.318187 0.948028i \(-0.396926\pi\)
0.318187 + 0.948028i \(0.396926\pi\)
\(212\) 9867.36i 3.19667i
\(213\) 4080.58i 1.31266i
\(214\) 4167.63 1.33128
\(215\) −1980.74 749.753i −0.628304 0.237827i
\(216\) 26203.5 8.25426
\(217\) 250.306i 0.0783035i
\(218\) 9364.74i 2.90945i
\(219\) 855.041 0.263828
\(220\) −1334.10 + 3524.49i −0.408840 + 1.08010i
\(221\) −4527.37 −1.37803
\(222\) 3802.77i 1.14966i
\(223\) 3313.38i 0.994980i 0.867470 + 0.497490i \(0.165745\pi\)
−0.867470 + 0.497490i \(0.834255\pi\)
\(224\) 14128.9 4.21442
\(225\) 5615.27 + 4961.95i 1.66378 + 1.47021i
\(226\) −7951.88 −2.34049
\(227\) 320.243i 0.0936356i −0.998903 0.0468178i \(-0.985092\pi\)
0.998903 0.0468178i \(-0.0149080\pi\)
\(228\) 10385.4i 3.01663i
\(229\) −655.779 −0.189236 −0.0946182 0.995514i \(-0.530163\pi\)
−0.0946182 + 0.995514i \(0.530163\pi\)
\(230\) 3475.01 9180.48i 0.996241 2.63192i
\(231\) 2024.12 0.576524
\(232\) 8591.34i 2.43125i
\(233\) 1364.10i 0.383543i −0.981440 0.191771i \(-0.938577\pi\)
0.981440 0.191771i \(-0.0614232\pi\)
\(234\) −24766.2 −6.91887
\(235\) −4469.43 1691.78i −1.24065 0.469615i
\(236\) −5203.76 −1.43532
\(237\) 226.634i 0.0621160i
\(238\) 5129.95i 1.39717i
\(239\) −6912.12 −1.87074 −0.935371 0.353667i \(-0.884935\pi\)
−0.935371 + 0.353667i \(0.884935\pi\)
\(240\) −28352.1 10731.9i −7.62551 2.88642i
\(241\) −2021.80 −0.540397 −0.270199 0.962805i \(-0.587089\pi\)
−0.270199 + 0.962805i \(0.587089\pi\)
\(242\) 6266.76i 1.66464i
\(243\) 3324.75i 0.877707i
\(244\) −13381.0 −3.51079
\(245\) −469.780 + 1241.09i −0.122503 + 0.323634i
\(246\) 292.254 0.0757456
\(247\) 3539.01i 0.911668i
\(248\) 1425.45i 0.364984i
\(249\) −773.940 −0.196974
\(250\) −3644.20 6911.33i −0.921918 1.74844i
\(251\) 1192.74 0.299939 0.149970 0.988691i \(-0.452082\pi\)
0.149970 + 0.988691i \(0.452082\pi\)
\(252\) 20879.9i 5.21947i
\(253\) 2276.17i 0.565620i
\(254\) 244.233 0.0603328
\(255\) 2261.13 5973.58i 0.555284 1.46698i
\(256\) 26361.7 6.43595
\(257\) 109.586i 0.0265983i −0.999912 0.0132992i \(-0.995767\pi\)
0.999912 0.0132992i \(-0.00423338\pi\)
\(258\) 9875.15i 2.38295i
\(259\) −1092.51 −0.262106
\(260\) 17969.3 + 6801.78i 4.28619 + 1.62242i
\(261\) 6038.54 1.43209
\(262\) 9143.49i 2.15606i
\(263\) 5009.05i 1.17442i −0.809436 0.587208i \(-0.800227\pi\)
0.809436 0.587208i \(-0.199773\pi\)
\(264\) 11527.0 2.68727
\(265\) −4436.57 1679.34i −1.02844 0.389287i
\(266\) 4010.05 0.924330
\(267\) 6776.90i 1.55333i
\(268\) 24233.0i 5.52339i
\(269\) −6954.12 −1.57621 −0.788105 0.615541i \(-0.788937\pi\)
−0.788105 + 0.615541i \(0.788937\pi\)
\(270\) 6798.16 17959.8i 1.53231 4.04813i
\(271\) −2676.62 −0.599975 −0.299987 0.953943i \(-0.596982\pi\)
−0.299987 + 0.953943i \(0.596982\pi\)
\(272\) 17815.7i 3.97146i
\(273\) 10319.8i 2.28785i
\(274\) 7001.85 1.54379
\(275\) 1357.63 + 1199.68i 0.297703 + 0.263066i
\(276\) −34055.1 −7.42709
\(277\) 3135.52i 0.680127i −0.940402 0.340064i \(-0.889551\pi\)
0.940402 0.340064i \(-0.110449\pi\)
\(278\) 5622.00i 1.21290i
\(279\) 1001.90 0.214989
\(280\) 5055.85 13356.8i 1.07909 2.85080i
\(281\) 4159.43 0.883028 0.441514 0.897254i \(-0.354441\pi\)
0.441514 + 0.897254i \(0.354441\pi\)
\(282\) 22282.7i 4.70538i
\(283\) 2191.06i 0.460229i 0.973164 + 0.230114i \(0.0739100\pi\)
−0.973164 + 0.230114i \(0.926090\pi\)
\(284\) 10177.1 2.12641
\(285\) −4669.50 1767.51i −0.970517 0.367362i
\(286\) −5987.85 −1.23800
\(287\) 83.9627i 0.0172689i
\(288\) 56553.7i 11.5710i
\(289\) 1159.36 0.235979
\(290\) −5888.48 2228.92i −1.19236 0.451333i
\(291\) −8274.49 −1.66687
\(292\) 2132.51i 0.427382i
\(293\) 6157.10i 1.22765i −0.789442 0.613825i \(-0.789630\pi\)
0.789442 0.613825i \(-0.210370\pi\)
\(294\) 6187.56 1.22744
\(295\) −885.634 + 2339.72i −0.174792 + 0.461775i
\(296\) −6221.68 −1.22172
\(297\) 4452.88i 0.869973i
\(298\) 11399.0i 2.21587i
\(299\) 11604.9 2.24457
\(300\) −17949.0 + 20312.3i −3.45429 + 3.90911i
\(301\) −2837.07 −0.543276
\(302\) 9558.56i 1.82130i
\(303\) 14043.8i 2.66270i
\(304\) 13926.4 2.62742
\(305\) −2277.33 + 6016.39i −0.427540 + 1.12950i
\(306\) −20533.6 −3.83604
\(307\) 5530.05i 1.02807i 0.857770 + 0.514033i \(0.171849\pi\)
−0.857770 + 0.514033i \(0.828151\pi\)
\(308\) 5048.23i 0.933927i
\(309\) 13724.5 2.52673
\(310\) −976.998 369.815i −0.178999 0.0677551i
\(311\) −99.9673 −0.0182271 −0.00911355 0.999958i \(-0.502901\pi\)
−0.00911355 + 0.999958i \(0.502901\pi\)
\(312\) 58769.5i 10.6640i
\(313\) 29.8755i 0.00539509i 0.999996 + 0.00269754i \(0.000858656\pi\)
−0.999996 + 0.00269754i \(0.999141\pi\)
\(314\) −10432.3 −1.87493
\(315\) 9388.01 + 3553.57i 1.67922 + 0.635622i
\(316\) 565.235 0.100623
\(317\) 10947.0i 1.93957i 0.243967 + 0.969784i \(0.421551\pi\)
−0.243967 + 0.969784i \(0.578449\pi\)
\(318\) 22118.9i 3.90052i
\(319\) 1459.97 0.256246
\(320\) 11667.5 30823.7i 2.03822 5.38469i
\(321\) −6951.08 −1.20863
\(322\) 13149.5i 2.27575i
\(323\) 2934.19i 0.505457i
\(324\) −28980.3 −4.96918
\(325\) 6116.44 6921.77i 1.04394 1.18139i
\(326\) 19332.0 3.28437
\(327\) 15619.2i 2.64142i
\(328\) 478.154i 0.0804928i
\(329\) −6401.70 −1.07276
\(330\) 2990.54 7900.58i 0.498860 1.31792i
\(331\) 6033.58 1.00192 0.500960 0.865471i \(-0.332980\pi\)
0.500960 + 0.865471i \(0.332980\pi\)
\(332\) 1930.24i 0.319083i
\(333\) 4372.99i 0.719635i
\(334\) 8607.51 1.41013
\(335\) 10895.7 + 4124.25i 1.77700 + 0.672632i
\(336\) −40609.5 −6.59355
\(337\) 4423.63i 0.715046i −0.933904 0.357523i \(-0.883621\pi\)
0.933904 0.357523i \(-0.116379\pi\)
\(338\) 18245.8i 2.93621i
\(339\) 13262.7 2.12488
\(340\) 14898.3 + 5639.34i 2.37640 + 0.899519i
\(341\) 242.233 0.0384682
\(342\) 16051.0i 2.53783i
\(343\) 6914.72i 1.08851i
\(344\) −16156.7 −2.53229
\(345\) −5795.88 + 15311.9i −0.904463 + 2.38946i
\(346\) −3500.92 −0.543961
\(347\) 5121.98i 0.792398i −0.918165 0.396199i \(-0.870329\pi\)
0.918165 0.396199i \(-0.129671\pi\)
\(348\) 21843.4i 3.36474i
\(349\) −9409.22 −1.44316 −0.721582 0.692329i \(-0.756584\pi\)
−0.721582 + 0.692329i \(0.756584\pi\)
\(350\) −7843.05 6930.52i −1.19780 1.05843i
\(351\) 22702.6 3.45235
\(352\) 13673.3i 2.07042i
\(353\) 12038.5i 1.81514i 0.419900 + 0.907570i \(0.362065\pi\)
−0.419900 + 0.907570i \(0.637935\pi\)
\(354\) 11664.9 1.75136
\(355\) 1732.06 4575.85i 0.258952 0.684115i
\(356\) −16901.9 −2.51628
\(357\) 8556.12i 1.26845i
\(358\) 2933.65i 0.433095i
\(359\) 6561.58 0.964643 0.482321 0.875994i \(-0.339794\pi\)
0.482321 + 0.875994i \(0.339794\pi\)
\(360\) 53463.2 + 20237.0i 7.82711 + 2.96273i
\(361\) −4565.37 −0.665602
\(362\) 662.295i 0.0961587i
\(363\) 10452.2i 1.51129i
\(364\) 25738.0 3.70614
\(365\) 958.819 + 362.934i 0.137498 + 0.0520461i
\(366\) 29995.2 4.28381
\(367\) 11976.8i 1.70350i 0.523945 + 0.851752i \(0.324460\pi\)
−0.523945 + 0.851752i \(0.675540\pi\)
\(368\) 45666.5i 6.46883i
\(369\) −336.077 −0.0474131
\(370\) −1614.14 + 4264.32i −0.226797 + 0.599166i
\(371\) −6354.62 −0.889261
\(372\) 3624.19i 0.505122i
\(373\) 6115.44i 0.848915i −0.905448 0.424458i \(-0.860465\pi\)
0.905448 0.424458i \(-0.139535\pi\)
\(374\) −4964.51 −0.686388
\(375\) 6078.07 + 11527.2i 0.836987 + 1.58737i
\(376\) −36456.6 −5.00028
\(377\) 7443.52i 1.01687i
\(378\) 25724.3i 3.50030i
\(379\) −2016.81 −0.273342 −0.136671 0.990617i \(-0.543640\pi\)
−0.136671 + 0.990617i \(0.543640\pi\)
\(380\) 4408.23 11645.9i 0.595099 1.57216i
\(381\) −407.350 −0.0547747
\(382\) 5739.65i 0.768760i
\(383\) 2376.30i 0.317033i −0.987356 0.158516i \(-0.949329\pi\)
0.987356 0.158516i \(-0.0506710\pi\)
\(384\) −83301.2 −11.0702
\(385\) 2269.79 + 859.164i 0.300465 + 0.113733i
\(386\) 11209.5 1.47811
\(387\) 11355.9i 1.49161i
\(388\) 20636.9i 2.70021i
\(389\) 3720.23 0.484893 0.242446 0.970165i \(-0.422050\pi\)
0.242446 + 0.970165i \(0.422050\pi\)
\(390\) −40280.4 15247.0i −5.22994 1.97965i
\(391\) 9621.58 1.24446
\(392\) 10123.4i 1.30436i
\(393\) 15250.2i 1.95743i
\(394\) −2489.15 −0.318278
\(395\) 96.1980 254.141i 0.0122538 0.0323728i
\(396\) −20206.5 −2.56418
\(397\) 2374.06i 0.300128i −0.988676 0.150064i \(-0.952052\pi\)
0.988676 0.150064i \(-0.0479480\pi\)
\(398\) 2180.88i 0.274667i
\(399\) −6688.25 −0.839177
\(400\) −27238.0 24068.9i −3.40475 3.00861i
\(401\) −15666.2 −1.95095 −0.975477 0.220100i \(-0.929362\pi\)
−0.975477 + 0.220100i \(0.929362\pi\)
\(402\) 54321.3i 6.73955i
\(403\) 1235.01i 0.152655i
\(404\) 35025.8 4.31337
\(405\) −4932.19 + 13030.1i −0.605142 + 1.59870i
\(406\) −8434.23 −1.03100
\(407\) 1057.28i 0.128765i
\(408\) 48725.7i 5.91246i
\(409\) −6198.90 −0.749428 −0.374714 0.927140i \(-0.622259\pi\)
−0.374714 + 0.927140i \(0.622259\pi\)
\(410\) 327.725 + 124.051i 0.0394761 + 0.0149426i
\(411\) −11678.2 −1.40157
\(412\) 34229.4i 4.09311i
\(413\) 3351.24i 0.399283i
\(414\) 52633.2 6.24826
\(415\) −867.875 328.509i −0.102656 0.0388576i
\(416\) 69712.1 8.21614
\(417\) 9376.79i 1.10116i
\(418\) 3880.72i 0.454097i
\(419\) 4579.20 0.533910 0.266955 0.963709i \(-0.413982\pi\)
0.266955 + 0.963709i \(0.413982\pi\)
\(420\) −12854.4 + 33959.6i −1.49341 + 3.94538i
\(421\) 8991.46 1.04090 0.520448 0.853894i \(-0.325765\pi\)
0.520448 + 0.853894i \(0.325765\pi\)
\(422\) 10904.4i 1.25786i
\(423\) 25624.0i 2.94535i
\(424\) −36188.5 −4.14498
\(425\) 5071.13 5738.83i 0.578791 0.654998i
\(426\) −22813.3 −2.59462
\(427\) 8617.44i 0.976645i
\(428\) 17336.3i 1.95790i
\(429\) 9986.98 1.12395
\(430\) −4191.64 + 11073.7i −0.470091 + 1.24191i
\(431\) −10252.5 −1.14582 −0.572909 0.819619i \(-0.694185\pi\)
−0.572909 + 0.819619i \(0.694185\pi\)
\(432\) 89337.4i 9.94964i
\(433\) 16744.8i 1.85844i 0.369527 + 0.929220i \(0.379520\pi\)
−0.369527 + 0.929220i \(0.620480\pi\)
\(434\) −1399.38 −0.154775
\(435\) 9821.25 + 3717.56i 1.08251 + 0.409754i
\(436\) −38954.9 −4.27891
\(437\) 7521.12i 0.823304i
\(438\) 4780.28i 0.521485i
\(439\) 2067.29 0.224752 0.112376 0.993666i \(-0.464154\pi\)
0.112376 + 0.993666i \(0.464154\pi\)
\(440\) 12926.1 + 4892.80i 1.40051 + 0.530125i
\(441\) −7115.38 −0.768316
\(442\) 25311.1i 2.72382i
\(443\) 11792.3i 1.26472i −0.774674 0.632360i \(-0.782086\pi\)
0.774674 0.632360i \(-0.217914\pi\)
\(444\) 15818.6 1.69080
\(445\) −2876.55 + 7599.43i −0.306430 + 0.809545i
\(446\) 18524.1 1.96669
\(447\) 19012.2i 2.01173i
\(448\) 44149.7i 4.65598i
\(449\) 6250.42 0.656961 0.328481 0.944511i \(-0.393463\pi\)
0.328481 + 0.944511i \(0.393463\pi\)
\(450\) 27740.7 31393.3i 2.90602 3.28865i
\(451\) −81.2550 −0.00848370
\(452\) 33077.8i 3.44214i
\(453\) 15942.5i 1.65352i
\(454\) −1790.38 −0.185081
\(455\) 4380.38 11572.3i 0.451330 1.19235i
\(456\) −38088.5 −3.91153
\(457\) 11685.9i 1.19616i −0.801438 0.598078i \(-0.795931\pi\)
0.801438 0.598078i \(-0.204069\pi\)
\(458\) 3666.26i 0.374046i
\(459\) 18822.7 1.91409
\(460\) −38188.4 14455.2i −3.87075 1.46516i
\(461\) 12521.7 1.26506 0.632532 0.774534i \(-0.282016\pi\)
0.632532 + 0.774534i \(0.282016\pi\)
\(462\) 11316.2i 1.13956i
\(463\) 8658.25i 0.869078i 0.900653 + 0.434539i \(0.143089\pi\)
−0.900653 + 0.434539i \(0.856911\pi\)
\(464\) −29291.1 −2.93061
\(465\) 1629.51 + 616.805i 0.162509 + 0.0615133i
\(466\) −7626.29 −0.758114
\(467\) 8094.52i 0.802077i 0.916061 + 0.401038i \(0.131351\pi\)
−0.916061 + 0.401038i \(0.868649\pi\)
\(468\) 103021.i 10.1755i
\(469\) 15606.2 1.53652
\(470\) −9458.21 + 24987.2i −0.928244 + 2.45229i
\(471\) 17399.7 1.70220
\(472\) 19084.8i 1.86112i
\(473\) 2745.58i 0.266896i
\(474\) −1267.04 −0.122779
\(475\) −4486.00 3964.06i −0.433330 0.382913i
\(476\) 21339.3 2.05480
\(477\) 25435.6i 2.44154i
\(478\) 38643.5i 3.69773i
\(479\) −7469.82 −0.712536 −0.356268 0.934384i \(-0.615951\pi\)
−0.356268 + 0.934384i \(0.615951\pi\)
\(480\) −34816.7 + 91980.6i −3.31074 + 8.74650i
\(481\) −5390.45 −0.510984
\(482\) 11303.3i 1.06815i
\(483\) 21931.6i 2.06610i
\(484\) 26068.1 2.44817
\(485\) −9278.78 3512.22i −0.868717 0.328828i
\(486\) 18587.7 1.73488
\(487\) 1877.21i 0.174670i 0.996179 + 0.0873350i \(0.0278351\pi\)
−0.996179 + 0.0873350i \(0.972165\pi\)
\(488\) 49074.9i 4.55229i
\(489\) −32243.4 −2.98180
\(490\) 6938.56 + 2626.40i 0.639698 + 0.242140i
\(491\) −11626.0 −1.06858 −0.534290 0.845301i \(-0.679421\pi\)
−0.534290 + 0.845301i \(0.679421\pi\)
\(492\) 1215.70i 0.111398i
\(493\) 6171.41i 0.563786i
\(494\) 19785.5 1.80201
\(495\) −3438.97 + 9085.25i −0.312263 + 0.824953i
\(496\) −4859.89 −0.439951
\(497\) 6554.12i 0.591534i
\(498\) 4326.86i 0.389340i
\(499\) 10254.8 0.919979 0.459989 0.887924i \(-0.347853\pi\)
0.459989 + 0.887924i \(0.347853\pi\)
\(500\) −28749.4 + 15158.9i −2.57142 + 1.35586i
\(501\) −14356.3 −1.28022
\(502\) 6668.22i 0.592863i
\(503\) 12156.4i 1.07759i 0.842437 + 0.538794i \(0.181120\pi\)
−0.842437 + 0.538794i \(0.818880\pi\)
\(504\) 76576.9 6.76787
\(505\) 5961.09 15748.3i 0.525278 1.38771i
\(506\) 12725.4 1.11801
\(507\) 30431.6i 2.66571i
\(508\) 1015.95i 0.0887310i
\(509\) −8695.86 −0.757244 −0.378622 0.925551i \(-0.623602\pi\)
−0.378622 + 0.925551i \(0.623602\pi\)
\(510\) −33396.4 12641.3i −2.89965 1.09758i
\(511\) 1373.34 0.118891
\(512\) 75911.9i 6.55247i
\(513\) 14713.6i 1.26631i
\(514\) −612.661 −0.0525745
\(515\) 15390.2 + 5825.54i 1.31684 + 0.498455i
\(516\) 41078.1 3.50458
\(517\) 6195.24i 0.527015i
\(518\) 6107.91i 0.518081i
\(519\) 5839.09 0.493849
\(520\) 24945.5 65902.5i 2.10372 5.55772i
\(521\) −2862.77 −0.240730 −0.120365 0.992730i \(-0.538406\pi\)
−0.120365 + 0.992730i \(0.538406\pi\)
\(522\) 33759.6i 2.83069i
\(523\) 10391.1i 0.868778i −0.900725 0.434389i \(-0.856964\pi\)
0.900725 0.434389i \(-0.143036\pi\)
\(524\) −38034.6 −3.17090
\(525\) 13081.2 + 11559.2i 1.08745 + 0.960928i
\(526\) −28004.1 −2.32136
\(527\) 1023.94i 0.0846368i
\(528\) 39299.9i 3.23922i
\(529\) −12495.7 −1.02702
\(530\) −9388.67 + 24803.5i −0.769467 + 2.03282i
\(531\) −13414.0 −1.09627
\(532\) 16680.8i 1.35940i
\(533\) 414.271i 0.0336662i
\(534\) 37887.6 3.07033
\(535\) −7794.74 2950.48i −0.629899 0.238431i
\(536\) 88874.6 7.16194
\(537\) 4892.96i 0.393197i
\(538\) 38878.4i 3.11555i
\(539\) −1720.32 −0.137476
\(540\) −74708.0 28278.6i −5.95356 2.25355i
\(541\) 13489.4 1.07200 0.536001 0.844217i \(-0.319934\pi\)
0.536001 + 0.844217i \(0.319934\pi\)
\(542\) 14964.2i 1.18592i
\(543\) 1104.63i 0.0873002i
\(544\) 57798.2 4.55529
\(545\) −6629.79 + 17515.0i −0.521081 + 1.37662i
\(546\) −57694.8 −4.52218
\(547\) 16705.8i 1.30583i 0.757432 + 0.652914i \(0.226454\pi\)
−0.757432 + 0.652914i \(0.773546\pi\)
\(548\) 29125.9i 2.27043i
\(549\) −34492.9 −2.68146
\(550\) 6707.02 7590.11i 0.519979 0.588443i
\(551\) −4824.14 −0.372986
\(552\) 124897.i 9.63039i
\(553\) 364.014i 0.0279918i
\(554\) −17529.7 −1.34435
\(555\) 2692.18 7112.36i 0.205904 0.543969i
\(556\) −23386.1 −1.78380
\(557\) 20236.0i 1.53937i −0.638425 0.769684i \(-0.720414\pi\)
0.638425 0.769684i \(-0.279586\pi\)
\(558\) 5601.29i 0.424949i
\(559\) −13998.1 −1.05913
\(560\) −45538.4 17237.3i −3.43634 1.30073i
\(561\) 8280.19 0.623155
\(562\) 23254.1i 1.74540i
\(563\) 14552.9i 1.08940i −0.838631 0.544700i \(-0.816643\pi\)
0.838631 0.544700i \(-0.183357\pi\)
\(564\) 92690.5 6.92017
\(565\) 14872.5 + 5629.55i 1.10741 + 0.419180i
\(566\) 12249.5 0.909692
\(567\) 18663.4i 1.38235i
\(568\) 37324.6i 2.75723i
\(569\) −21936.3 −1.61620 −0.808100 0.589045i \(-0.799504\pi\)
−0.808100 + 0.589045i \(0.799504\pi\)
\(570\) −9881.59 + 26105.7i −0.726130 + 1.91833i
\(571\) −16923.7 −1.24034 −0.620169 0.784468i \(-0.712936\pi\)
−0.620169 + 0.784468i \(0.712936\pi\)
\(572\) 24907.9i 1.82072i
\(573\) 9573.02i 0.697938i
\(574\) 469.410 0.0341338
\(575\) −12998.7 + 14710.2i −0.942752 + 1.06688i
\(576\) 176718. 12.7834
\(577\) 4444.56i 0.320675i −0.987062 0.160338i \(-0.948742\pi\)
0.987062 0.160338i \(-0.0512583\pi\)
\(578\) 6481.65i 0.466438i
\(579\) −18696.1 −1.34194
\(580\) −9271.73 + 24494.6i −0.663772 + 1.75359i
\(581\) −1243.08 −0.0887637
\(582\) 46260.2i 3.29475i
\(583\) 6149.69i 0.436868i
\(584\) 7820.97 0.554168
\(585\) 46320.4 + 17533.3i 3.27370 + 1.23917i
\(586\) −34422.5 −2.42658
\(587\) 11466.1i 0.806227i −0.915150 0.403113i \(-0.867928\pi\)
0.915150 0.403113i \(-0.132072\pi\)
\(588\) 25738.7i 1.80518i
\(589\) −800.407 −0.0559936
\(590\) 13080.6 + 4951.31i 0.912748 + 0.345495i
\(591\) 4151.59 0.288957
\(592\) 21212.0i 1.47265i
\(593\) 8509.90i 0.589308i −0.955604 0.294654i \(-0.904796\pi\)
0.955604 0.294654i \(-0.0952045\pi\)
\(594\) 24894.7 1.71960
\(595\) 3631.76 9594.59i 0.250232 0.661076i
\(596\) 47417.1 3.25886
\(597\) 3637.44i 0.249364i
\(598\) 64879.3i 4.43664i
\(599\) 13153.8 0.897245 0.448622 0.893721i \(-0.351915\pi\)
0.448622 + 0.893721i \(0.351915\pi\)
\(600\) 74495.4 + 65828.0i 5.06877 + 4.47903i
\(601\) −2039.26 −0.138408 −0.0692040 0.997603i \(-0.522046\pi\)
−0.0692040 + 0.997603i \(0.522046\pi\)
\(602\) 15861.2i 1.07384i
\(603\) 62466.7i 4.21864i
\(604\) −39761.2 −2.67858
\(605\) 4436.57 11720.8i 0.298136 0.787632i
\(606\) −78514.7 −5.26311
\(607\) 4875.90i 0.326041i 0.986623 + 0.163020i \(0.0521236\pi\)
−0.986623 + 0.163020i \(0.947876\pi\)
\(608\) 45180.4i 3.01366i
\(609\) 14067.2 0.936016
\(610\) 33635.8 + 12731.9i 2.23258 + 0.845080i
\(611\) −31585.9 −2.09137
\(612\) 85414.6i 5.64163i
\(613\) 13804.3i 0.909545i 0.890608 + 0.454772i \(0.150279\pi\)
−0.890608 + 0.454772i \(0.849721\pi\)
\(614\) 30916.8 2.03209
\(615\) −546.605 206.902i −0.0358394 0.0135660i
\(616\) 18514.4 1.21098
\(617\) 11865.1i 0.774181i −0.922042 0.387091i \(-0.873480\pi\)
0.922042 0.387091i \(-0.126520\pi\)
\(618\) 76729.4i 4.99435i
\(619\) 2097.46 0.136194 0.0680971 0.997679i \(-0.478307\pi\)
0.0680971 + 0.997679i \(0.478307\pi\)
\(620\) −1538.34 + 4064.06i −0.0996469 + 0.263253i
\(621\) −48247.7 −3.11773
\(622\) 558.887i 0.0360278i
\(623\) 10884.9i 0.699989i
\(624\) −200367. −12.8543
\(625\) 1922.89 + 15506.2i 0.123065 + 0.992399i
\(626\) 167.025 0.0106640
\(627\) 6472.56i 0.412263i
\(628\) 43395.6i 2.75744i
\(629\) −4469.22 −0.283306
\(630\) 19866.9 52485.5i 1.25638 3.31916i
\(631\) 6324.92 0.399035 0.199517 0.979894i \(-0.436063\pi\)
0.199517 + 0.979894i \(0.436063\pi\)
\(632\) 2073.00i 0.130474i
\(633\) 18187.2i 1.14198i
\(634\) 61201.1 3.83377
\(635\) −456.791 172.905i −0.0285468 0.0108056i
\(636\) 92009.0 5.73647
\(637\) 8770.91i 0.545551i
\(638\) 8162.23i 0.506498i
\(639\) 26234.1 1.62411
\(640\) −93411.6 35358.3i −5.76940 2.18385i
\(641\) −6497.63 −0.400376 −0.200188 0.979758i \(-0.564155\pi\)
−0.200188 + 0.979758i \(0.564155\pi\)
\(642\) 38861.4i 2.38900i
\(643\) 3718.06i 0.228034i −0.993479 0.114017i \(-0.963628\pi\)
0.993479 0.114017i \(-0.0363718\pi\)
\(644\) −54698.4 −3.34692
\(645\) 6991.14 18469.6i 0.426784 1.12750i
\(646\) 16404.2 0.999091
\(647\) 2281.41i 0.138627i 0.997595 + 0.0693135i \(0.0220809\pi\)
−0.997595 + 0.0693135i \(0.977919\pi\)
\(648\) 106285.i 6.44333i
\(649\) −3243.17 −0.196156
\(650\) −38697.5 34195.1i −2.33514 2.06345i
\(651\) 2334.00 0.140517
\(652\) 80416.4i 4.83029i
\(653\) 1299.82i 0.0778955i 0.999241 + 0.0389477i \(0.0124006\pi\)
−0.999241 + 0.0389477i \(0.987599\pi\)
\(654\) 87322.3 5.22106
\(655\) −6473.16 + 17101.1i −0.386148 + 1.02015i
\(656\) 1630.21 0.0970257
\(657\) 5497.07i 0.326425i
\(658\) 35789.9i 2.12042i
\(659\) −22697.8 −1.34170 −0.670849 0.741594i \(-0.734070\pi\)
−0.670849 + 0.741594i \(0.734070\pi\)
\(660\) −32864.4 12439.9i −1.93825 0.733670i
\(661\) −12366.6 −0.727691 −0.363846 0.931459i \(-0.618536\pi\)
−0.363846 + 0.931459i \(0.618536\pi\)
\(662\) 33731.9i 1.98040i
\(663\) 42215.8i 2.47289i
\(664\) −7079.15 −0.413741
\(665\) −7500.02 2838.92i −0.437351 0.165547i
\(666\) −24448.1 −1.42244
\(667\) 15819.0i 0.918312i
\(668\) 35805.1i 2.07386i
\(669\) −30895.9 −1.78551
\(670\) 23057.4 60914.4i 1.32953 3.51243i
\(671\) −8339.53 −0.479798
\(672\) 131746.i 7.56284i
\(673\) 6518.10i 0.373335i 0.982423 + 0.186667i \(0.0597686\pi\)
−0.982423 + 0.186667i \(0.940231\pi\)
\(674\) −24731.2 −1.41337
\(675\) −25429.3 + 28777.5i −1.45004 + 1.64096i
\(676\) 75897.7 4.31826
\(677\) 6231.91i 0.353784i 0.984230 + 0.176892i \(0.0566043\pi\)
−0.984230 + 0.176892i \(0.943396\pi\)
\(678\) 74147.9i 4.20005i
\(679\) −13290.3 −0.751154
\(680\) 20682.3 54639.6i 1.16637 3.08137i
\(681\) 2986.13 0.168031
\(682\) 1354.25i 0.0760367i
\(683\) 3235.02i 0.181236i −0.995886 0.0906182i \(-0.971116\pi\)
0.995886 0.0906182i \(-0.0288843\pi\)
\(684\) 66767.9 3.73236
\(685\) −13095.6 4956.97i −0.730449 0.276491i
\(686\) 38658.1 2.15156
\(687\) 6114.87i 0.339588i
\(688\) 55084.1i 3.05241i
\(689\) −31353.7 −1.73364
\(690\) 85604.1 + 32403.0i 4.72303 + 1.78777i
\(691\) 18916.8 1.04143 0.520714 0.853731i \(-0.325666\pi\)
0.520714 + 0.853731i \(0.325666\pi\)
\(692\) 14562.9i 0.799999i
\(693\) 13013.1i 0.713313i
\(694\) −28635.4 −1.56626
\(695\) −3980.10 + 10514.9i −0.217229 + 0.573887i
\(696\) 80110.7 4.36291
\(697\) 343.472i 0.0186656i
\(698\) 52604.1i 2.85257i
\(699\) 12719.7 0.688273
\(700\) −28829.2 + 32625.1i −1.55663 + 1.76159i
\(701\) 11149.4 0.600725 0.300363 0.953825i \(-0.402892\pi\)
0.300363 + 0.953825i \(0.402892\pi\)
\(702\) 126923.i 6.82395i
\(703\) 3493.55i 0.187428i
\(704\) 42725.9 2.28735
\(705\) 15775.1 41675.6i 0.842731 2.22637i
\(706\) 67303.6 3.58782
\(707\) 22556.8i 1.19991i
\(708\) 48522.8i 2.57571i
\(709\) −16230.7 −0.859740 −0.429870 0.902891i \(-0.641441\pi\)
−0.429870 + 0.902891i \(0.641441\pi\)
\(710\) −25582.2 9683.41i −1.35223 0.511848i
\(711\) 1457.03 0.0768538
\(712\) 61987.6i 3.26276i
\(713\) 2624.64i 0.137859i
\(714\) −47834.7 −2.50724
\(715\) 11199.1 + 4239.11i 0.585767 + 0.221725i
\(716\) 12203.2 0.636950
\(717\) 64452.6i 3.35708i
\(718\) 36683.8i 1.90672i
\(719\) −32203.3 −1.67035 −0.835174 0.549986i \(-0.814633\pi\)
−0.835174 + 0.549986i \(0.814633\pi\)
\(720\) 68995.4 182276.i 3.57126 9.43476i
\(721\) 22043.9 1.13864
\(722\) 25523.6i 1.31564i
\(723\) 18852.5i 0.969752i
\(724\) 2754.98 0.141420
\(725\) 9435.30 + 8337.52i 0.483336 + 0.427101i
\(726\) −58434.9 −2.98722
\(727\) 3275.73i 0.167112i 0.996503 + 0.0835558i \(0.0266277\pi\)
−0.996503 + 0.0835558i \(0.973372\pi\)
\(728\) 94394.0i 4.80560i
\(729\) 2644.09 0.134334
\(730\) 2029.05 5360.47i 0.102875 0.271780i
\(731\) −11605.8 −0.587217
\(732\) 124772.i 6.30017i
\(733\) 1802.01i 0.0908032i −0.998969 0.0454016i \(-0.985543\pi\)
0.998969 0.0454016i \(-0.0144567\pi\)
\(734\) 66958.9 3.36716
\(735\) −11572.7 4380.50i −0.580767 0.219833i
\(736\) −148152. −7.41979
\(737\) 15102.9i 0.754847i
\(738\) 1878.90i 0.0937173i
\(739\) −4396.87 −0.218865 −0.109433 0.993994i \(-0.534903\pi\)
−0.109433 + 0.993994i \(0.534903\pi\)
\(740\) 17738.5 + 6714.41i 0.881189 + 0.333549i
\(741\) −32999.8 −1.63600
\(742\) 35526.8i 1.75772i
\(743\) 30706.4i 1.51616i −0.652159 0.758082i \(-0.726137\pi\)
0.652159 0.758082i \(-0.273863\pi\)
\(744\) 13291.7 0.654971
\(745\) 8069.97 21319.7i 0.396860 1.04845i
\(746\) −34189.5 −1.67797
\(747\) 4975.67i 0.243708i
\(748\) 20651.1i 1.00946i
\(749\) −11164.6 −0.544655
\(750\) 64445.2 33980.6i 3.13761 1.65440i
\(751\) 28809.6 1.39984 0.699918 0.714224i \(-0.253220\pi\)
0.699918 + 0.714224i \(0.253220\pi\)
\(752\) 124294.i 6.02732i
\(753\) 11121.8i 0.538246i
\(754\) −41614.4 −2.00996
\(755\) −6767.01 + 17877.5i −0.326194 + 0.861758i
\(756\) −107006. −5.14787
\(757\) 10295.6i 0.494320i −0.968975 0.247160i \(-0.920503\pi\)
0.968975 0.247160i \(-0.0794974\pi\)
\(758\) 11275.4i 0.540290i
\(759\) −21224.4 −1.01501
\(760\) −42711.4 16167.2i −2.03856 0.771639i
\(761\) −31242.6 −1.48823 −0.744116 0.668050i \(-0.767129\pi\)
−0.744116 + 0.668050i \(0.767129\pi\)
\(762\) 2277.37i 0.108268i
\(763\) 25087.2i 1.19032i
\(764\) 23875.5 1.13061
\(765\) 38404.2 + 14536.8i 1.81504 + 0.687032i
\(766\) −13285.2 −0.626650
\(767\) 16535.0i 0.778415i
\(768\) 245811.i 11.5494i
\(769\) 26662.3 1.25028 0.625141 0.780512i \(-0.285042\pi\)
0.625141 + 0.780512i \(0.285042\pi\)
\(770\) 4803.33 12689.7i 0.224805 0.593902i
\(771\) 1021.84 0.0477312
\(772\) 46628.9i 2.17385i
\(773\) 32789.3i 1.52568i 0.646588 + 0.762839i \(0.276195\pi\)
−0.646588 + 0.762839i \(0.723805\pi\)
\(774\) −63487.4 −2.94833
\(775\) 1565.48 + 1383.34i 0.0725594 + 0.0641173i
\(776\) −75685.9 −3.50124
\(777\) 10187.2i 0.470354i
\(778\) 20798.7i 0.958444i
\(779\) 268.489 0.0123487
\(780\) −63423.7 + 167556.i −2.91145 + 7.69164i
\(781\) 6342.75 0.290604
\(782\) 53791.3i 2.45981i
\(783\) 30946.7i 1.41244i
\(784\) 34514.5 1.57227
\(785\) 19511.6 + 7385.56i 0.887131 + 0.335799i
\(786\) 85259.2 3.86908
\(787\) 4972.86i 0.225239i −0.993638 0.112620i \(-0.964076\pi\)
0.993638 0.112620i \(-0.0359241\pi\)
\(788\) 10354.2i 0.468089i
\(789\) 46707.3 2.10751
\(790\) −1420.83 537.814i −0.0639883 0.0242210i
\(791\) 21302.2 0.957548
\(792\) 74107.3i 3.32486i
\(793\) 42518.4i 1.90400i
\(794\) −13272.7 −0.593236
\(795\) 15659.1 41369.2i 0.698581 1.84555i
\(796\) 9071.91 0.403951
\(797\) 23540.4i 1.04623i −0.852263 0.523114i \(-0.824770\pi\)
0.852263 0.523114i \(-0.175230\pi\)
\(798\) 37392.0i 1.65872i
\(799\) −26187.8 −1.15952
\(800\) −78084.8 + 88366.0i −3.45089 + 3.90526i
\(801\) −43568.8 −1.92188
\(802\) 87585.0i 3.85627i
\(803\) 1329.05i 0.0584076i
\(804\) −225963. −9.91181
\(805\) −9309.19 + 24593.5i −0.407585 + 1.07678i
\(806\) −6904.54 −0.301740
\(807\) 64844.3i 2.82853i
\(808\) 128457.i 5.59296i
\(809\) 10364.5 0.450430 0.225215 0.974309i \(-0.427692\pi\)
0.225215 + 0.974309i \(0.427692\pi\)
\(810\) 72847.5 + 27574.4i 3.16000 + 1.19613i
\(811\) 18812.0 0.814524 0.407262 0.913311i \(-0.366484\pi\)
0.407262 + 0.913311i \(0.366484\pi\)
\(812\) 35084.3i 1.51628i
\(813\) 24958.4i 1.07666i
\(814\) −5910.93 −0.254518
\(815\) −36156.9 13686.2i −1.55401 0.588228i
\(816\) −166124. −7.12685
\(817\) 9072.16i 0.388488i
\(818\) 34656.2i 1.48133i
\(819\) 66346.0 2.83067
\(820\) 516.021 1363.25i 0.0219759 0.0580572i
\(821\) −34162.8 −1.45224 −0.726121 0.687567i \(-0.758679\pi\)
−0.726121 + 0.687567i \(0.758679\pi\)
\(822\) 65289.3i 2.77035i
\(823\) 12257.0i 0.519139i 0.965724 + 0.259570i \(0.0835807\pi\)
−0.965724 + 0.259570i \(0.916419\pi\)
\(824\) 125536. 5.30736
\(825\) −11186.5 + 12659.4i −0.472076 + 0.534233i
\(826\) 18735.8 0.789226
\(827\) 1780.17i 0.0748519i 0.999299 + 0.0374259i \(0.0119158\pi\)
−0.999299 + 0.0374259i \(0.988084\pi\)
\(828\) 218941.i 9.18927i
\(829\) 39515.9 1.65554 0.827770 0.561067i \(-0.189609\pi\)
0.827770 + 0.561067i \(0.189609\pi\)
\(830\) −1836.60 + 4852.02i −0.0768063 + 0.202911i
\(831\) 29237.4 1.22050
\(832\) 217834.i 9.07698i
\(833\) 7271.95i 0.302471i
\(834\) 52422.8 2.17656
\(835\) −16098.7 6093.71i −0.667208 0.252553i
\(836\) 16142.8 0.667836
\(837\) 5134.58i 0.212039i
\(838\) 25600.9i 1.05533i
\(839\) 45133.6 1.85719 0.928596 0.371092i \(-0.121017\pi\)
0.928596 + 0.371092i \(0.121017\pi\)
\(840\) 124547. + 47143.7i 5.11580 + 1.93644i
\(841\) −14242.5 −0.583972
\(842\) 50268.5i 2.05744i
\(843\) 38785.0i 1.58461i
\(844\) −45359.5 −1.84993
\(845\) 12917.1 34125.2i 0.525873 1.38928i
\(846\) −143256. −5.82180
\(847\) 16788.0i 0.681042i
\(848\) 123380.i 4.99634i
\(849\) −20430.7 −0.825888
\(850\) −32084.1 28351.1i −1.29468 1.14404i
\(851\) 11455.8 0.461457
\(852\) 94897.5i 3.81589i
\(853\) 16109.2i 0.646623i −0.946293 0.323311i \(-0.895204\pi\)
0.946293 0.323311i \(-0.104796\pi\)
\(854\) 48177.5 1.93044
\(855\) 11363.3 30020.2i 0.454523 1.20078i
\(856\) −63580.8 −2.53872
\(857\) 42833.2i 1.70730i −0.520849 0.853649i \(-0.674385\pi\)
0.520849 0.853649i \(-0.325615\pi\)
\(858\) 55834.2i 2.22162i
\(859\) 25795.8 1.02461 0.512305 0.858803i \(-0.328792\pi\)
0.512305 + 0.858803i \(0.328792\pi\)
\(860\) 46063.8 + 17436.2i 1.82647 + 0.691359i
\(861\) −782.917 −0.0309893
\(862\) 57318.9i 2.26484i
\(863\) 5062.08i 0.199670i 0.995004 + 0.0998351i \(0.0318315\pi\)
−0.995004 + 0.0998351i \(0.968168\pi\)
\(864\) −289830. −11.4123
\(865\) 6547.79 + 2478.48i 0.257378 + 0.0974230i
\(866\) 93615.2 3.67341
\(867\) 10810.6i 0.423468i
\(868\) 5821.08i 0.227627i
\(869\) 352.275 0.0137515
\(870\) 20783.7 54907.6i 0.809924 2.13970i
\(871\) 77000.7 2.99549
\(872\) 142867.i 5.54828i
\(873\) 53196.8i 2.06236i
\(874\) −42048.3 −1.62735
\(875\) 9762.43 + 18514.7i 0.377178 + 0.715328i
\(876\) −19884.7 −0.766944
\(877\) 4371.78i 0.168329i −0.996452 0.0841645i \(-0.973178\pi\)
0.996452 0.0841645i \(-0.0268221\pi\)
\(878\) 11557.6i 0.444248i
\(879\) 57412.4 2.20304
\(880\) 16681.4 44069.8i 0.639011 1.68817i
\(881\) 22159.0 0.847394 0.423697 0.905804i \(-0.360732\pi\)
0.423697 + 0.905804i \(0.360732\pi\)
\(882\) 39779.9i 1.51866i
\(883\) 21446.6i 0.817366i −0.912676 0.408683i \(-0.865988\pi\)
0.912676 0.408683i \(-0.134012\pi\)
\(884\) 105288. 4.00590
\(885\) −21816.9 8258.16i −0.828663 0.313667i
\(886\) −65927.4 −2.49986
\(887\) 24427.4i 0.924680i −0.886703 0.462340i \(-0.847010\pi\)
0.886703 0.462340i \(-0.152990\pi\)
\(888\) 58014.6i 2.19239i
\(889\) −654.275 −0.0246835
\(890\) 42486.1 + 16081.9i 1.60015 + 0.605693i
\(891\) −18061.5 −0.679107
\(892\) 77055.6i 2.89239i
\(893\) 20470.8i 0.767111i
\(894\) −106291. −3.97641
\(895\) 2076.88 5486.82i 0.0775671 0.204921i
\(896\) −133796. −4.98863
\(897\) 108211.i 4.02792i
\(898\) 34944.2i 1.29856i
\(899\) 1683.48 0.0624551
\(900\) −130588. 115394.i −4.83659 4.27387i
\(901\) −25995.3 −0.961186
\(902\) 454.272i 0.0167690i
\(903\) 26454.5i 0.974917i
\(904\) 121313. 4.46328
\(905\) 468.873 1238.70i 0.0172220 0.0454979i
\(906\) 89129.6 3.26836
\(907\) 20142.9i 0.737413i −0.929546 0.368706i \(-0.879801\pi\)
0.929546 0.368706i \(-0.120199\pi\)
\(908\) 7447.53i 0.272197i
\(909\) 90287.9 3.29445
\(910\) −64697.3 24489.3i −2.35681 0.892103i
\(911\) 10580.0 0.384775 0.192388 0.981319i \(-0.438377\pi\)
0.192388 + 0.981319i \(0.438377\pi\)
\(912\) 129858.i 4.71494i
\(913\) 1202.99i 0.0436071i
\(914\) −65332.3 −2.36433
\(915\) −56100.3 21235.2i −2.02691 0.767228i
\(916\) 15250.7 0.550107
\(917\) 24494.5i 0.882092i
\(918\) 105232.i 3.78341i
\(919\) 15173.3 0.544636 0.272318 0.962207i \(-0.412210\pi\)
0.272318 + 0.962207i \(0.412210\pi\)
\(920\) −53014.3 + 140056.i −1.89982 + 5.01904i
\(921\) −51565.4 −1.84488
\(922\) 70005.1i 2.50054i
\(923\) 32338.0i 1.15321i
\(924\) −47072.6 −1.67595
\(925\) 6037.87 6832.86i 0.214621 0.242879i
\(926\) 48405.6 1.71783
\(927\) 88234.8i 3.12622i
\(928\) 95026.8i 3.36143i
\(929\) 17986.8 0.635230 0.317615 0.948220i \(-0.397118\pi\)
0.317615 + 0.948220i \(0.397118\pi\)
\(930\) 3448.37 9110.10i 0.121588 0.321217i
\(931\) 5684.43 0.200107
\(932\) 31723.4i 1.11495i
\(933\) 932.153i 0.0327088i
\(934\) 45254.0 1.58539
\(935\) 9285.17 + 3514.64i 0.324767 + 0.122932i
\(936\) 377830. 13.1942
\(937\) 270.976i 0.00944760i −0.999989 0.00472380i \(-0.998496\pi\)
0.999989 0.00472380i \(-0.00150364\pi\)
\(938\) 87249.4i 3.03709i
\(939\) −278.576 −0.00968157
\(940\) 103941. + 39343.8i 3.60656 + 1.36516i
\(941\) −16688.5 −0.578138 −0.289069 0.957308i \(-0.593346\pi\)
−0.289069 + 0.957308i \(0.593346\pi\)
\(942\) 97276.6i 3.36459i
\(943\) 880.411i 0.0304031i
\(944\) 65067.1 2.24338
\(945\) −18211.6 + 48112.3i −0.626902 + 1.65618i
\(946\) −15349.7 −0.527549
\(947\) 42192.2i 1.44780i −0.689907 0.723898i \(-0.742349\pi\)
0.689907 0.723898i \(-0.257651\pi\)
\(948\) 5270.58i 0.180570i
\(949\) 6776.07 0.231781
\(950\) −22161.9 + 25079.9i −0.756870 + 0.856524i
\(951\) −102076. −3.48059
\(952\) 78261.9i 2.66437i
\(953\) 23078.1i 0.784443i 0.919871 + 0.392221i \(0.128293\pi\)
−0.919871 + 0.392221i \(0.871707\pi\)
\(954\) −142203. −4.82597
\(955\) 4063.40 10734.9i 0.137684 0.363742i
\(956\) 160747. 5.43822
\(957\) 13613.6i 0.459838i
\(958\) 41761.5i 1.40841i
\(959\) −18757.2 −0.631598
\(960\) 287418. + 108794.i 9.66291 + 3.65762i
\(961\) −29511.7 −0.990624
\(962\) 30136.4i 1.01002i
\(963\) 44688.5i 1.49540i
\(964\) 47018.8 1.57093
\(965\) −20965.3 7935.82i −0.699375 0.264729i
\(966\) 122613. 4.08387
\(967\) 7258.01i 0.241367i 0.992691 + 0.120683i \(0.0385086\pi\)
−0.992691 + 0.120683i \(0.961491\pi\)
\(968\) 95604.9i 3.17444i
\(969\) −27360.1 −0.907051
\(970\) −19635.8 + 51874.8i −0.649965 + 1.71711i
\(971\) −27971.8 −0.924468 −0.462234 0.886758i \(-0.652952\pi\)
−0.462234 + 0.886758i \(0.652952\pi\)
\(972\) 77320.0i 2.55148i
\(973\) 15060.7i 0.496223i
\(974\) 10494.9 0.345254
\(975\) 64542.6 + 57033.2i 2.12002 + 1.87336i
\(976\) 167315. 5.48731
\(977\) 44187.3i 1.44696i −0.690347 0.723478i \(-0.742542\pi\)
0.690347 0.723478i \(-0.257458\pi\)
\(978\) 180263.i 5.89385i
\(979\) −10533.8 −0.343885
\(980\) 10925.1 28862.6i 0.356113 0.940800i
\(981\) −100416. −3.26813
\(982\) 64997.3i 2.11216i
\(983\) 18022.9i 0.584784i −0.956299 0.292392i \(-0.905549\pi\)
0.956299 0.292392i \(-0.0944512\pi\)
\(984\) −4458.59 −0.144446
\(985\) 4655.48 + 1762.20i 0.150595 + 0.0570034i
\(986\) −34502.5 −1.11438
\(987\) 59693.1i 1.92508i
\(988\) 82302.8i 2.65020i
\(989\) 29748.8 0.956477
\(990\) 50792.9 + 19226.2i 1.63061 + 0.617221i
\(991\) −23876.6 −0.765353 −0.382677 0.923882i \(-0.624998\pi\)
−0.382677 + 0.923882i \(0.624998\pi\)
\(992\) 15766.6i 0.504626i
\(993\) 56260.6i 1.79796i
\(994\) −36642.1 −1.16923
\(995\) 1543.96 4078.92i 0.0491928 0.129960i
\(996\) 17998.7 0.572600
\(997\) 14998.8i 0.476446i −0.971210 0.238223i \(-0.923435\pi\)
0.971210 0.238223i \(-0.0765649\pi\)
\(998\) 57331.7i 1.81844i
\(999\) 22411.0 0.709762
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 415.4.b.a.84.1 124
5.2 odd 4 2075.4.a.n.1.62 62
5.3 odd 4 2075.4.a.m.1.1 62
5.4 even 2 inner 415.4.b.a.84.124 yes 124
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
415.4.b.a.84.1 124 1.1 even 1 trivial
415.4.b.a.84.124 yes 124 5.4 even 2 inner
2075.4.a.m.1.1 62 5.3 odd 4
2075.4.a.n.1.62 62 5.2 odd 4