Properties

Label 415.4.a.c.1.8
Level $415$
Weight $4$
Character 415.1
Self dual yes
Analytic conductor $24.486$
Analytic rank $1$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [415,4,Mod(1,415)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("415.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(415, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 415 = 5 \cdot 83 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 415.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.4857926524\)
Analytic rank: \(1\)
Dimension: \(21\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Character \(\chi\) \(=\) 415.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.52351 q^{2} +2.27996 q^{3} -5.67892 q^{4} -5.00000 q^{5} -3.47354 q^{6} +9.53696 q^{7} +20.8400 q^{8} -21.8018 q^{9} +7.61755 q^{10} +58.3417 q^{11} -12.9477 q^{12} -68.7822 q^{13} -14.5297 q^{14} -11.3998 q^{15} +13.6814 q^{16} +87.2391 q^{17} +33.2153 q^{18} -122.038 q^{19} +28.3946 q^{20} +21.7439 q^{21} -88.8842 q^{22} +181.049 q^{23} +47.5142 q^{24} +25.0000 q^{25} +104.790 q^{26} -111.266 q^{27} -54.1596 q^{28} +39.0467 q^{29} +17.3677 q^{30} -159.515 q^{31} -187.564 q^{32} +133.016 q^{33} -132.910 q^{34} -47.6848 q^{35} +123.811 q^{36} -174.925 q^{37} +185.926 q^{38} -156.820 q^{39} -104.200 q^{40} -232.187 q^{41} -33.1270 q^{42} -268.245 q^{43} -331.318 q^{44} +109.009 q^{45} -275.830 q^{46} +373.579 q^{47} +31.1930 q^{48} -252.046 q^{49} -38.0878 q^{50} +198.901 q^{51} +390.608 q^{52} -532.530 q^{53} +169.515 q^{54} -291.709 q^{55} +198.750 q^{56} -278.241 q^{57} -59.4880 q^{58} -492.537 q^{59} +64.7384 q^{60} +324.629 q^{61} +243.024 q^{62} -207.923 q^{63} +176.304 q^{64} +343.911 q^{65} -202.652 q^{66} +583.030 q^{67} -495.424 q^{68} +412.783 q^{69} +72.6483 q^{70} -1048.99 q^{71} -454.349 q^{72} -510.729 q^{73} +266.500 q^{74} +56.9989 q^{75} +693.043 q^{76} +556.403 q^{77} +238.917 q^{78} -1197.20 q^{79} -68.4070 q^{80} +334.967 q^{81} +353.739 q^{82} +83.0000 q^{83} -123.481 q^{84} -436.196 q^{85} +408.673 q^{86} +89.0247 q^{87} +1215.84 q^{88} -170.431 q^{89} -166.076 q^{90} -655.973 q^{91} -1028.16 q^{92} -363.688 q^{93} -569.151 q^{94} +610.190 q^{95} -427.636 q^{96} +464.590 q^{97} +383.995 q^{98} -1271.95 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q - 5 q^{2} - 12 q^{3} + 87 q^{4} - 105 q^{5} - 7 q^{6} - 11 q^{7} - 84 q^{8} + 153 q^{9} + 25 q^{10} - 30 q^{11} - 244 q^{12} - 89 q^{13} - 191 q^{14} + 60 q^{15} + 583 q^{16} - 357 q^{17} - 281 q^{18}+ \cdots - 5369 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.52351 −0.538642 −0.269321 0.963050i \(-0.586799\pi\)
−0.269321 + 0.963050i \(0.586799\pi\)
\(3\) 2.27996 0.438778 0.219389 0.975638i \(-0.429594\pi\)
0.219389 + 0.975638i \(0.429594\pi\)
\(4\) −5.67892 −0.709864
\(5\) −5.00000 −0.447214
\(6\) −3.47354 −0.236344
\(7\) 9.53696 0.514948 0.257474 0.966285i \(-0.417110\pi\)
0.257474 + 0.966285i \(0.417110\pi\)
\(8\) 20.8400 0.921005
\(9\) −21.8018 −0.807474
\(10\) 7.61755 0.240888
\(11\) 58.3417 1.59915 0.799577 0.600564i \(-0.205057\pi\)
0.799577 + 0.600564i \(0.205057\pi\)
\(12\) −12.9477 −0.311473
\(13\) −68.7822 −1.46744 −0.733721 0.679451i \(-0.762218\pi\)
−0.733721 + 0.679451i \(0.762218\pi\)
\(14\) −14.5297 −0.277373
\(15\) −11.3998 −0.196227
\(16\) 13.6814 0.213772
\(17\) 87.2391 1.24462 0.622312 0.782770i \(-0.286194\pi\)
0.622312 + 0.782770i \(0.286194\pi\)
\(18\) 33.2153 0.434940
\(19\) −122.038 −1.47355 −0.736774 0.676139i \(-0.763652\pi\)
−0.736774 + 0.676139i \(0.763652\pi\)
\(20\) 28.3946 0.317461
\(21\) 21.7439 0.225947
\(22\) −88.8842 −0.861372
\(23\) 181.049 1.64136 0.820679 0.571389i \(-0.193595\pi\)
0.820679 + 0.571389i \(0.193595\pi\)
\(24\) 47.5142 0.404117
\(25\) 25.0000 0.200000
\(26\) 104.790 0.790427
\(27\) −111.266 −0.793079
\(28\) −54.1596 −0.365543
\(29\) 39.0467 0.250027 0.125014 0.992155i \(-0.460103\pi\)
0.125014 + 0.992155i \(0.460103\pi\)
\(30\) 17.3677 0.105696
\(31\) −159.515 −0.924188 −0.462094 0.886831i \(-0.652902\pi\)
−0.462094 + 0.886831i \(0.652902\pi\)
\(32\) −187.564 −1.03615
\(33\) 133.016 0.701673
\(34\) −132.910 −0.670407
\(35\) −47.6848 −0.230292
\(36\) 123.811 0.573197
\(37\) −174.925 −0.777230 −0.388615 0.921400i \(-0.627046\pi\)
−0.388615 + 0.921400i \(0.627046\pi\)
\(38\) 185.926 0.793716
\(39\) −156.820 −0.643881
\(40\) −104.200 −0.411886
\(41\) −232.187 −0.884427 −0.442213 0.896910i \(-0.645807\pi\)
−0.442213 + 0.896910i \(0.645807\pi\)
\(42\) −33.1270 −0.121705
\(43\) −268.245 −0.951324 −0.475662 0.879628i \(-0.657791\pi\)
−0.475662 + 0.879628i \(0.657791\pi\)
\(44\) −331.318 −1.13518
\(45\) 109.009 0.361113
\(46\) −275.830 −0.884105
\(47\) 373.579 1.15941 0.579703 0.814828i \(-0.303169\pi\)
0.579703 + 0.814828i \(0.303169\pi\)
\(48\) 31.1930 0.0937983
\(49\) −252.046 −0.734829
\(50\) −38.0878 −0.107728
\(51\) 198.901 0.546113
\(52\) 390.608 1.04169
\(53\) −532.530 −1.38016 −0.690081 0.723732i \(-0.742425\pi\)
−0.690081 + 0.723732i \(0.742425\pi\)
\(54\) 169.515 0.427186
\(55\) −291.709 −0.715163
\(56\) 198.750 0.474270
\(57\) −278.241 −0.646560
\(58\) −59.4880 −0.134675
\(59\) −492.537 −1.08683 −0.543414 0.839465i \(-0.682869\pi\)
−0.543414 + 0.839465i \(0.682869\pi\)
\(60\) 64.7384 0.139295
\(61\) 324.629 0.681386 0.340693 0.940175i \(-0.389338\pi\)
0.340693 + 0.940175i \(0.389338\pi\)
\(62\) 243.024 0.497807
\(63\) −207.923 −0.415807
\(64\) 176.304 0.344344
\(65\) 343.911 0.656260
\(66\) −202.652 −0.377951
\(67\) 583.030 1.06311 0.531556 0.847023i \(-0.321608\pi\)
0.531556 + 0.847023i \(0.321608\pi\)
\(68\) −495.424 −0.883514
\(69\) 412.783 0.720191
\(70\) 72.6483 0.124045
\(71\) −1048.99 −1.75340 −0.876702 0.481034i \(-0.840261\pi\)
−0.876702 + 0.481034i \(0.840261\pi\)
\(72\) −454.349 −0.743688
\(73\) −510.729 −0.818854 −0.409427 0.912343i \(-0.634271\pi\)
−0.409427 + 0.912343i \(0.634271\pi\)
\(74\) 266.500 0.418649
\(75\) 56.9989 0.0877555
\(76\) 693.043 1.04602
\(77\) 556.403 0.823480
\(78\) 238.917 0.346821
\(79\) −1197.20 −1.70501 −0.852505 0.522719i \(-0.824918\pi\)
−0.852505 + 0.522719i \(0.824918\pi\)
\(80\) −68.4070 −0.0956017
\(81\) 334.967 0.459489
\(82\) 353.739 0.476390
\(83\) 83.0000 0.109764
\(84\) −123.481 −0.160392
\(85\) −436.196 −0.556612
\(86\) 408.673 0.512423
\(87\) 89.0247 0.109706
\(88\) 1215.84 1.47283
\(89\) −170.431 −0.202985 −0.101493 0.994836i \(-0.532362\pi\)
−0.101493 + 0.994836i \(0.532362\pi\)
\(90\) −166.076 −0.194511
\(91\) −655.973 −0.755656
\(92\) −1028.16 −1.16514
\(93\) −363.688 −0.405513
\(94\) −569.151 −0.624505
\(95\) 610.190 0.658991
\(96\) −427.636 −0.454640
\(97\) 464.590 0.486309 0.243155 0.969988i \(-0.421818\pi\)
0.243155 + 0.969988i \(0.421818\pi\)
\(98\) 383.995 0.395810
\(99\) −1271.95 −1.29128
\(100\) −141.973 −0.141973
\(101\) −1050.82 −1.03525 −0.517624 0.855608i \(-0.673183\pi\)
−0.517624 + 0.855608i \(0.673183\pi\)
\(102\) −303.028 −0.294159
\(103\) −1435.65 −1.37339 −0.686694 0.726947i \(-0.740939\pi\)
−0.686694 + 0.726947i \(0.740939\pi\)
\(104\) −1433.42 −1.35152
\(105\) −108.719 −0.101047
\(106\) 811.315 0.743414
\(107\) −636.749 −0.575297 −0.287649 0.957736i \(-0.592874\pi\)
−0.287649 + 0.957736i \(0.592874\pi\)
\(108\) 631.870 0.562979
\(109\) 2104.83 1.84960 0.924799 0.380456i \(-0.124233\pi\)
0.924799 + 0.380456i \(0.124233\pi\)
\(110\) 444.421 0.385217
\(111\) −398.821 −0.341031
\(112\) 130.479 0.110081
\(113\) −156.174 −0.130015 −0.0650073 0.997885i \(-0.520707\pi\)
−0.0650073 + 0.997885i \(0.520707\pi\)
\(114\) 423.903 0.348265
\(115\) −905.243 −0.734038
\(116\) −221.743 −0.177485
\(117\) 1499.58 1.18492
\(118\) 750.385 0.585411
\(119\) 831.996 0.640916
\(120\) −237.571 −0.180726
\(121\) 2072.76 1.55729
\(122\) −494.576 −0.367023
\(123\) −529.376 −0.388067
\(124\) 905.875 0.656048
\(125\) −125.000 −0.0894427
\(126\) 316.773 0.223971
\(127\) −2480.31 −1.73301 −0.866505 0.499168i \(-0.833639\pi\)
−0.866505 + 0.499168i \(0.833639\pi\)
\(128\) 1231.91 0.850674
\(129\) −611.586 −0.417419
\(130\) −523.952 −0.353490
\(131\) 124.301 0.0829024 0.0414512 0.999141i \(-0.486802\pi\)
0.0414512 + 0.999141i \(0.486802\pi\)
\(132\) −755.389 −0.498092
\(133\) −1163.87 −0.758800
\(134\) −888.252 −0.572637
\(135\) 556.330 0.354676
\(136\) 1818.06 1.14630
\(137\) −1442.09 −0.899317 −0.449659 0.893200i \(-0.648454\pi\)
−0.449659 + 0.893200i \(0.648454\pi\)
\(138\) −628.879 −0.387926
\(139\) −434.791 −0.265313 −0.132656 0.991162i \(-0.542351\pi\)
−0.132656 + 0.991162i \(0.542351\pi\)
\(140\) 270.798 0.163476
\(141\) 851.743 0.508721
\(142\) 1598.14 0.944458
\(143\) −4012.87 −2.34667
\(144\) −298.279 −0.172615
\(145\) −195.233 −0.111815
\(146\) 778.102 0.441069
\(147\) −574.654 −0.322426
\(148\) 993.385 0.551728
\(149\) 2831.58 1.55686 0.778429 0.627732i \(-0.216017\pi\)
0.778429 + 0.627732i \(0.216017\pi\)
\(150\) −86.8384 −0.0472688
\(151\) 1287.43 0.693840 0.346920 0.937895i \(-0.387227\pi\)
0.346920 + 0.937895i \(0.387227\pi\)
\(152\) −2543.27 −1.35715
\(153\) −1901.97 −1.00500
\(154\) −847.686 −0.443561
\(155\) 797.577 0.413309
\(156\) 890.569 0.457068
\(157\) −1550.95 −0.788403 −0.394201 0.919024i \(-0.628979\pi\)
−0.394201 + 0.919024i \(0.628979\pi\)
\(158\) 1823.95 0.918391
\(159\) −1214.14 −0.605584
\(160\) 937.818 0.463381
\(161\) 1726.65 0.845214
\(162\) −510.326 −0.247500
\(163\) −1681.15 −0.807840 −0.403920 0.914794i \(-0.632353\pi\)
−0.403920 + 0.914794i \(0.632353\pi\)
\(164\) 1318.57 0.627823
\(165\) −665.082 −0.313798
\(166\) −126.451 −0.0591237
\(167\) 311.253 0.144224 0.0721122 0.997397i \(-0.477026\pi\)
0.0721122 + 0.997397i \(0.477026\pi\)
\(168\) 453.141 0.208099
\(169\) 2533.99 1.15339
\(170\) 664.549 0.299815
\(171\) 2660.65 1.18985
\(172\) 1523.34 0.675311
\(173\) 3487.62 1.53271 0.766355 0.642418i \(-0.222069\pi\)
0.766355 + 0.642418i \(0.222069\pi\)
\(174\) −135.630 −0.0590924
\(175\) 238.424 0.102990
\(176\) 798.196 0.341854
\(177\) −1122.96 −0.476876
\(178\) 259.654 0.109336
\(179\) 2671.46 1.11550 0.557749 0.830010i \(-0.311665\pi\)
0.557749 + 0.830010i \(0.311665\pi\)
\(180\) −619.053 −0.256342
\(181\) 2311.46 0.949222 0.474611 0.880196i \(-0.342589\pi\)
0.474611 + 0.880196i \(0.342589\pi\)
\(182\) 999.383 0.407028
\(183\) 740.140 0.298977
\(184\) 3773.05 1.51170
\(185\) 874.626 0.347588
\(186\) 554.083 0.218426
\(187\) 5089.68 1.99034
\(188\) −2121.52 −0.823021
\(189\) −1061.14 −0.408394
\(190\) −929.630 −0.354960
\(191\) 2619.04 0.992184 0.496092 0.868270i \(-0.334768\pi\)
0.496092 + 0.868270i \(0.334768\pi\)
\(192\) 401.965 0.151090
\(193\) −1752.12 −0.653474 −0.326737 0.945115i \(-0.605949\pi\)
−0.326737 + 0.945115i \(0.605949\pi\)
\(194\) −707.809 −0.261947
\(195\) 784.102 0.287952
\(196\) 1431.35 0.521629
\(197\) 3723.06 1.34648 0.673241 0.739423i \(-0.264902\pi\)
0.673241 + 0.739423i \(0.264902\pi\)
\(198\) 1937.84 0.695536
\(199\) −3665.93 −1.30589 −0.652943 0.757407i \(-0.726466\pi\)
−0.652943 + 0.757407i \(0.726466\pi\)
\(200\) 520.999 0.184201
\(201\) 1329.28 0.466469
\(202\) 1600.93 0.557628
\(203\) 372.387 0.128751
\(204\) −1129.54 −0.387666
\(205\) 1160.93 0.395528
\(206\) 2187.23 0.739765
\(207\) −3947.19 −1.32535
\(208\) −941.037 −0.313698
\(209\) −7119.90 −2.35643
\(210\) 165.635 0.0544281
\(211\) 5551.32 1.81123 0.905613 0.424104i \(-0.139411\pi\)
0.905613 + 0.424104i \(0.139411\pi\)
\(212\) 3024.19 0.979728
\(213\) −2391.64 −0.769354
\(214\) 970.094 0.309880
\(215\) 1341.22 0.425445
\(216\) −2318.78 −0.730430
\(217\) −1521.29 −0.475908
\(218\) −3206.73 −0.996272
\(219\) −1164.44 −0.359295
\(220\) 1656.59 0.507669
\(221\) −6000.50 −1.82641
\(222\) 607.609 0.183694
\(223\) −345.414 −0.103725 −0.0518623 0.998654i \(-0.516516\pi\)
−0.0518623 + 0.998654i \(0.516516\pi\)
\(224\) −1788.79 −0.533564
\(225\) −545.045 −0.161495
\(226\) 237.933 0.0700314
\(227\) −3965.94 −1.15960 −0.579798 0.814760i \(-0.696869\pi\)
−0.579798 + 0.814760i \(0.696869\pi\)
\(228\) 1580.11 0.458970
\(229\) 775.056 0.223656 0.111828 0.993728i \(-0.464329\pi\)
0.111828 + 0.993728i \(0.464329\pi\)
\(230\) 1379.15 0.395384
\(231\) 1268.57 0.361325
\(232\) 813.732 0.230276
\(233\) 1470.86 0.413559 0.206780 0.978388i \(-0.433702\pi\)
0.206780 + 0.978388i \(0.433702\pi\)
\(234\) −2284.62 −0.638249
\(235\) −1867.89 −0.518502
\(236\) 2797.07 0.771500
\(237\) −2729.57 −0.748120
\(238\) −1267.56 −0.345224
\(239\) 11.3141 0.00306214 0.00153107 0.999999i \(-0.499513\pi\)
0.00153107 + 0.999999i \(0.499513\pi\)
\(240\) −155.965 −0.0419479
\(241\) −2035.05 −0.543939 −0.271969 0.962306i \(-0.587675\pi\)
−0.271969 + 0.962306i \(0.587675\pi\)
\(242\) −3157.86 −0.838823
\(243\) 3767.89 0.994693
\(244\) −1843.54 −0.483692
\(245\) 1260.23 0.328625
\(246\) 806.510 0.209029
\(247\) 8394.04 2.16235
\(248\) −3324.30 −0.851182
\(249\) 189.236 0.0481621
\(250\) 190.439 0.0481776
\(251\) 392.845 0.0987894 0.0493947 0.998779i \(-0.484271\pi\)
0.0493947 + 0.998779i \(0.484271\pi\)
\(252\) 1180.78 0.295167
\(253\) 10562.7 2.62478
\(254\) 3778.79 0.933473
\(255\) −994.506 −0.244229
\(256\) −3287.26 −0.802553
\(257\) −1734.89 −0.421087 −0.210543 0.977585i \(-0.567523\pi\)
−0.210543 + 0.977585i \(0.567523\pi\)
\(258\) 931.757 0.224840
\(259\) −1668.25 −0.400233
\(260\) −1953.04 −0.465856
\(261\) −851.288 −0.201890
\(262\) −189.374 −0.0446547
\(263\) 191.388 0.0448725 0.0224363 0.999748i \(-0.492858\pi\)
0.0224363 + 0.999748i \(0.492858\pi\)
\(264\) 2772.06 0.646244
\(265\) 2662.65 0.617227
\(266\) 1773.17 0.408722
\(267\) −388.576 −0.0890653
\(268\) −3310.98 −0.754665
\(269\) 3106.75 0.704171 0.352085 0.935968i \(-0.385473\pi\)
0.352085 + 0.935968i \(0.385473\pi\)
\(270\) −847.574 −0.191043
\(271\) −8143.14 −1.82532 −0.912658 0.408723i \(-0.865974\pi\)
−0.912658 + 0.408723i \(0.865974\pi\)
\(272\) 1193.55 0.266065
\(273\) −1495.59 −0.331565
\(274\) 2197.05 0.484410
\(275\) 1458.54 0.319831
\(276\) −2344.16 −0.511238
\(277\) −6428.64 −1.39444 −0.697219 0.716858i \(-0.745579\pi\)
−0.697219 + 0.716858i \(0.745579\pi\)
\(278\) 662.409 0.142909
\(279\) 3477.73 0.746258
\(280\) −993.750 −0.212100
\(281\) −6379.48 −1.35433 −0.677167 0.735830i \(-0.736792\pi\)
−0.677167 + 0.735830i \(0.736792\pi\)
\(282\) −1297.64 −0.274019
\(283\) −1477.39 −0.310325 −0.155163 0.987889i \(-0.549590\pi\)
−0.155163 + 0.987889i \(0.549590\pi\)
\(284\) 5957.10 1.24468
\(285\) 1391.21 0.289150
\(286\) 6113.65 1.26401
\(287\) −2214.36 −0.455434
\(288\) 4089.22 0.836666
\(289\) 2697.66 0.549087
\(290\) 297.440 0.0602286
\(291\) 1059.25 0.213382
\(292\) 2900.39 0.581275
\(293\) 3391.39 0.676202 0.338101 0.941110i \(-0.390215\pi\)
0.338101 + 0.941110i \(0.390215\pi\)
\(294\) 875.492 0.173673
\(295\) 2462.68 0.486044
\(296\) −3645.43 −0.715833
\(297\) −6491.44 −1.26826
\(298\) −4313.94 −0.838590
\(299\) −12452.9 −2.40860
\(300\) −323.692 −0.0622945
\(301\) −2558.24 −0.489882
\(302\) −1961.42 −0.373732
\(303\) −2395.81 −0.454244
\(304\) −1669.65 −0.315003
\(305\) −1623.15 −0.304725
\(306\) 2897.67 0.541336
\(307\) −7178.81 −1.33458 −0.667291 0.744798i \(-0.732546\pi\)
−0.667291 + 0.744798i \(0.732546\pi\)
\(308\) −3159.76 −0.584559
\(309\) −3273.22 −0.602612
\(310\) −1215.12 −0.222626
\(311\) 4757.32 0.867404 0.433702 0.901056i \(-0.357207\pi\)
0.433702 + 0.901056i \(0.357207\pi\)
\(312\) −3268.13 −0.593018
\(313\) −1566.01 −0.282799 −0.141399 0.989953i \(-0.545160\pi\)
−0.141399 + 0.989953i \(0.545160\pi\)
\(314\) 2362.89 0.424667
\(315\) 1039.62 0.185955
\(316\) 6798.81 1.21033
\(317\) −9079.93 −1.60877 −0.804384 0.594109i \(-0.797505\pi\)
−0.804384 + 0.594109i \(0.797505\pi\)
\(318\) 1849.76 0.326193
\(319\) 2278.05 0.399832
\(320\) −881.519 −0.153995
\(321\) −1451.76 −0.252428
\(322\) −2630.58 −0.455268
\(323\) −10646.5 −1.83401
\(324\) −1902.25 −0.326175
\(325\) −1719.56 −0.293488
\(326\) 2561.25 0.435137
\(327\) 4798.92 0.811562
\(328\) −4838.77 −0.814562
\(329\) 3562.81 0.597033
\(330\) 1013.26 0.169025
\(331\) 5363.00 0.890565 0.445283 0.895390i \(-0.353103\pi\)
0.445283 + 0.895390i \(0.353103\pi\)
\(332\) −471.350 −0.0779177
\(333\) 3813.68 0.627593
\(334\) −474.197 −0.0776854
\(335\) −2915.15 −0.475438
\(336\) 297.486 0.0483012
\(337\) −10899.9 −1.76188 −0.880940 0.473228i \(-0.843089\pi\)
−0.880940 + 0.473228i \(0.843089\pi\)
\(338\) −3860.56 −0.621263
\(339\) −356.071 −0.0570475
\(340\) 2477.12 0.395119
\(341\) −9306.41 −1.47792
\(342\) −4053.52 −0.640905
\(343\) −5674.94 −0.893346
\(344\) −5590.21 −0.876174
\(345\) −2063.91 −0.322079
\(346\) −5313.42 −0.825582
\(347\) 4599.17 0.711517 0.355758 0.934578i \(-0.384223\pi\)
0.355758 + 0.934578i \(0.384223\pi\)
\(348\) −505.563 −0.0778766
\(349\) −2707.96 −0.415341 −0.207670 0.978199i \(-0.566588\pi\)
−0.207670 + 0.978199i \(0.566588\pi\)
\(350\) −363.242 −0.0554745
\(351\) 7653.12 1.16380
\(352\) −10942.8 −1.65697
\(353\) −5693.22 −0.858413 −0.429206 0.903206i \(-0.641207\pi\)
−0.429206 + 0.903206i \(0.641207\pi\)
\(354\) 1710.84 0.256865
\(355\) 5244.93 0.784146
\(356\) 967.865 0.144092
\(357\) 1896.91 0.281219
\(358\) −4069.99 −0.600854
\(359\) 11778.5 1.73160 0.865800 0.500389i \(-0.166810\pi\)
0.865800 + 0.500389i \(0.166810\pi\)
\(360\) 2271.75 0.332587
\(361\) 8034.26 1.17135
\(362\) −3521.53 −0.511291
\(363\) 4725.79 0.683305
\(364\) 3725.22 0.536413
\(365\) 2553.65 0.366203
\(366\) −1127.61 −0.161042
\(367\) 2945.24 0.418911 0.209455 0.977818i \(-0.432831\pi\)
0.209455 + 0.977818i \(0.432831\pi\)
\(368\) 2477.00 0.350876
\(369\) 5062.09 0.714152
\(370\) −1332.50 −0.187226
\(371\) −5078.72 −0.710711
\(372\) 2065.35 0.287859
\(373\) −1706.46 −0.236882 −0.118441 0.992961i \(-0.537790\pi\)
−0.118441 + 0.992961i \(0.537790\pi\)
\(374\) −7754.18 −1.07208
\(375\) −284.994 −0.0392455
\(376\) 7785.37 1.06782
\(377\) −2685.72 −0.366900
\(378\) 1616.66 0.219978
\(379\) −11508.4 −1.55976 −0.779879 0.625930i \(-0.784719\pi\)
−0.779879 + 0.625930i \(0.784719\pi\)
\(380\) −3465.22 −0.467794
\(381\) −5655.01 −0.760406
\(382\) −3990.14 −0.534432
\(383\) 11376.4 1.51777 0.758885 0.651225i \(-0.225745\pi\)
0.758885 + 0.651225i \(0.225745\pi\)
\(384\) 2808.69 0.373257
\(385\) −2782.01 −0.368272
\(386\) 2669.37 0.351989
\(387\) 5848.22 0.768169
\(388\) −2638.37 −0.345214
\(389\) −1455.14 −0.189663 −0.0948313 0.995493i \(-0.530231\pi\)
−0.0948313 + 0.995493i \(0.530231\pi\)
\(390\) −1194.59 −0.155103
\(391\) 15794.5 2.04287
\(392\) −5252.64 −0.676781
\(393\) 283.400 0.0363757
\(394\) −5672.12 −0.725272
\(395\) 5986.01 0.762504
\(396\) 7223.32 0.916630
\(397\) 10435.0 1.31919 0.659594 0.751622i \(-0.270728\pi\)
0.659594 + 0.751622i \(0.270728\pi\)
\(398\) 5585.09 0.703405
\(399\) −2653.57 −0.332945
\(400\) 342.035 0.0427544
\(401\) −4464.91 −0.556027 −0.278014 0.960577i \(-0.589676\pi\)
−0.278014 + 0.960577i \(0.589676\pi\)
\(402\) −2025.18 −0.251260
\(403\) 10971.8 1.35619
\(404\) 5967.49 0.734886
\(405\) −1674.84 −0.205490
\(406\) −567.335 −0.0693507
\(407\) −10205.4 −1.24291
\(408\) 4145.10 0.502973
\(409\) −1305.92 −0.157882 −0.0789408 0.996879i \(-0.525154\pi\)
−0.0789408 + 0.996879i \(0.525154\pi\)
\(410\) −1768.70 −0.213048
\(411\) −3287.91 −0.394600
\(412\) 8152.94 0.974919
\(413\) −4697.31 −0.559659
\(414\) 6013.58 0.713892
\(415\) −415.000 −0.0490881
\(416\) 12901.0 1.52049
\(417\) −991.304 −0.116413
\(418\) 10847.2 1.26927
\(419\) −9560.35 −1.11469 −0.557343 0.830282i \(-0.688179\pi\)
−0.557343 + 0.830282i \(0.688179\pi\)
\(420\) 617.407 0.0717295
\(421\) 12725.5 1.47316 0.736581 0.676349i \(-0.236439\pi\)
0.736581 + 0.676349i \(0.236439\pi\)
\(422\) −8457.50 −0.975603
\(423\) −8144.69 −0.936190
\(424\) −11097.9 −1.27114
\(425\) 2180.98 0.248925
\(426\) 3643.69 0.414407
\(427\) 3095.98 0.350878
\(428\) 3616.04 0.408383
\(429\) −9149.17 −1.02966
\(430\) −2043.37 −0.229163
\(431\) −3802.40 −0.424954 −0.212477 0.977166i \(-0.568153\pi\)
−0.212477 + 0.977166i \(0.568153\pi\)
\(432\) −1522.27 −0.169538
\(433\) 5008.23 0.555844 0.277922 0.960604i \(-0.410354\pi\)
0.277922 + 0.960604i \(0.410354\pi\)
\(434\) 2317.71 0.256344
\(435\) −445.123 −0.0490621
\(436\) −11953.2 −1.31296
\(437\) −22094.8 −2.41862
\(438\) 1774.04 0.193531
\(439\) 759.014 0.0825188 0.0412594 0.999148i \(-0.486863\pi\)
0.0412594 + 0.999148i \(0.486863\pi\)
\(440\) −6079.20 −0.658669
\(441\) 5495.06 0.593355
\(442\) 9141.82 0.983783
\(443\) 5220.82 0.559930 0.279965 0.960010i \(-0.409677\pi\)
0.279965 + 0.960010i \(0.409677\pi\)
\(444\) 2264.87 0.242086
\(445\) 852.156 0.0907777
\(446\) 526.241 0.0558705
\(447\) 6455.87 0.683115
\(448\) 1681.40 0.177319
\(449\) 144.140 0.0151501 0.00757506 0.999971i \(-0.497589\pi\)
0.00757506 + 0.999971i \(0.497589\pi\)
\(450\) 830.382 0.0869880
\(451\) −13546.2 −1.41433
\(452\) 886.902 0.0922928
\(453\) 2935.29 0.304442
\(454\) 6042.15 0.624608
\(455\) 3279.87 0.337940
\(456\) −5798.54 −0.595485
\(457\) 4176.41 0.427493 0.213747 0.976889i \(-0.431433\pi\)
0.213747 + 0.976889i \(0.431433\pi\)
\(458\) −1180.81 −0.120470
\(459\) −9706.74 −0.987085
\(460\) 5140.80 0.521067
\(461\) 10280.5 1.03864 0.519318 0.854581i \(-0.326186\pi\)
0.519318 + 0.854581i \(0.326186\pi\)
\(462\) −1932.69 −0.194625
\(463\) −63.5675 −0.00638063 −0.00319032 0.999995i \(-0.501016\pi\)
−0.00319032 + 0.999995i \(0.501016\pi\)
\(464\) 534.213 0.0534487
\(465\) 1818.44 0.181351
\(466\) −2240.87 −0.222760
\(467\) −13276.1 −1.31551 −0.657754 0.753232i \(-0.728494\pi\)
−0.657754 + 0.753232i \(0.728494\pi\)
\(468\) −8515.97 −0.841134
\(469\) 5560.34 0.547447
\(470\) 2845.76 0.279287
\(471\) −3536.09 −0.345933
\(472\) −10264.5 −1.00097
\(473\) −15649.8 −1.52131
\(474\) 4158.53 0.402969
\(475\) −3050.95 −0.294710
\(476\) −4724.84 −0.454963
\(477\) 11610.1 1.11445
\(478\) −17.2372 −0.00164940
\(479\) 362.208 0.0345505 0.0172752 0.999851i \(-0.494501\pi\)
0.0172752 + 0.999851i \(0.494501\pi\)
\(480\) 2138.18 0.203321
\(481\) 12031.7 1.14054
\(482\) 3100.42 0.292989
\(483\) 3936.69 0.370861
\(484\) −11771.0 −1.10547
\(485\) −2322.95 −0.217484
\(486\) −5740.42 −0.535784
\(487\) 4517.95 0.420386 0.210193 0.977660i \(-0.432591\pi\)
0.210193 + 0.977660i \(0.432591\pi\)
\(488\) 6765.27 0.627560
\(489\) −3832.95 −0.354462
\(490\) −1919.98 −0.177012
\(491\) 13557.8 1.24614 0.623070 0.782166i \(-0.285885\pi\)
0.623070 + 0.782166i \(0.285885\pi\)
\(492\) 3006.28 0.275475
\(493\) 3406.40 0.311189
\(494\) −12788.4 −1.16473
\(495\) 6359.77 0.577476
\(496\) −2182.39 −0.197565
\(497\) −10004.1 −0.902911
\(498\) −288.303 −0.0259421
\(499\) −9368.11 −0.840429 −0.420215 0.907425i \(-0.638045\pi\)
−0.420215 + 0.907425i \(0.638045\pi\)
\(500\) 709.864 0.0634922
\(501\) 709.643 0.0632825
\(502\) −598.503 −0.0532121
\(503\) −14154.3 −1.25469 −0.627345 0.778741i \(-0.715858\pi\)
−0.627345 + 0.778741i \(0.715858\pi\)
\(504\) −4333.11 −0.382960
\(505\) 5254.08 0.462977
\(506\) −16092.4 −1.41382
\(507\) 5777.39 0.506080
\(508\) 14085.5 1.23020
\(509\) −20074.0 −1.74806 −0.874032 0.485868i \(-0.838504\pi\)
−0.874032 + 0.485868i \(0.838504\pi\)
\(510\) 1515.14 0.131552
\(511\) −4870.81 −0.421667
\(512\) −4847.09 −0.418385
\(513\) 13578.7 1.16864
\(514\) 2643.12 0.226815
\(515\) 7178.26 0.614198
\(516\) 3473.14 0.296311
\(517\) 21795.2 1.85407
\(518\) 2541.60 0.215582
\(519\) 7951.61 0.672519
\(520\) 7167.10 0.604419
\(521\) −9883.02 −0.831061 −0.415531 0.909579i \(-0.636404\pi\)
−0.415531 + 0.909579i \(0.636404\pi\)
\(522\) 1296.95 0.108747
\(523\) 11943.5 0.998573 0.499286 0.866437i \(-0.333596\pi\)
0.499286 + 0.866437i \(0.333596\pi\)
\(524\) −705.894 −0.0588495
\(525\) 543.596 0.0451895
\(526\) −291.581 −0.0241702
\(527\) −13916.0 −1.15027
\(528\) 1819.85 0.149998
\(529\) 20611.6 1.69406
\(530\) −4056.57 −0.332465
\(531\) 10738.2 0.877585
\(532\) 6609.53 0.538645
\(533\) 15970.3 1.29785
\(534\) 591.999 0.0479744
\(535\) 3183.74 0.257281
\(536\) 12150.3 0.979131
\(537\) 6090.80 0.489455
\(538\) −4733.17 −0.379296
\(539\) −14704.8 −1.17510
\(540\) −3159.35 −0.251772
\(541\) −12252.3 −0.973690 −0.486845 0.873488i \(-0.661852\pi\)
−0.486845 + 0.873488i \(0.661852\pi\)
\(542\) 12406.2 0.983193
\(543\) 5270.02 0.416497
\(544\) −16362.9 −1.28962
\(545\) −10524.2 −0.827165
\(546\) 2278.55 0.178595
\(547\) 6227.09 0.486748 0.243374 0.969933i \(-0.421746\pi\)
0.243374 + 0.969933i \(0.421746\pi\)
\(548\) 8189.53 0.638393
\(549\) −7077.51 −0.550202
\(550\) −2222.11 −0.172274
\(551\) −4765.17 −0.368427
\(552\) 8602.38 0.663300
\(553\) −11417.7 −0.877991
\(554\) 9794.09 0.751103
\(555\) 1994.11 0.152514
\(556\) 2469.14 0.188336
\(557\) 4186.97 0.318505 0.159253 0.987238i \(-0.449092\pi\)
0.159253 + 0.987238i \(0.449092\pi\)
\(558\) −5298.35 −0.401966
\(559\) 18450.5 1.39601
\(560\) −652.395 −0.0492299
\(561\) 11604.2 0.873318
\(562\) 9719.20 0.729501
\(563\) −11298.2 −0.845757 −0.422878 0.906186i \(-0.638980\pi\)
−0.422878 + 0.906186i \(0.638980\pi\)
\(564\) −4836.97 −0.361123
\(565\) 780.872 0.0581443
\(566\) 2250.83 0.167154
\(567\) 3194.57 0.236613
\(568\) −21860.8 −1.61489
\(569\) 13663.2 1.00667 0.503333 0.864093i \(-0.332107\pi\)
0.503333 + 0.864093i \(0.332107\pi\)
\(570\) −2119.52 −0.155749
\(571\) −9967.49 −0.730519 −0.365260 0.930906i \(-0.619020\pi\)
−0.365260 + 0.930906i \(0.619020\pi\)
\(572\) 22788.8 1.66581
\(573\) 5971.30 0.435348
\(574\) 3373.60 0.245316
\(575\) 4526.22 0.328272
\(576\) −3843.74 −0.278049
\(577\) 9794.28 0.706657 0.353329 0.935499i \(-0.385050\pi\)
0.353329 + 0.935499i \(0.385050\pi\)
\(578\) −4109.92 −0.295761
\(579\) −3994.76 −0.286730
\(580\) 1108.71 0.0793738
\(581\) 791.568 0.0565228
\(582\) −1613.77 −0.114936
\(583\) −31068.7 −2.20709
\(584\) −10643.6 −0.754169
\(585\) −7497.88 −0.529913
\(586\) −5166.82 −0.364231
\(587\) −7683.46 −0.540256 −0.270128 0.962824i \(-0.587066\pi\)
−0.270128 + 0.962824i \(0.587066\pi\)
\(588\) 3263.41 0.228879
\(589\) 19466.9 1.36184
\(590\) −3751.92 −0.261804
\(591\) 8488.41 0.590806
\(592\) −2393.22 −0.166150
\(593\) −9643.48 −0.667808 −0.333904 0.942607i \(-0.608366\pi\)
−0.333904 + 0.942607i \(0.608366\pi\)
\(594\) 9889.79 0.683136
\(595\) −4159.98 −0.286626
\(596\) −16080.3 −1.10516
\(597\) −8358.16 −0.572993
\(598\) 18972.2 1.29737
\(599\) 7857.22 0.535955 0.267978 0.963425i \(-0.413645\pi\)
0.267978 + 0.963425i \(0.413645\pi\)
\(600\) 1187.86 0.0808233
\(601\) −22538.6 −1.52973 −0.764864 0.644191i \(-0.777194\pi\)
−0.764864 + 0.644191i \(0.777194\pi\)
\(602\) 3897.50 0.263871
\(603\) −12711.1 −0.858435
\(604\) −7311.23 −0.492533
\(605\) −10363.8 −0.696442
\(606\) 3650.05 0.244675
\(607\) −25082.9 −1.67724 −0.838620 0.544717i \(-0.816637\pi\)
−0.838620 + 0.544717i \(0.816637\pi\)
\(608\) 22889.9 1.52682
\(609\) 849.025 0.0564930
\(610\) 2472.88 0.164138
\(611\) −25695.6 −1.70136
\(612\) 10801.1 0.713415
\(613\) 7745.54 0.510342 0.255171 0.966896i \(-0.417868\pi\)
0.255171 + 0.966896i \(0.417868\pi\)
\(614\) 10937.0 0.718862
\(615\) 2646.88 0.173549
\(616\) 11595.4 0.758430
\(617\) −1569.47 −0.102406 −0.0512031 0.998688i \(-0.516306\pi\)
−0.0512031 + 0.998688i \(0.516306\pi\)
\(618\) 4986.79 0.324592
\(619\) 21425.6 1.39122 0.695612 0.718418i \(-0.255133\pi\)
0.695612 + 0.718418i \(0.255133\pi\)
\(620\) −4529.37 −0.293394
\(621\) −20144.5 −1.30173
\(622\) −7247.83 −0.467221
\(623\) −1625.40 −0.104527
\(624\) −2145.52 −0.137644
\(625\) 625.000 0.0400000
\(626\) 2385.83 0.152327
\(627\) −16233.1 −1.03395
\(628\) 8807.71 0.559659
\(629\) −15260.3 −0.967359
\(630\) −1583.86 −0.100163
\(631\) 11830.4 0.746371 0.373186 0.927757i \(-0.378265\pi\)
0.373186 + 0.927757i \(0.378265\pi\)
\(632\) −24949.7 −1.57032
\(633\) 12656.8 0.794726
\(634\) 13833.4 0.866551
\(635\) 12401.6 0.775026
\(636\) 6895.02 0.429883
\(637\) 17336.3 1.07832
\(638\) −3470.63 −0.215366
\(639\) 22869.8 1.41583
\(640\) −6159.54 −0.380433
\(641\) 29383.1 1.81055 0.905274 0.424828i \(-0.139665\pi\)
0.905274 + 0.424828i \(0.139665\pi\)
\(642\) 2211.77 0.135968
\(643\) 21889.3 1.34250 0.671251 0.741230i \(-0.265757\pi\)
0.671251 + 0.741230i \(0.265757\pi\)
\(644\) −9805.52 −0.599987
\(645\) 3057.93 0.186676
\(646\) 16220.0 0.987877
\(647\) 9421.28 0.572471 0.286235 0.958159i \(-0.407596\pi\)
0.286235 + 0.958159i \(0.407596\pi\)
\(648\) 6980.71 0.423192
\(649\) −28735.4 −1.73800
\(650\) 2619.76 0.158085
\(651\) −3468.48 −0.208818
\(652\) 9547.11 0.573457
\(653\) −1168.63 −0.0700335 −0.0350168 0.999387i \(-0.511148\pi\)
−0.0350168 + 0.999387i \(0.511148\pi\)
\(654\) −7311.20 −0.437142
\(655\) −621.504 −0.0370751
\(656\) −3176.64 −0.189066
\(657\) 11134.8 0.661204
\(658\) −5427.97 −0.321587
\(659\) 13876.8 0.820277 0.410139 0.912023i \(-0.365480\pi\)
0.410139 + 0.912023i \(0.365480\pi\)
\(660\) 3776.95 0.222754
\(661\) −6084.50 −0.358033 −0.179016 0.983846i \(-0.557291\pi\)
−0.179016 + 0.983846i \(0.557291\pi\)
\(662\) −8170.59 −0.479696
\(663\) −13680.9 −0.801389
\(664\) 1729.72 0.101093
\(665\) 5819.36 0.339346
\(666\) −5810.19 −0.338048
\(667\) 7069.35 0.410384
\(668\) −1767.58 −0.102380
\(669\) −787.527 −0.0455121
\(670\) 4441.26 0.256091
\(671\) 18939.4 1.08964
\(672\) −4078.35 −0.234116
\(673\) −7481.24 −0.428500 −0.214250 0.976779i \(-0.568731\pi\)
−0.214250 + 0.976779i \(0.568731\pi\)
\(674\) 16606.1 0.949023
\(675\) −2781.65 −0.158616
\(676\) −14390.3 −0.818748
\(677\) 20122.6 1.14235 0.571176 0.820827i \(-0.306487\pi\)
0.571176 + 0.820827i \(0.306487\pi\)
\(678\) 542.478 0.0307282
\(679\) 4430.78 0.250424
\(680\) −9090.30 −0.512643
\(681\) −9042.16 −0.508805
\(682\) 14178.4 0.796069
\(683\) 21064.6 1.18011 0.590054 0.807364i \(-0.299106\pi\)
0.590054 + 0.807364i \(0.299106\pi\)
\(684\) −15109.6 −0.844634
\(685\) 7210.47 0.402187
\(686\) 8645.82 0.481194
\(687\) 1767.09 0.0981351
\(688\) −3669.96 −0.203366
\(689\) 36628.6 2.02531
\(690\) 3144.39 0.173486
\(691\) 11210.0 0.617145 0.308573 0.951201i \(-0.400149\pi\)
0.308573 + 0.951201i \(0.400149\pi\)
\(692\) −19805.9 −1.08802
\(693\) −12130.6 −0.664939
\(694\) −7006.88 −0.383253
\(695\) 2173.95 0.118651
\(696\) 1855.27 0.101040
\(697\) −20255.8 −1.10078
\(698\) 4125.61 0.223720
\(699\) 3353.50 0.181460
\(700\) −1353.99 −0.0731086
\(701\) 10860.9 0.585178 0.292589 0.956238i \(-0.405483\pi\)
0.292589 + 0.956238i \(0.405483\pi\)
\(702\) −11659.6 −0.626871
\(703\) 21347.5 1.14529
\(704\) 10285.9 0.550658
\(705\) −4258.71 −0.227507
\(706\) 8673.69 0.462378
\(707\) −10021.6 −0.533098
\(708\) 6377.20 0.338517
\(709\) −14059.1 −0.744709 −0.372355 0.928090i \(-0.621450\pi\)
−0.372355 + 0.928090i \(0.621450\pi\)
\(710\) −7990.70 −0.422374
\(711\) 26101.2 1.37675
\(712\) −3551.78 −0.186950
\(713\) −28880.1 −1.51692
\(714\) −2889.97 −0.151477
\(715\) 20064.4 1.04946
\(716\) −15171.0 −0.791852
\(717\) 25.7957 0.00134360
\(718\) −17944.6 −0.932714
\(719\) −12419.6 −0.644191 −0.322096 0.946707i \(-0.604387\pi\)
−0.322096 + 0.946707i \(0.604387\pi\)
\(720\) 1491.40 0.0771959
\(721\) −13691.8 −0.707223
\(722\) −12240.3 −0.630936
\(723\) −4639.83 −0.238668
\(724\) −13126.6 −0.673819
\(725\) 976.167 0.0500054
\(726\) −7199.79 −0.368057
\(727\) 15819.2 0.807019 0.403509 0.914975i \(-0.367790\pi\)
0.403509 + 0.914975i \(0.367790\pi\)
\(728\) −13670.5 −0.695963
\(729\) −453.498 −0.0230401
\(730\) −3890.51 −0.197252
\(731\) −23401.4 −1.18404
\(732\) −4203.20 −0.212233
\(733\) −171.656 −0.00864974 −0.00432487 0.999991i \(-0.501377\pi\)
−0.00432487 + 0.999991i \(0.501377\pi\)
\(734\) −4487.10 −0.225643
\(735\) 2873.27 0.144193
\(736\) −33958.1 −1.70070
\(737\) 34015.0 1.70008
\(738\) −7712.15 −0.384673
\(739\) 21681.8 1.07926 0.539632 0.841901i \(-0.318563\pi\)
0.539632 + 0.841901i \(0.318563\pi\)
\(740\) −4966.92 −0.246740
\(741\) 19138.0 0.948790
\(742\) 7737.48 0.382819
\(743\) 34876.3 1.72205 0.861027 0.508559i \(-0.169821\pi\)
0.861027 + 0.508559i \(0.169821\pi\)
\(744\) −7579.25 −0.373480
\(745\) −14157.9 −0.696248
\(746\) 2599.81 0.127595
\(747\) −1809.55 −0.0886318
\(748\) −28903.9 −1.41287
\(749\) −6072.65 −0.296248
\(750\) 434.192 0.0211393
\(751\) −15466.9 −0.751524 −0.375762 0.926716i \(-0.622619\pi\)
−0.375762 + 0.926716i \(0.622619\pi\)
\(752\) 5111.08 0.247848
\(753\) 895.668 0.0433466
\(754\) 4091.72 0.197628
\(755\) −6437.17 −0.310295
\(756\) 6026.12 0.289905
\(757\) −24842.6 −1.19276 −0.596380 0.802702i \(-0.703395\pi\)
−0.596380 + 0.802702i \(0.703395\pi\)
\(758\) 17533.2 0.840152
\(759\) 24082.5 1.15170
\(760\) 12716.3 0.606934
\(761\) −830.614 −0.0395660 −0.0197830 0.999804i \(-0.506298\pi\)
−0.0197830 + 0.999804i \(0.506298\pi\)
\(762\) 8615.46 0.409587
\(763\) 20073.7 0.952446
\(764\) −14873.3 −0.704316
\(765\) 9509.85 0.449450
\(766\) −17332.0 −0.817535
\(767\) 33877.8 1.59486
\(768\) −7494.79 −0.352142
\(769\) 22797.1 1.06903 0.534514 0.845159i \(-0.320495\pi\)
0.534514 + 0.845159i \(0.320495\pi\)
\(770\) 4238.43 0.198367
\(771\) −3955.46 −0.184763
\(772\) 9950.14 0.463878
\(773\) −11780.8 −0.548157 −0.274079 0.961707i \(-0.588373\pi\)
−0.274079 + 0.961707i \(0.588373\pi\)
\(774\) −8909.82 −0.413769
\(775\) −3987.89 −0.184838
\(776\) 9682.05 0.447894
\(777\) −3803.55 −0.175613
\(778\) 2216.93 0.102160
\(779\) 28335.6 1.30325
\(780\) −4452.85 −0.204407
\(781\) −61199.6 −2.80396
\(782\) −24063.1 −1.10038
\(783\) −4344.56 −0.198291
\(784\) −3448.35 −0.157086
\(785\) 7754.75 0.352584
\(786\) −431.763 −0.0195935
\(787\) −3803.40 −0.172270 −0.0861350 0.996283i \(-0.527452\pi\)
−0.0861350 + 0.996283i \(0.527452\pi\)
\(788\) −21142.9 −0.955819
\(789\) 436.356 0.0196891
\(790\) −9119.75 −0.410717
\(791\) −1489.43 −0.0669508
\(792\) −26507.5 −1.18927
\(793\) −22328.7 −0.999894
\(794\) −15897.8 −0.710570
\(795\) 6070.72 0.270825
\(796\) 20818.5 0.927001
\(797\) 28395.0 1.26199 0.630993 0.775789i \(-0.282648\pi\)
0.630993 + 0.775789i \(0.282648\pi\)
\(798\) 4042.75 0.179338
\(799\) 32590.7 1.44302
\(800\) −4689.09 −0.207230
\(801\) 3715.71 0.163905
\(802\) 6802.34 0.299500
\(803\) −29796.8 −1.30947
\(804\) −7548.88 −0.331130
\(805\) −8633.27 −0.377991
\(806\) −16715.7 −0.730503
\(807\) 7083.25 0.308974
\(808\) −21899.0 −0.953469
\(809\) −21087.0 −0.916416 −0.458208 0.888845i \(-0.651508\pi\)
−0.458208 + 0.888845i \(0.651508\pi\)
\(810\) 2551.63 0.110685
\(811\) 5516.13 0.238838 0.119419 0.992844i \(-0.461897\pi\)
0.119419 + 0.992844i \(0.461897\pi\)
\(812\) −2114.75 −0.0913956
\(813\) −18566.0 −0.800908
\(814\) 15548.1 0.669484
\(815\) 8405.75 0.361277
\(816\) 2721.25 0.116744
\(817\) 32736.0 1.40182
\(818\) 1989.58 0.0850417
\(819\) 14301.4 0.610173
\(820\) −6592.85 −0.280771
\(821\) −9186.35 −0.390507 −0.195253 0.980753i \(-0.562553\pi\)
−0.195253 + 0.980753i \(0.562553\pi\)
\(822\) 5009.17 0.212548
\(823\) 30176.7 1.27812 0.639060 0.769157i \(-0.279324\pi\)
0.639060 + 0.769157i \(0.279324\pi\)
\(824\) −29918.9 −1.26490
\(825\) 3325.41 0.140335
\(826\) 7156.39 0.301456
\(827\) −4173.79 −0.175498 −0.0877491 0.996143i \(-0.527967\pi\)
−0.0877491 + 0.996143i \(0.527967\pi\)
\(828\) 22415.7 0.940822
\(829\) 18419.9 0.771714 0.385857 0.922559i \(-0.373906\pi\)
0.385857 + 0.922559i \(0.373906\pi\)
\(830\) 632.257 0.0264409
\(831\) −14657.0 −0.611848
\(832\) −12126.6 −0.505304
\(833\) −21988.3 −0.914585
\(834\) 1510.26 0.0627051
\(835\) −1556.27 −0.0644992
\(836\) 40433.3 1.67275
\(837\) 17748.6 0.732954
\(838\) 14565.3 0.600418
\(839\) 21442.5 0.882335 0.441167 0.897425i \(-0.354565\pi\)
0.441167 + 0.897425i \(0.354565\pi\)
\(840\) −2265.71 −0.0930646
\(841\) −22864.4 −0.937486
\(842\) −19387.4 −0.793508
\(843\) −14544.9 −0.594251
\(844\) −31525.5 −1.28573
\(845\) −12670.0 −0.515810
\(846\) 12408.5 0.504272
\(847\) 19767.8 0.801924
\(848\) −7285.75 −0.295040
\(849\) −3368.39 −0.136164
\(850\) −3322.74 −0.134081
\(851\) −31670.0 −1.27571
\(852\) 13581.9 0.546137
\(853\) −27609.3 −1.10823 −0.554117 0.832439i \(-0.686944\pi\)
−0.554117 + 0.832439i \(0.686944\pi\)
\(854\) −4716.76 −0.188998
\(855\) −13303.2 −0.532118
\(856\) −13269.8 −0.529852
\(857\) −3202.65 −0.127655 −0.0638275 0.997961i \(-0.520331\pi\)
−0.0638275 + 0.997961i \(0.520331\pi\)
\(858\) 13938.9 0.554621
\(859\) −18828.1 −0.747855 −0.373928 0.927458i \(-0.621989\pi\)
−0.373928 + 0.927458i \(0.621989\pi\)
\(860\) −7616.69 −0.302008
\(861\) −5048.64 −0.199834
\(862\) 5793.00 0.228898
\(863\) −17394.9 −0.686129 −0.343064 0.939312i \(-0.611465\pi\)
−0.343064 + 0.939312i \(0.611465\pi\)
\(864\) 20869.4 0.821751
\(865\) −17438.1 −0.685448
\(866\) −7630.10 −0.299401
\(867\) 6150.55 0.240927
\(868\) 8639.30 0.337830
\(869\) −69846.8 −2.72657
\(870\) 678.150 0.0264269
\(871\) −40102.1 −1.56005
\(872\) 43864.6 1.70349
\(873\) −10128.9 −0.392682
\(874\) 33661.7 1.30277
\(875\) −1192.12 −0.0460583
\(876\) 6612.76 0.255051
\(877\) −26088.8 −1.00451 −0.502255 0.864719i \(-0.667496\pi\)
−0.502255 + 0.864719i \(0.667496\pi\)
\(878\) −1156.37 −0.0444481
\(879\) 7732.22 0.296702
\(880\) −3990.98 −0.152882
\(881\) 42096.4 1.60983 0.804917 0.593388i \(-0.202210\pi\)
0.804917 + 0.593388i \(0.202210\pi\)
\(882\) −8371.79 −0.319606
\(883\) 9252.21 0.352618 0.176309 0.984335i \(-0.443584\pi\)
0.176309 + 0.984335i \(0.443584\pi\)
\(884\) 34076.3 1.29651
\(885\) 5614.81 0.213265
\(886\) −7953.98 −0.301602
\(887\) −16116.1 −0.610062 −0.305031 0.952342i \(-0.598667\pi\)
−0.305031 + 0.952342i \(0.598667\pi\)
\(888\) −8311.43 −0.314092
\(889\) −23654.7 −0.892410
\(890\) −1298.27 −0.0488967
\(891\) 19542.6 0.734793
\(892\) 1961.57 0.0736305
\(893\) −45590.8 −1.70844
\(894\) −9835.59 −0.367955
\(895\) −13357.3 −0.498866
\(896\) 11748.7 0.438053
\(897\) −28392.1 −1.05684
\(898\) −219.599 −0.00816050
\(899\) −6228.55 −0.231072
\(900\) 3095.26 0.114639
\(901\) −46457.4 −1.71778
\(902\) 20637.8 0.761820
\(903\) −5832.67 −0.214949
\(904\) −3254.67 −0.119744
\(905\) −11557.3 −0.424505
\(906\) −4471.95 −0.163985
\(907\) 26185.5 0.958628 0.479314 0.877643i \(-0.340886\pi\)
0.479314 + 0.877643i \(0.340886\pi\)
\(908\) 22522.2 0.823157
\(909\) 22909.7 0.835936
\(910\) −4996.91 −0.182029
\(911\) −27823.4 −1.01189 −0.505945 0.862566i \(-0.668856\pi\)
−0.505945 + 0.862566i \(0.668856\pi\)
\(912\) −3806.73 −0.138216
\(913\) 4842.36 0.175530
\(914\) −6362.81 −0.230266
\(915\) −3700.70 −0.133707
\(916\) −4401.48 −0.158765
\(917\) 1185.45 0.0426904
\(918\) 14788.3 0.531686
\(919\) 47772.2 1.71476 0.857378 0.514688i \(-0.172092\pi\)
0.857378 + 0.514688i \(0.172092\pi\)
\(920\) −18865.2 −0.676053
\(921\) −16367.4 −0.585584
\(922\) −15662.5 −0.559454
\(923\) 72151.5 2.57302
\(924\) −7204.12 −0.256492
\(925\) −4373.13 −0.155446
\(926\) 96.8458 0.00343688
\(927\) 31299.8 1.10897
\(928\) −7323.73 −0.259066
\(929\) 1947.77 0.0687883 0.0343942 0.999408i \(-0.489050\pi\)
0.0343942 + 0.999408i \(0.489050\pi\)
\(930\) −2770.41 −0.0976833
\(931\) 30759.2 1.08281
\(932\) −8352.89 −0.293571
\(933\) 10846.5 0.380598
\(934\) 20226.2 0.708589
\(935\) −25448.4 −0.890109
\(936\) 31251.1 1.09132
\(937\) −19185.4 −0.668899 −0.334449 0.942414i \(-0.608550\pi\)
−0.334449 + 0.942414i \(0.608550\pi\)
\(938\) −8471.23 −0.294878
\(939\) −3570.43 −0.124086
\(940\) 10607.6 0.368066
\(941\) 45452.2 1.57460 0.787300 0.616570i \(-0.211478\pi\)
0.787300 + 0.616570i \(0.211478\pi\)
\(942\) 5387.28 0.186334
\(943\) −42037.1 −1.45166
\(944\) −6738.59 −0.232333
\(945\) 5305.70 0.182639
\(946\) 23842.7 0.819443
\(947\) 7896.17 0.270952 0.135476 0.990781i \(-0.456744\pi\)
0.135476 + 0.990781i \(0.456744\pi\)
\(948\) 15501.0 0.531064
\(949\) 35129.1 1.20162
\(950\) 4648.15 0.158743
\(951\) −20701.8 −0.705892
\(952\) 17338.8 0.590287
\(953\) 18152.5 0.617017 0.308508 0.951222i \(-0.400170\pi\)
0.308508 + 0.951222i \(0.400170\pi\)
\(954\) −17688.1 −0.600287
\(955\) −13095.2 −0.443718
\(956\) −64.2520 −0.00217370
\(957\) 5193.85 0.175437
\(958\) −551.827 −0.0186104
\(959\) −13753.2 −0.463101
\(960\) −2009.82 −0.0675696
\(961\) −4345.81 −0.145876
\(962\) −18330.5 −0.614343
\(963\) 13882.3 0.464538
\(964\) 11556.9 0.386123
\(965\) 8760.60 0.292242
\(966\) −5997.60 −0.199761
\(967\) −23418.6 −0.778791 −0.389396 0.921071i \(-0.627316\pi\)
−0.389396 + 0.921071i \(0.627316\pi\)
\(968\) 43196.2 1.43427
\(969\) −24273.5 −0.804724
\(970\) 3539.04 0.117146
\(971\) 43994.5 1.45402 0.727009 0.686628i \(-0.240910\pi\)
0.727009 + 0.686628i \(0.240910\pi\)
\(972\) −21397.5 −0.706097
\(973\) −4146.59 −0.136622
\(974\) −6883.15 −0.226438
\(975\) −3920.51 −0.128776
\(976\) 4441.38 0.145661
\(977\) −40451.4 −1.32462 −0.662310 0.749230i \(-0.730424\pi\)
−0.662310 + 0.749230i \(0.730424\pi\)
\(978\) 5839.54 0.190928
\(979\) −9943.25 −0.324604
\(980\) −7156.75 −0.233280
\(981\) −45889.1 −1.49350
\(982\) −20655.4 −0.671224
\(983\) −20180.4 −0.654785 −0.327393 0.944888i \(-0.606170\pi\)
−0.327393 + 0.944888i \(0.606170\pi\)
\(984\) −11032.2 −0.357412
\(985\) −18615.3 −0.602165
\(986\) −5189.68 −0.167620
\(987\) 8123.04 0.261965
\(988\) −47669.0 −1.53497
\(989\) −48565.3 −1.56146
\(990\) −9689.18 −0.311053
\(991\) −37145.5 −1.19068 −0.595341 0.803473i \(-0.702983\pi\)
−0.595341 + 0.803473i \(0.702983\pi\)
\(992\) 29919.3 0.957599
\(993\) 12227.4 0.390760
\(994\) 15241.4 0.486346
\(995\) 18329.7 0.584010
\(996\) −1074.66 −0.0341886
\(997\) 6005.07 0.190755 0.0953774 0.995441i \(-0.469594\pi\)
0.0953774 + 0.995441i \(0.469594\pi\)
\(998\) 14272.4 0.452691
\(999\) 19463.2 0.616405
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 415.4.a.c.1.8 21
5.4 even 2 2075.4.a.g.1.14 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
415.4.a.c.1.8 21 1.1 even 1 trivial
2075.4.a.g.1.14 21 5.4 even 2