Properties

Label 2075.4.a.g.1.14
Level $2075$
Weight $4$
Character 2075.1
Self dual yes
Analytic conductor $122.429$
Analytic rank $0$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2075,4,Mod(1,2075)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2075.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2075, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2075 = 5^{2} \cdot 83 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2075.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [21,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(122.428963262\)
Analytic rank: \(0\)
Dimension: \(21\)
Twist minimal: no (minimal twist has level 415)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Character \(\chi\) \(=\) 2075.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.52351 q^{2} -2.27996 q^{3} -5.67892 q^{4} -3.47354 q^{6} -9.53696 q^{7} -20.8400 q^{8} -21.8018 q^{9} +58.3417 q^{11} +12.9477 q^{12} +68.7822 q^{13} -14.5297 q^{14} +13.6814 q^{16} -87.2391 q^{17} -33.2153 q^{18} -122.038 q^{19} +21.7439 q^{21} +88.8842 q^{22} -181.049 q^{23} +47.5142 q^{24} +104.790 q^{26} +111.266 q^{27} +54.1596 q^{28} +39.0467 q^{29} -159.515 q^{31} +187.564 q^{32} -133.016 q^{33} -132.910 q^{34} +123.811 q^{36} +174.925 q^{37} -185.926 q^{38} -156.820 q^{39} -232.187 q^{41} +33.1270 q^{42} +268.245 q^{43} -331.318 q^{44} -275.830 q^{46} -373.579 q^{47} -31.1930 q^{48} -252.046 q^{49} +198.901 q^{51} -390.608 q^{52} +532.530 q^{53} +169.515 q^{54} +198.750 q^{56} +278.241 q^{57} +59.4880 q^{58} -492.537 q^{59} +324.629 q^{61} -243.024 q^{62} +207.923 q^{63} +176.304 q^{64} -202.652 q^{66} -583.030 q^{67} +495.424 q^{68} +412.783 q^{69} -1048.99 q^{71} +454.349 q^{72} +510.729 q^{73} +266.500 q^{74} +693.043 q^{76} -556.403 q^{77} -238.917 q^{78} -1197.20 q^{79} +334.967 q^{81} -353.739 q^{82} -83.0000 q^{83} -123.481 q^{84} +408.673 q^{86} -89.0247 q^{87} -1215.84 q^{88} -170.431 q^{89} -655.973 q^{91} +1028.16 q^{92} +363.688 q^{93} -569.151 q^{94} -427.636 q^{96} -464.590 q^{97} -383.995 q^{98} -1271.95 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q + 5 q^{2} + 12 q^{3} + 87 q^{4} - 7 q^{6} + 11 q^{7} + 84 q^{8} + 153 q^{9} - 30 q^{11} + 244 q^{12} + 89 q^{13} - 191 q^{14} + 583 q^{16} + 357 q^{17} + 281 q^{18} - 175 q^{19} - 41 q^{21} + 122 q^{22}+ \cdots - 5369 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.52351 0.538642 0.269321 0.963050i \(-0.413201\pi\)
0.269321 + 0.963050i \(0.413201\pi\)
\(3\) −2.27996 −0.438778 −0.219389 0.975638i \(-0.570406\pi\)
−0.219389 + 0.975638i \(0.570406\pi\)
\(4\) −5.67892 −0.709864
\(5\) 0 0
\(6\) −3.47354 −0.236344
\(7\) −9.53696 −0.514948 −0.257474 0.966285i \(-0.582890\pi\)
−0.257474 + 0.966285i \(0.582890\pi\)
\(8\) −20.8400 −0.921005
\(9\) −21.8018 −0.807474
\(10\) 0 0
\(11\) 58.3417 1.59915 0.799577 0.600564i \(-0.205057\pi\)
0.799577 + 0.600564i \(0.205057\pi\)
\(12\) 12.9477 0.311473
\(13\) 68.7822 1.46744 0.733721 0.679451i \(-0.237782\pi\)
0.733721 + 0.679451i \(0.237782\pi\)
\(14\) −14.5297 −0.277373
\(15\) 0 0
\(16\) 13.6814 0.213772
\(17\) −87.2391 −1.24462 −0.622312 0.782770i \(-0.713806\pi\)
−0.622312 + 0.782770i \(0.713806\pi\)
\(18\) −33.2153 −0.434940
\(19\) −122.038 −1.47355 −0.736774 0.676139i \(-0.763652\pi\)
−0.736774 + 0.676139i \(0.763652\pi\)
\(20\) 0 0
\(21\) 21.7439 0.225947
\(22\) 88.8842 0.861372
\(23\) −181.049 −1.64136 −0.820679 0.571389i \(-0.806405\pi\)
−0.820679 + 0.571389i \(0.806405\pi\)
\(24\) 47.5142 0.404117
\(25\) 0 0
\(26\) 104.790 0.790427
\(27\) 111.266 0.793079
\(28\) 54.1596 0.365543
\(29\) 39.0467 0.250027 0.125014 0.992155i \(-0.460103\pi\)
0.125014 + 0.992155i \(0.460103\pi\)
\(30\) 0 0
\(31\) −159.515 −0.924188 −0.462094 0.886831i \(-0.652902\pi\)
−0.462094 + 0.886831i \(0.652902\pi\)
\(32\) 187.564 1.03615
\(33\) −133.016 −0.701673
\(34\) −132.910 −0.670407
\(35\) 0 0
\(36\) 123.811 0.573197
\(37\) 174.925 0.777230 0.388615 0.921400i \(-0.372954\pi\)
0.388615 + 0.921400i \(0.372954\pi\)
\(38\) −185.926 −0.793716
\(39\) −156.820 −0.643881
\(40\) 0 0
\(41\) −232.187 −0.884427 −0.442213 0.896910i \(-0.645807\pi\)
−0.442213 + 0.896910i \(0.645807\pi\)
\(42\) 33.1270 0.121705
\(43\) 268.245 0.951324 0.475662 0.879628i \(-0.342209\pi\)
0.475662 + 0.879628i \(0.342209\pi\)
\(44\) −331.318 −1.13518
\(45\) 0 0
\(46\) −275.830 −0.884105
\(47\) −373.579 −1.15941 −0.579703 0.814828i \(-0.696831\pi\)
−0.579703 + 0.814828i \(0.696831\pi\)
\(48\) −31.1930 −0.0937983
\(49\) −252.046 −0.734829
\(50\) 0 0
\(51\) 198.901 0.546113
\(52\) −390.608 −1.04169
\(53\) 532.530 1.38016 0.690081 0.723732i \(-0.257575\pi\)
0.690081 + 0.723732i \(0.257575\pi\)
\(54\) 169.515 0.427186
\(55\) 0 0
\(56\) 198.750 0.474270
\(57\) 278.241 0.646560
\(58\) 59.4880 0.134675
\(59\) −492.537 −1.08683 −0.543414 0.839465i \(-0.682869\pi\)
−0.543414 + 0.839465i \(0.682869\pi\)
\(60\) 0 0
\(61\) 324.629 0.681386 0.340693 0.940175i \(-0.389338\pi\)
0.340693 + 0.940175i \(0.389338\pi\)
\(62\) −243.024 −0.497807
\(63\) 207.923 0.415807
\(64\) 176.304 0.344344
\(65\) 0 0
\(66\) −202.652 −0.377951
\(67\) −583.030 −1.06311 −0.531556 0.847023i \(-0.678392\pi\)
−0.531556 + 0.847023i \(0.678392\pi\)
\(68\) 495.424 0.883514
\(69\) 412.783 0.720191
\(70\) 0 0
\(71\) −1048.99 −1.75340 −0.876702 0.481034i \(-0.840261\pi\)
−0.876702 + 0.481034i \(0.840261\pi\)
\(72\) 454.349 0.743688
\(73\) 510.729 0.818854 0.409427 0.912343i \(-0.365729\pi\)
0.409427 + 0.912343i \(0.365729\pi\)
\(74\) 266.500 0.418649
\(75\) 0 0
\(76\) 693.043 1.04602
\(77\) −556.403 −0.823480
\(78\) −238.917 −0.346821
\(79\) −1197.20 −1.70501 −0.852505 0.522719i \(-0.824918\pi\)
−0.852505 + 0.522719i \(0.824918\pi\)
\(80\) 0 0
\(81\) 334.967 0.459489
\(82\) −353.739 −0.476390
\(83\) −83.0000 −0.109764
\(84\) −123.481 −0.160392
\(85\) 0 0
\(86\) 408.673 0.512423
\(87\) −89.0247 −0.109706
\(88\) −1215.84 −1.47283
\(89\) −170.431 −0.202985 −0.101493 0.994836i \(-0.532362\pi\)
−0.101493 + 0.994836i \(0.532362\pi\)
\(90\) 0 0
\(91\) −655.973 −0.755656
\(92\) 1028.16 1.16514
\(93\) 363.688 0.405513
\(94\) −569.151 −0.624505
\(95\) 0 0
\(96\) −427.636 −0.454640
\(97\) −464.590 −0.486309 −0.243155 0.969988i \(-0.578182\pi\)
−0.243155 + 0.969988i \(0.578182\pi\)
\(98\) −383.995 −0.395810
\(99\) −1271.95 −1.29128
\(100\) 0 0
\(101\) −1050.82 −1.03525 −0.517624 0.855608i \(-0.673183\pi\)
−0.517624 + 0.855608i \(0.673183\pi\)
\(102\) 303.028 0.294159
\(103\) 1435.65 1.37339 0.686694 0.726947i \(-0.259061\pi\)
0.686694 + 0.726947i \(0.259061\pi\)
\(104\) −1433.42 −1.35152
\(105\) 0 0
\(106\) 811.315 0.743414
\(107\) 636.749 0.575297 0.287649 0.957736i \(-0.407126\pi\)
0.287649 + 0.957736i \(0.407126\pi\)
\(108\) −631.870 −0.562979
\(109\) 2104.83 1.84960 0.924799 0.380456i \(-0.124233\pi\)
0.924799 + 0.380456i \(0.124233\pi\)
\(110\) 0 0
\(111\) −398.821 −0.341031
\(112\) −130.479 −0.110081
\(113\) 156.174 0.130015 0.0650073 0.997885i \(-0.479293\pi\)
0.0650073 + 0.997885i \(0.479293\pi\)
\(114\) 423.903 0.348265
\(115\) 0 0
\(116\) −221.743 −0.177485
\(117\) −1499.58 −1.18492
\(118\) −750.385 −0.585411
\(119\) 831.996 0.640916
\(120\) 0 0
\(121\) 2072.76 1.55729
\(122\) 494.576 0.367023
\(123\) 529.376 0.388067
\(124\) 905.875 0.656048
\(125\) 0 0
\(126\) 316.773 0.223971
\(127\) 2480.31 1.73301 0.866505 0.499168i \(-0.166361\pi\)
0.866505 + 0.499168i \(0.166361\pi\)
\(128\) −1231.91 −0.850674
\(129\) −611.586 −0.417419
\(130\) 0 0
\(131\) 124.301 0.0829024 0.0414512 0.999141i \(-0.486802\pi\)
0.0414512 + 0.999141i \(0.486802\pi\)
\(132\) 755.389 0.498092
\(133\) 1163.87 0.758800
\(134\) −888.252 −0.572637
\(135\) 0 0
\(136\) 1818.06 1.14630
\(137\) 1442.09 0.899317 0.449659 0.893200i \(-0.351546\pi\)
0.449659 + 0.893200i \(0.351546\pi\)
\(138\) 628.879 0.387926
\(139\) −434.791 −0.265313 −0.132656 0.991162i \(-0.542351\pi\)
−0.132656 + 0.991162i \(0.542351\pi\)
\(140\) 0 0
\(141\) 851.743 0.508721
\(142\) −1598.14 −0.944458
\(143\) 4012.87 2.34667
\(144\) −298.279 −0.172615
\(145\) 0 0
\(146\) 778.102 0.441069
\(147\) 574.654 0.322426
\(148\) −993.385 −0.551728
\(149\) 2831.58 1.55686 0.778429 0.627732i \(-0.216017\pi\)
0.778429 + 0.627732i \(0.216017\pi\)
\(150\) 0 0
\(151\) 1287.43 0.693840 0.346920 0.937895i \(-0.387227\pi\)
0.346920 + 0.937895i \(0.387227\pi\)
\(152\) 2543.27 1.35715
\(153\) 1901.97 1.00500
\(154\) −847.686 −0.443561
\(155\) 0 0
\(156\) 890.569 0.457068
\(157\) 1550.95 0.788403 0.394201 0.919024i \(-0.371021\pi\)
0.394201 + 0.919024i \(0.371021\pi\)
\(158\) −1823.95 −0.918391
\(159\) −1214.14 −0.605584
\(160\) 0 0
\(161\) 1726.65 0.845214
\(162\) 510.326 0.247500
\(163\) 1681.15 0.807840 0.403920 0.914794i \(-0.367647\pi\)
0.403920 + 0.914794i \(0.367647\pi\)
\(164\) 1318.57 0.627823
\(165\) 0 0
\(166\) −126.451 −0.0591237
\(167\) −311.253 −0.144224 −0.0721122 0.997397i \(-0.522974\pi\)
−0.0721122 + 0.997397i \(0.522974\pi\)
\(168\) −453.141 −0.208099
\(169\) 2533.99 1.15339
\(170\) 0 0
\(171\) 2660.65 1.18985
\(172\) −1523.34 −0.675311
\(173\) −3487.62 −1.53271 −0.766355 0.642418i \(-0.777931\pi\)
−0.766355 + 0.642418i \(0.777931\pi\)
\(174\) −135.630 −0.0590924
\(175\) 0 0
\(176\) 798.196 0.341854
\(177\) 1122.96 0.476876
\(178\) −259.654 −0.109336
\(179\) 2671.46 1.11550 0.557749 0.830010i \(-0.311665\pi\)
0.557749 + 0.830010i \(0.311665\pi\)
\(180\) 0 0
\(181\) 2311.46 0.949222 0.474611 0.880196i \(-0.342589\pi\)
0.474611 + 0.880196i \(0.342589\pi\)
\(182\) −999.383 −0.407028
\(183\) −740.140 −0.298977
\(184\) 3773.05 1.51170
\(185\) 0 0
\(186\) 554.083 0.218426
\(187\) −5089.68 −1.99034
\(188\) 2121.52 0.823021
\(189\) −1061.14 −0.408394
\(190\) 0 0
\(191\) 2619.04 0.992184 0.496092 0.868270i \(-0.334768\pi\)
0.496092 + 0.868270i \(0.334768\pi\)
\(192\) −401.965 −0.151090
\(193\) 1752.12 0.653474 0.326737 0.945115i \(-0.394051\pi\)
0.326737 + 0.945115i \(0.394051\pi\)
\(194\) −707.809 −0.261947
\(195\) 0 0
\(196\) 1431.35 0.521629
\(197\) −3723.06 −1.34648 −0.673241 0.739423i \(-0.735098\pi\)
−0.673241 + 0.739423i \(0.735098\pi\)
\(198\) −1937.84 −0.695536
\(199\) −3665.93 −1.30589 −0.652943 0.757407i \(-0.726466\pi\)
−0.652943 + 0.757407i \(0.726466\pi\)
\(200\) 0 0
\(201\) 1329.28 0.466469
\(202\) −1600.93 −0.557628
\(203\) −372.387 −0.128751
\(204\) −1129.54 −0.387666
\(205\) 0 0
\(206\) 2187.23 0.739765
\(207\) 3947.19 1.32535
\(208\) 941.037 0.313698
\(209\) −7119.90 −2.35643
\(210\) 0 0
\(211\) 5551.32 1.81123 0.905613 0.424104i \(-0.139411\pi\)
0.905613 + 0.424104i \(0.139411\pi\)
\(212\) −3024.19 −0.979728
\(213\) 2391.64 0.769354
\(214\) 970.094 0.309880
\(215\) 0 0
\(216\) −2318.78 −0.730430
\(217\) 1521.29 0.475908
\(218\) 3206.73 0.996272
\(219\) −1164.44 −0.359295
\(220\) 0 0
\(221\) −6000.50 −1.82641
\(222\) −607.609 −0.183694
\(223\) 345.414 0.103725 0.0518623 0.998654i \(-0.483484\pi\)
0.0518623 + 0.998654i \(0.483484\pi\)
\(224\) −1788.79 −0.533564
\(225\) 0 0
\(226\) 237.933 0.0700314
\(227\) 3965.94 1.15960 0.579798 0.814760i \(-0.303131\pi\)
0.579798 + 0.814760i \(0.303131\pi\)
\(228\) −1580.11 −0.458970
\(229\) 775.056 0.223656 0.111828 0.993728i \(-0.464329\pi\)
0.111828 + 0.993728i \(0.464329\pi\)
\(230\) 0 0
\(231\) 1268.57 0.361325
\(232\) −813.732 −0.230276
\(233\) −1470.86 −0.413559 −0.206780 0.978388i \(-0.566298\pi\)
−0.206780 + 0.978388i \(0.566298\pi\)
\(234\) −2284.62 −0.638249
\(235\) 0 0
\(236\) 2797.07 0.771500
\(237\) 2729.57 0.748120
\(238\) 1267.56 0.345224
\(239\) 11.3141 0.00306214 0.00153107 0.999999i \(-0.499513\pi\)
0.00153107 + 0.999999i \(0.499513\pi\)
\(240\) 0 0
\(241\) −2035.05 −0.543939 −0.271969 0.962306i \(-0.587675\pi\)
−0.271969 + 0.962306i \(0.587675\pi\)
\(242\) 3157.86 0.838823
\(243\) −3767.89 −0.994693
\(244\) −1843.54 −0.483692
\(245\) 0 0
\(246\) 806.510 0.209029
\(247\) −8394.04 −2.16235
\(248\) 3324.30 0.851182
\(249\) 189.236 0.0481621
\(250\) 0 0
\(251\) 392.845 0.0987894 0.0493947 0.998779i \(-0.484271\pi\)
0.0493947 + 0.998779i \(0.484271\pi\)
\(252\) −1180.78 −0.295167
\(253\) −10562.7 −2.62478
\(254\) 3778.79 0.933473
\(255\) 0 0
\(256\) −3287.26 −0.802553
\(257\) 1734.89 0.421087 0.210543 0.977585i \(-0.432477\pi\)
0.210543 + 0.977585i \(0.432477\pi\)
\(258\) −931.757 −0.224840
\(259\) −1668.25 −0.400233
\(260\) 0 0
\(261\) −851.288 −0.201890
\(262\) 189.374 0.0446547
\(263\) −191.388 −0.0448725 −0.0224363 0.999748i \(-0.507142\pi\)
−0.0224363 + 0.999748i \(0.507142\pi\)
\(264\) 2772.06 0.646244
\(265\) 0 0
\(266\) 1773.17 0.408722
\(267\) 388.576 0.0890653
\(268\) 3310.98 0.754665
\(269\) 3106.75 0.704171 0.352085 0.935968i \(-0.385473\pi\)
0.352085 + 0.935968i \(0.385473\pi\)
\(270\) 0 0
\(271\) −8143.14 −1.82532 −0.912658 0.408723i \(-0.865974\pi\)
−0.912658 + 0.408723i \(0.865974\pi\)
\(272\) −1193.55 −0.266065
\(273\) 1495.59 0.331565
\(274\) 2197.05 0.484410
\(275\) 0 0
\(276\) −2344.16 −0.511238
\(277\) 6428.64 1.39444 0.697219 0.716858i \(-0.254421\pi\)
0.697219 + 0.716858i \(0.254421\pi\)
\(278\) −662.409 −0.142909
\(279\) 3477.73 0.746258
\(280\) 0 0
\(281\) −6379.48 −1.35433 −0.677167 0.735830i \(-0.736792\pi\)
−0.677167 + 0.735830i \(0.736792\pi\)
\(282\) 1297.64 0.274019
\(283\) 1477.39 0.310325 0.155163 0.987889i \(-0.450410\pi\)
0.155163 + 0.987889i \(0.450410\pi\)
\(284\) 5957.10 1.24468
\(285\) 0 0
\(286\) 6113.65 1.26401
\(287\) 2214.36 0.455434
\(288\) −4089.22 −0.836666
\(289\) 2697.66 0.549087
\(290\) 0 0
\(291\) 1059.25 0.213382
\(292\) −2900.39 −0.581275
\(293\) −3391.39 −0.676202 −0.338101 0.941110i \(-0.609785\pi\)
−0.338101 + 0.941110i \(0.609785\pi\)
\(294\) 875.492 0.173673
\(295\) 0 0
\(296\) −3645.43 −0.715833
\(297\) 6491.44 1.26826
\(298\) 4313.94 0.838590
\(299\) −12452.9 −2.40860
\(300\) 0 0
\(301\) −2558.24 −0.489882
\(302\) 1961.42 0.373732
\(303\) 2395.81 0.454244
\(304\) −1669.65 −0.315003
\(305\) 0 0
\(306\) 2897.67 0.541336
\(307\) 7178.81 1.33458 0.667291 0.744798i \(-0.267454\pi\)
0.667291 + 0.744798i \(0.267454\pi\)
\(308\) 3159.76 0.584559
\(309\) −3273.22 −0.602612
\(310\) 0 0
\(311\) 4757.32 0.867404 0.433702 0.901056i \(-0.357207\pi\)
0.433702 + 0.901056i \(0.357207\pi\)
\(312\) 3268.13 0.593018
\(313\) 1566.01 0.282799 0.141399 0.989953i \(-0.454840\pi\)
0.141399 + 0.989953i \(0.454840\pi\)
\(314\) 2362.89 0.424667
\(315\) 0 0
\(316\) 6798.81 1.21033
\(317\) 9079.93 1.60877 0.804384 0.594109i \(-0.202495\pi\)
0.804384 + 0.594109i \(0.202495\pi\)
\(318\) −1849.76 −0.326193
\(319\) 2278.05 0.399832
\(320\) 0 0
\(321\) −1451.76 −0.252428
\(322\) 2630.58 0.455268
\(323\) 10646.5 1.83401
\(324\) −1902.25 −0.326175
\(325\) 0 0
\(326\) 2561.25 0.435137
\(327\) −4798.92 −0.811562
\(328\) 4838.77 0.814562
\(329\) 3562.81 0.597033
\(330\) 0 0
\(331\) 5363.00 0.890565 0.445283 0.895390i \(-0.353103\pi\)
0.445283 + 0.895390i \(0.353103\pi\)
\(332\) 471.350 0.0779177
\(333\) −3813.68 −0.627593
\(334\) −474.197 −0.0776854
\(335\) 0 0
\(336\) 297.486 0.0483012
\(337\) 10899.9 1.76188 0.880940 0.473228i \(-0.156911\pi\)
0.880940 + 0.473228i \(0.156911\pi\)
\(338\) 3860.56 0.621263
\(339\) −356.071 −0.0570475
\(340\) 0 0
\(341\) −9306.41 −1.47792
\(342\) 4053.52 0.640905
\(343\) 5674.94 0.893346
\(344\) −5590.21 −0.876174
\(345\) 0 0
\(346\) −5313.42 −0.825582
\(347\) −4599.17 −0.711517 −0.355758 0.934578i \(-0.615777\pi\)
−0.355758 + 0.934578i \(0.615777\pi\)
\(348\) 505.563 0.0778766
\(349\) −2707.96 −0.415341 −0.207670 0.978199i \(-0.566588\pi\)
−0.207670 + 0.978199i \(0.566588\pi\)
\(350\) 0 0
\(351\) 7653.12 1.16380
\(352\) 10942.8 1.65697
\(353\) 5693.22 0.858413 0.429206 0.903206i \(-0.358793\pi\)
0.429206 + 0.903206i \(0.358793\pi\)
\(354\) 1710.84 0.256865
\(355\) 0 0
\(356\) 967.865 0.144092
\(357\) −1896.91 −0.281219
\(358\) 4069.99 0.600854
\(359\) 11778.5 1.73160 0.865800 0.500389i \(-0.166810\pi\)
0.865800 + 0.500389i \(0.166810\pi\)
\(360\) 0 0
\(361\) 8034.26 1.17135
\(362\) 3521.53 0.511291
\(363\) −4725.79 −0.683305
\(364\) 3725.22 0.536413
\(365\) 0 0
\(366\) −1127.61 −0.161042
\(367\) −2945.24 −0.418911 −0.209455 0.977818i \(-0.567169\pi\)
−0.209455 + 0.977818i \(0.567169\pi\)
\(368\) −2477.00 −0.350876
\(369\) 5062.09 0.714152
\(370\) 0 0
\(371\) −5078.72 −0.710711
\(372\) −2065.35 −0.287859
\(373\) 1706.46 0.236882 0.118441 0.992961i \(-0.462210\pi\)
0.118441 + 0.992961i \(0.462210\pi\)
\(374\) −7754.18 −1.07208
\(375\) 0 0
\(376\) 7785.37 1.06782
\(377\) 2685.72 0.366900
\(378\) −1616.66 −0.219978
\(379\) −11508.4 −1.55976 −0.779879 0.625930i \(-0.784719\pi\)
−0.779879 + 0.625930i \(0.784719\pi\)
\(380\) 0 0
\(381\) −5655.01 −0.760406
\(382\) 3990.14 0.534432
\(383\) −11376.4 −1.51777 −0.758885 0.651225i \(-0.774255\pi\)
−0.758885 + 0.651225i \(0.774255\pi\)
\(384\) 2808.69 0.373257
\(385\) 0 0
\(386\) 2669.37 0.351989
\(387\) −5848.22 −0.768169
\(388\) 2638.37 0.345214
\(389\) −1455.14 −0.189663 −0.0948313 0.995493i \(-0.530231\pi\)
−0.0948313 + 0.995493i \(0.530231\pi\)
\(390\) 0 0
\(391\) 15794.5 2.04287
\(392\) 5252.64 0.676781
\(393\) −283.400 −0.0363757
\(394\) −5672.12 −0.725272
\(395\) 0 0
\(396\) 7223.32 0.916630
\(397\) −10435.0 −1.31919 −0.659594 0.751622i \(-0.729272\pi\)
−0.659594 + 0.751622i \(0.729272\pi\)
\(398\) −5585.09 −0.703405
\(399\) −2653.57 −0.332945
\(400\) 0 0
\(401\) −4464.91 −0.556027 −0.278014 0.960577i \(-0.589676\pi\)
−0.278014 + 0.960577i \(0.589676\pi\)
\(402\) 2025.18 0.251260
\(403\) −10971.8 −1.35619
\(404\) 5967.49 0.734886
\(405\) 0 0
\(406\) −567.335 −0.0693507
\(407\) 10205.4 1.24291
\(408\) −4145.10 −0.502973
\(409\) −1305.92 −0.157882 −0.0789408 0.996879i \(-0.525154\pi\)
−0.0789408 + 0.996879i \(0.525154\pi\)
\(410\) 0 0
\(411\) −3287.91 −0.394600
\(412\) −8152.94 −0.974919
\(413\) 4697.31 0.559659
\(414\) 6013.58 0.713892
\(415\) 0 0
\(416\) 12901.0 1.52049
\(417\) 991.304 0.116413
\(418\) −10847.2 −1.26927
\(419\) −9560.35 −1.11469 −0.557343 0.830282i \(-0.688179\pi\)
−0.557343 + 0.830282i \(0.688179\pi\)
\(420\) 0 0
\(421\) 12725.5 1.47316 0.736581 0.676349i \(-0.236439\pi\)
0.736581 + 0.676349i \(0.236439\pi\)
\(422\) 8457.50 0.975603
\(423\) 8144.69 0.936190
\(424\) −11097.9 −1.27114
\(425\) 0 0
\(426\) 3643.69 0.414407
\(427\) −3095.98 −0.350878
\(428\) −3616.04 −0.408383
\(429\) −9149.17 −1.02966
\(430\) 0 0
\(431\) −3802.40 −0.424954 −0.212477 0.977166i \(-0.568153\pi\)
−0.212477 + 0.977166i \(0.568153\pi\)
\(432\) 1522.27 0.169538
\(433\) −5008.23 −0.555844 −0.277922 0.960604i \(-0.589646\pi\)
−0.277922 + 0.960604i \(0.589646\pi\)
\(434\) 2317.71 0.256344
\(435\) 0 0
\(436\) −11953.2 −1.31296
\(437\) 22094.8 2.41862
\(438\) −1774.04 −0.193531
\(439\) 759.014 0.0825188 0.0412594 0.999148i \(-0.486863\pi\)
0.0412594 + 0.999148i \(0.486863\pi\)
\(440\) 0 0
\(441\) 5495.06 0.593355
\(442\) −9141.82 −0.983783
\(443\) −5220.82 −0.559930 −0.279965 0.960010i \(-0.590323\pi\)
−0.279965 + 0.960010i \(0.590323\pi\)
\(444\) 2264.87 0.242086
\(445\) 0 0
\(446\) 526.241 0.0558705
\(447\) −6455.87 −0.683115
\(448\) −1681.40 −0.177319
\(449\) 144.140 0.0151501 0.00757506 0.999971i \(-0.497589\pi\)
0.00757506 + 0.999971i \(0.497589\pi\)
\(450\) 0 0
\(451\) −13546.2 −1.41433
\(452\) −886.902 −0.0922928
\(453\) −2935.29 −0.304442
\(454\) 6042.15 0.624608
\(455\) 0 0
\(456\) −5798.54 −0.595485
\(457\) −4176.41 −0.427493 −0.213747 0.976889i \(-0.568567\pi\)
−0.213747 + 0.976889i \(0.568567\pi\)
\(458\) 1180.81 0.120470
\(459\) −9706.74 −0.987085
\(460\) 0 0
\(461\) 10280.5 1.03864 0.519318 0.854581i \(-0.326186\pi\)
0.519318 + 0.854581i \(0.326186\pi\)
\(462\) 1932.69 0.194625
\(463\) 63.5675 0.00638063 0.00319032 0.999995i \(-0.498984\pi\)
0.00319032 + 0.999995i \(0.498984\pi\)
\(464\) 534.213 0.0534487
\(465\) 0 0
\(466\) −2240.87 −0.222760
\(467\) 13276.1 1.31551 0.657754 0.753232i \(-0.271506\pi\)
0.657754 + 0.753232i \(0.271506\pi\)
\(468\) 8515.97 0.841134
\(469\) 5560.34 0.547447
\(470\) 0 0
\(471\) −3536.09 −0.345933
\(472\) 10264.5 1.00097
\(473\) 15649.8 1.52131
\(474\) 4158.53 0.402969
\(475\) 0 0
\(476\) −4724.84 −0.454963
\(477\) −11610.1 −1.11445
\(478\) 17.2372 0.00164940
\(479\) 362.208 0.0345505 0.0172752 0.999851i \(-0.494501\pi\)
0.0172752 + 0.999851i \(0.494501\pi\)
\(480\) 0 0
\(481\) 12031.7 1.14054
\(482\) −3100.42 −0.292989
\(483\) −3936.69 −0.370861
\(484\) −11771.0 −1.10547
\(485\) 0 0
\(486\) −5740.42 −0.535784
\(487\) −4517.95 −0.420386 −0.210193 0.977660i \(-0.567409\pi\)
−0.210193 + 0.977660i \(0.567409\pi\)
\(488\) −6765.27 −0.627560
\(489\) −3832.95 −0.354462
\(490\) 0 0
\(491\) 13557.8 1.24614 0.623070 0.782166i \(-0.285885\pi\)
0.623070 + 0.782166i \(0.285885\pi\)
\(492\) −3006.28 −0.275475
\(493\) −3406.40 −0.311189
\(494\) −12788.4 −1.16473
\(495\) 0 0
\(496\) −2182.39 −0.197565
\(497\) 10004.1 0.902911
\(498\) 288.303 0.0259421
\(499\) −9368.11 −0.840429 −0.420215 0.907425i \(-0.638045\pi\)
−0.420215 + 0.907425i \(0.638045\pi\)
\(500\) 0 0
\(501\) 709.643 0.0632825
\(502\) 598.503 0.0532121
\(503\) 14154.3 1.25469 0.627345 0.778741i \(-0.284142\pi\)
0.627345 + 0.778741i \(0.284142\pi\)
\(504\) −4333.11 −0.382960
\(505\) 0 0
\(506\) −16092.4 −1.41382
\(507\) −5777.39 −0.506080
\(508\) −14085.5 −1.23020
\(509\) −20074.0 −1.74806 −0.874032 0.485868i \(-0.838504\pi\)
−0.874032 + 0.485868i \(0.838504\pi\)
\(510\) 0 0
\(511\) −4870.81 −0.421667
\(512\) 4847.09 0.418385
\(513\) −13578.7 −1.16864
\(514\) 2643.12 0.226815
\(515\) 0 0
\(516\) 3473.14 0.296311
\(517\) −21795.2 −1.85407
\(518\) −2541.60 −0.215582
\(519\) 7951.61 0.672519
\(520\) 0 0
\(521\) −9883.02 −0.831061 −0.415531 0.909579i \(-0.636404\pi\)
−0.415531 + 0.909579i \(0.636404\pi\)
\(522\) −1296.95 −0.108747
\(523\) −11943.5 −0.998573 −0.499286 0.866437i \(-0.666404\pi\)
−0.499286 + 0.866437i \(0.666404\pi\)
\(524\) −705.894 −0.0588495
\(525\) 0 0
\(526\) −291.581 −0.0241702
\(527\) 13916.0 1.15027
\(528\) −1819.85 −0.149998
\(529\) 20611.6 1.69406
\(530\) 0 0
\(531\) 10738.2 0.877585
\(532\) −6609.53 −0.538645
\(533\) −15970.3 −1.29785
\(534\) 591.999 0.0479744
\(535\) 0 0
\(536\) 12150.3 0.979131
\(537\) −6090.80 −0.489455
\(538\) 4733.17 0.379296
\(539\) −14704.8 −1.17510
\(540\) 0 0
\(541\) −12252.3 −0.973690 −0.486845 0.873488i \(-0.661852\pi\)
−0.486845 + 0.873488i \(0.661852\pi\)
\(542\) −12406.2 −0.983193
\(543\) −5270.02 −0.416497
\(544\) −16362.9 −1.28962
\(545\) 0 0
\(546\) 2278.55 0.178595
\(547\) −6227.09 −0.486748 −0.243374 0.969933i \(-0.578254\pi\)
−0.243374 + 0.969933i \(0.578254\pi\)
\(548\) −8189.53 −0.638393
\(549\) −7077.51 −0.550202
\(550\) 0 0
\(551\) −4765.17 −0.368427
\(552\) −8602.38 −0.663300
\(553\) 11417.7 0.877991
\(554\) 9794.09 0.751103
\(555\) 0 0
\(556\) 2469.14 0.188336
\(557\) −4186.97 −0.318505 −0.159253 0.987238i \(-0.550908\pi\)
−0.159253 + 0.987238i \(0.550908\pi\)
\(558\) 5298.35 0.401966
\(559\) 18450.5 1.39601
\(560\) 0 0
\(561\) 11604.2 0.873318
\(562\) −9719.20 −0.729501
\(563\) 11298.2 0.845757 0.422878 0.906186i \(-0.361020\pi\)
0.422878 + 0.906186i \(0.361020\pi\)
\(564\) −4836.97 −0.361123
\(565\) 0 0
\(566\) 2250.83 0.167154
\(567\) −3194.57 −0.236613
\(568\) 21860.8 1.61489
\(569\) 13663.2 1.00667 0.503333 0.864093i \(-0.332107\pi\)
0.503333 + 0.864093i \(0.332107\pi\)
\(570\) 0 0
\(571\) −9967.49 −0.730519 −0.365260 0.930906i \(-0.619020\pi\)
−0.365260 + 0.930906i \(0.619020\pi\)
\(572\) −22788.8 −1.66581
\(573\) −5971.30 −0.435348
\(574\) 3373.60 0.245316
\(575\) 0 0
\(576\) −3843.74 −0.278049
\(577\) −9794.28 −0.706657 −0.353329 0.935499i \(-0.614950\pi\)
−0.353329 + 0.935499i \(0.614950\pi\)
\(578\) 4109.92 0.295761
\(579\) −3994.76 −0.286730
\(580\) 0 0
\(581\) 791.568 0.0565228
\(582\) 1613.77 0.114936
\(583\) 31068.7 2.20709
\(584\) −10643.6 −0.754169
\(585\) 0 0
\(586\) −5166.82 −0.364231
\(587\) 7683.46 0.540256 0.270128 0.962824i \(-0.412934\pi\)
0.270128 + 0.962824i \(0.412934\pi\)
\(588\) −3263.41 −0.228879
\(589\) 19466.9 1.36184
\(590\) 0 0
\(591\) 8488.41 0.590806
\(592\) 2393.22 0.166150
\(593\) 9643.48 0.667808 0.333904 0.942607i \(-0.391634\pi\)
0.333904 + 0.942607i \(0.391634\pi\)
\(594\) 9889.79 0.683136
\(595\) 0 0
\(596\) −16080.3 −1.10516
\(597\) 8358.16 0.572993
\(598\) −18972.2 −1.29737
\(599\) 7857.22 0.535955 0.267978 0.963425i \(-0.413645\pi\)
0.267978 + 0.963425i \(0.413645\pi\)
\(600\) 0 0
\(601\) −22538.6 −1.52973 −0.764864 0.644191i \(-0.777194\pi\)
−0.764864 + 0.644191i \(0.777194\pi\)
\(602\) −3897.50 −0.263871
\(603\) 12711.1 0.858435
\(604\) −7311.23 −0.492533
\(605\) 0 0
\(606\) 3650.05 0.244675
\(607\) 25082.9 1.67724 0.838620 0.544717i \(-0.183363\pi\)
0.838620 + 0.544717i \(0.183363\pi\)
\(608\) −22889.9 −1.52682
\(609\) 849.025 0.0564930
\(610\) 0 0
\(611\) −25695.6 −1.70136
\(612\) −10801.1 −0.713415
\(613\) −7745.54 −0.510342 −0.255171 0.966896i \(-0.582132\pi\)
−0.255171 + 0.966896i \(0.582132\pi\)
\(614\) 10937.0 0.718862
\(615\) 0 0
\(616\) 11595.4 0.758430
\(617\) 1569.47 0.102406 0.0512031 0.998688i \(-0.483694\pi\)
0.0512031 + 0.998688i \(0.483694\pi\)
\(618\) −4986.79 −0.324592
\(619\) 21425.6 1.39122 0.695612 0.718418i \(-0.255133\pi\)
0.695612 + 0.718418i \(0.255133\pi\)
\(620\) 0 0
\(621\) −20144.5 −1.30173
\(622\) 7247.83 0.467221
\(623\) 1625.40 0.104527
\(624\) −2145.52 −0.137644
\(625\) 0 0
\(626\) 2385.83 0.152327
\(627\) 16233.1 1.03395
\(628\) −8807.71 −0.559659
\(629\) −15260.3 −0.967359
\(630\) 0 0
\(631\) 11830.4 0.746371 0.373186 0.927757i \(-0.378265\pi\)
0.373186 + 0.927757i \(0.378265\pi\)
\(632\) 24949.7 1.57032
\(633\) −12656.8 −0.794726
\(634\) 13833.4 0.866551
\(635\) 0 0
\(636\) 6895.02 0.429883
\(637\) −17336.3 −1.07832
\(638\) 3470.63 0.215366
\(639\) 22869.8 1.41583
\(640\) 0 0
\(641\) 29383.1 1.81055 0.905274 0.424828i \(-0.139665\pi\)
0.905274 + 0.424828i \(0.139665\pi\)
\(642\) −2211.77 −0.135968
\(643\) −21889.3 −1.34250 −0.671251 0.741230i \(-0.734243\pi\)
−0.671251 + 0.741230i \(0.734243\pi\)
\(644\) −9805.52 −0.599987
\(645\) 0 0
\(646\) 16220.0 0.987877
\(647\) −9421.28 −0.572471 −0.286235 0.958159i \(-0.592404\pi\)
−0.286235 + 0.958159i \(0.592404\pi\)
\(648\) −6980.71 −0.423192
\(649\) −28735.4 −1.73800
\(650\) 0 0
\(651\) −3468.48 −0.208818
\(652\) −9547.11 −0.573457
\(653\) 1168.63 0.0700335 0.0350168 0.999387i \(-0.488852\pi\)
0.0350168 + 0.999387i \(0.488852\pi\)
\(654\) −7311.20 −0.437142
\(655\) 0 0
\(656\) −3176.64 −0.189066
\(657\) −11134.8 −0.661204
\(658\) 5427.97 0.321587
\(659\) 13876.8 0.820277 0.410139 0.912023i \(-0.365480\pi\)
0.410139 + 0.912023i \(0.365480\pi\)
\(660\) 0 0
\(661\) −6084.50 −0.358033 −0.179016 0.983846i \(-0.557291\pi\)
−0.179016 + 0.983846i \(0.557291\pi\)
\(662\) 8170.59 0.479696
\(663\) 13680.9 0.801389
\(664\) 1729.72 0.101093
\(665\) 0 0
\(666\) −5810.19 −0.338048
\(667\) −7069.35 −0.410384
\(668\) 1767.58 0.102380
\(669\) −787.527 −0.0455121
\(670\) 0 0
\(671\) 18939.4 1.08964
\(672\) 4078.35 0.234116
\(673\) 7481.24 0.428500 0.214250 0.976779i \(-0.431269\pi\)
0.214250 + 0.976779i \(0.431269\pi\)
\(674\) 16606.1 0.949023
\(675\) 0 0
\(676\) −14390.3 −0.818748
\(677\) −20122.6 −1.14235 −0.571176 0.820827i \(-0.693513\pi\)
−0.571176 + 0.820827i \(0.693513\pi\)
\(678\) −542.478 −0.0307282
\(679\) 4430.78 0.250424
\(680\) 0 0
\(681\) −9042.16 −0.508805
\(682\) −14178.4 −0.796069
\(683\) −21064.6 −1.18011 −0.590054 0.807364i \(-0.700894\pi\)
−0.590054 + 0.807364i \(0.700894\pi\)
\(684\) −15109.6 −0.844634
\(685\) 0 0
\(686\) 8645.82 0.481194
\(687\) −1767.09 −0.0981351
\(688\) 3669.96 0.203366
\(689\) 36628.6 2.02531
\(690\) 0 0
\(691\) 11210.0 0.617145 0.308573 0.951201i \(-0.400149\pi\)
0.308573 + 0.951201i \(0.400149\pi\)
\(692\) 19805.9 1.08802
\(693\) 12130.6 0.664939
\(694\) −7006.88 −0.383253
\(695\) 0 0
\(696\) 1855.27 0.101040
\(697\) 20255.8 1.10078
\(698\) −4125.61 −0.223720
\(699\) 3353.50 0.181460
\(700\) 0 0
\(701\) 10860.9 0.585178 0.292589 0.956238i \(-0.405483\pi\)
0.292589 + 0.956238i \(0.405483\pi\)
\(702\) 11659.6 0.626871
\(703\) −21347.5 −1.14529
\(704\) 10285.9 0.550658
\(705\) 0 0
\(706\) 8673.69 0.462378
\(707\) 10021.6 0.533098
\(708\) −6377.20 −0.338517
\(709\) −14059.1 −0.744709 −0.372355 0.928090i \(-0.621450\pi\)
−0.372355 + 0.928090i \(0.621450\pi\)
\(710\) 0 0
\(711\) 26101.2 1.37675
\(712\) 3551.78 0.186950
\(713\) 28880.1 1.51692
\(714\) −2889.97 −0.151477
\(715\) 0 0
\(716\) −15171.0 −0.791852
\(717\) −25.7957 −0.00134360
\(718\) 17944.6 0.932714
\(719\) −12419.6 −0.644191 −0.322096 0.946707i \(-0.604387\pi\)
−0.322096 + 0.946707i \(0.604387\pi\)
\(720\) 0 0
\(721\) −13691.8 −0.707223
\(722\) 12240.3 0.630936
\(723\) 4639.83 0.238668
\(724\) −13126.6 −0.673819
\(725\) 0 0
\(726\) −7199.79 −0.368057
\(727\) −15819.2 −0.807019 −0.403509 0.914975i \(-0.632210\pi\)
−0.403509 + 0.914975i \(0.632210\pi\)
\(728\) 13670.5 0.695963
\(729\) −453.498 −0.0230401
\(730\) 0 0
\(731\) −23401.4 −1.18404
\(732\) 4203.20 0.212233
\(733\) 171.656 0.00864974 0.00432487 0.999991i \(-0.498623\pi\)
0.00432487 + 0.999991i \(0.498623\pi\)
\(734\) −4487.10 −0.225643
\(735\) 0 0
\(736\) −33958.1 −1.70070
\(737\) −34015.0 −1.70008
\(738\) 7712.15 0.384673
\(739\) 21681.8 1.07926 0.539632 0.841901i \(-0.318563\pi\)
0.539632 + 0.841901i \(0.318563\pi\)
\(740\) 0 0
\(741\) 19138.0 0.948790
\(742\) −7737.48 −0.382819
\(743\) −34876.3 −1.72205 −0.861027 0.508559i \(-0.830179\pi\)
−0.861027 + 0.508559i \(0.830179\pi\)
\(744\) −7579.25 −0.373480
\(745\) 0 0
\(746\) 2599.81 0.127595
\(747\) 1809.55 0.0886318
\(748\) 28903.9 1.41287
\(749\) −6072.65 −0.296248
\(750\) 0 0
\(751\) −15466.9 −0.751524 −0.375762 0.926716i \(-0.622619\pi\)
−0.375762 + 0.926716i \(0.622619\pi\)
\(752\) −5111.08 −0.247848
\(753\) −895.668 −0.0433466
\(754\) 4091.72 0.197628
\(755\) 0 0
\(756\) 6026.12 0.289905
\(757\) 24842.6 1.19276 0.596380 0.802702i \(-0.296605\pi\)
0.596380 + 0.802702i \(0.296605\pi\)
\(758\) −17533.2 −0.840152
\(759\) 24082.5 1.15170
\(760\) 0 0
\(761\) −830.614 −0.0395660 −0.0197830 0.999804i \(-0.506298\pi\)
−0.0197830 + 0.999804i \(0.506298\pi\)
\(762\) −8615.46 −0.409587
\(763\) −20073.7 −0.952446
\(764\) −14873.3 −0.704316
\(765\) 0 0
\(766\) −17332.0 −0.817535
\(767\) −33877.8 −1.59486
\(768\) 7494.79 0.352142
\(769\) 22797.1 1.06903 0.534514 0.845159i \(-0.320495\pi\)
0.534514 + 0.845159i \(0.320495\pi\)
\(770\) 0 0
\(771\) −3955.46 −0.184763
\(772\) −9950.14 −0.463878
\(773\) 11780.8 0.548157 0.274079 0.961707i \(-0.411627\pi\)
0.274079 + 0.961707i \(0.411627\pi\)
\(774\) −8909.82 −0.413769
\(775\) 0 0
\(776\) 9682.05 0.447894
\(777\) 3803.55 0.175613
\(778\) −2216.93 −0.102160
\(779\) 28335.6 1.30325
\(780\) 0 0
\(781\) −61199.6 −2.80396
\(782\) 24063.1 1.10038
\(783\) 4344.56 0.198291
\(784\) −3448.35 −0.157086
\(785\) 0 0
\(786\) −431.763 −0.0195935
\(787\) 3803.40 0.172270 0.0861350 0.996283i \(-0.472548\pi\)
0.0861350 + 0.996283i \(0.472548\pi\)
\(788\) 21142.9 0.955819
\(789\) 436.356 0.0196891
\(790\) 0 0
\(791\) −1489.43 −0.0669508
\(792\) 26507.5 1.18927
\(793\) 22328.7 0.999894
\(794\) −15897.8 −0.710570
\(795\) 0 0
\(796\) 20818.5 0.927001
\(797\) −28395.0 −1.26199 −0.630993 0.775789i \(-0.717352\pi\)
−0.630993 + 0.775789i \(0.717352\pi\)
\(798\) −4042.75 −0.179338
\(799\) 32590.7 1.44302
\(800\) 0 0
\(801\) 3715.71 0.163905
\(802\) −6802.34 −0.299500
\(803\) 29796.8 1.30947
\(804\) −7548.88 −0.331130
\(805\) 0 0
\(806\) −16715.7 −0.730503
\(807\) −7083.25 −0.308974
\(808\) 21899.0 0.953469
\(809\) −21087.0 −0.916416 −0.458208 0.888845i \(-0.651508\pi\)
−0.458208 + 0.888845i \(0.651508\pi\)
\(810\) 0 0
\(811\) 5516.13 0.238838 0.119419 0.992844i \(-0.461897\pi\)
0.119419 + 0.992844i \(0.461897\pi\)
\(812\) 2114.75 0.0913956
\(813\) 18566.0 0.800908
\(814\) 15548.1 0.669484
\(815\) 0 0
\(816\) 2721.25 0.116744
\(817\) −32736.0 −1.40182
\(818\) −1989.58 −0.0850417
\(819\) 14301.4 0.610173
\(820\) 0 0
\(821\) −9186.35 −0.390507 −0.195253 0.980753i \(-0.562553\pi\)
−0.195253 + 0.980753i \(0.562553\pi\)
\(822\) −5009.17 −0.212548
\(823\) −30176.7 −1.27812 −0.639060 0.769157i \(-0.720676\pi\)
−0.639060 + 0.769157i \(0.720676\pi\)
\(824\) −29918.9 −1.26490
\(825\) 0 0
\(826\) 7156.39 0.301456
\(827\) 4173.79 0.175498 0.0877491 0.996143i \(-0.472033\pi\)
0.0877491 + 0.996143i \(0.472033\pi\)
\(828\) −22415.7 −0.940822
\(829\) 18419.9 0.771714 0.385857 0.922559i \(-0.373906\pi\)
0.385857 + 0.922559i \(0.373906\pi\)
\(830\) 0 0
\(831\) −14657.0 −0.611848
\(832\) 12126.6 0.505304
\(833\) 21988.3 0.914585
\(834\) 1510.26 0.0627051
\(835\) 0 0
\(836\) 40433.3 1.67275
\(837\) −17748.6 −0.732954
\(838\) −14565.3 −0.600418
\(839\) 21442.5 0.882335 0.441167 0.897425i \(-0.354565\pi\)
0.441167 + 0.897425i \(0.354565\pi\)
\(840\) 0 0
\(841\) −22864.4 −0.937486
\(842\) 19387.4 0.793508
\(843\) 14544.9 0.594251
\(844\) −31525.5 −1.28573
\(845\) 0 0
\(846\) 12408.5 0.504272
\(847\) −19767.8 −0.801924
\(848\) 7285.75 0.295040
\(849\) −3368.39 −0.136164
\(850\) 0 0
\(851\) −31670.0 −1.27571
\(852\) −13581.9 −0.546137
\(853\) 27609.3 1.10823 0.554117 0.832439i \(-0.313056\pi\)
0.554117 + 0.832439i \(0.313056\pi\)
\(854\) −4716.76 −0.188998
\(855\) 0 0
\(856\) −13269.8 −0.529852
\(857\) 3202.65 0.127655 0.0638275 0.997961i \(-0.479669\pi\)
0.0638275 + 0.997961i \(0.479669\pi\)
\(858\) −13938.9 −0.554621
\(859\) −18828.1 −0.747855 −0.373928 0.927458i \(-0.621989\pi\)
−0.373928 + 0.927458i \(0.621989\pi\)
\(860\) 0 0
\(861\) −5048.64 −0.199834
\(862\) −5793.00 −0.228898
\(863\) 17394.9 0.686129 0.343064 0.939312i \(-0.388535\pi\)
0.343064 + 0.939312i \(0.388535\pi\)
\(864\) 20869.4 0.821751
\(865\) 0 0
\(866\) −7630.10 −0.299401
\(867\) −6150.55 −0.240927
\(868\) −8639.30 −0.337830
\(869\) −69846.8 −2.72657
\(870\) 0 0
\(871\) −40102.1 −1.56005
\(872\) −43864.6 −1.70349
\(873\) 10128.9 0.392682
\(874\) 33661.7 1.30277
\(875\) 0 0
\(876\) 6612.76 0.255051
\(877\) 26088.8 1.00451 0.502255 0.864719i \(-0.332504\pi\)
0.502255 + 0.864719i \(0.332504\pi\)
\(878\) 1156.37 0.0444481
\(879\) 7732.22 0.296702
\(880\) 0 0
\(881\) 42096.4 1.60983 0.804917 0.593388i \(-0.202210\pi\)
0.804917 + 0.593388i \(0.202210\pi\)
\(882\) 8371.79 0.319606
\(883\) −9252.21 −0.352618 −0.176309 0.984335i \(-0.556416\pi\)
−0.176309 + 0.984335i \(0.556416\pi\)
\(884\) 34076.3 1.29651
\(885\) 0 0
\(886\) −7953.98 −0.301602
\(887\) 16116.1 0.610062 0.305031 0.952342i \(-0.401333\pi\)
0.305031 + 0.952342i \(0.401333\pi\)
\(888\) 8311.43 0.314092
\(889\) −23654.7 −0.892410
\(890\) 0 0
\(891\) 19542.6 0.734793
\(892\) −1961.57 −0.0736305
\(893\) 45590.8 1.70844
\(894\) −9835.59 −0.367955
\(895\) 0 0
\(896\) 11748.7 0.438053
\(897\) 28392.1 1.05684
\(898\) 219.599 0.00816050
\(899\) −6228.55 −0.231072
\(900\) 0 0
\(901\) −46457.4 −1.71778
\(902\) −20637.8 −0.761820
\(903\) 5832.67 0.214949
\(904\) −3254.67 −0.119744
\(905\) 0 0
\(906\) −4471.95 −0.163985
\(907\) −26185.5 −0.958628 −0.479314 0.877643i \(-0.659114\pi\)
−0.479314 + 0.877643i \(0.659114\pi\)
\(908\) −22522.2 −0.823157
\(909\) 22909.7 0.835936
\(910\) 0 0
\(911\) −27823.4 −1.01189 −0.505945 0.862566i \(-0.668856\pi\)
−0.505945 + 0.862566i \(0.668856\pi\)
\(912\) 3806.73 0.138216
\(913\) −4842.36 −0.175530
\(914\) −6362.81 −0.230266
\(915\) 0 0
\(916\) −4401.48 −0.158765
\(917\) −1185.45 −0.0426904
\(918\) −14788.3 −0.531686
\(919\) 47772.2 1.71476 0.857378 0.514688i \(-0.172092\pi\)
0.857378 + 0.514688i \(0.172092\pi\)
\(920\) 0 0
\(921\) −16367.4 −0.585584
\(922\) 15662.5 0.559454
\(923\) −72151.5 −2.57302
\(924\) −7204.12 −0.256492
\(925\) 0 0
\(926\) 96.8458 0.00343688
\(927\) −31299.8 −1.10897
\(928\) 7323.73 0.259066
\(929\) 1947.77 0.0687883 0.0343942 0.999408i \(-0.489050\pi\)
0.0343942 + 0.999408i \(0.489050\pi\)
\(930\) 0 0
\(931\) 30759.2 1.08281
\(932\) 8352.89 0.293571
\(933\) −10846.5 −0.380598
\(934\) 20226.2 0.708589
\(935\) 0 0
\(936\) 31251.1 1.09132
\(937\) 19185.4 0.668899 0.334449 0.942414i \(-0.391450\pi\)
0.334449 + 0.942414i \(0.391450\pi\)
\(938\) 8471.23 0.294878
\(939\) −3570.43 −0.124086
\(940\) 0 0
\(941\) 45452.2 1.57460 0.787300 0.616570i \(-0.211478\pi\)
0.787300 + 0.616570i \(0.211478\pi\)
\(942\) −5387.28 −0.186334
\(943\) 42037.1 1.45166
\(944\) −6738.59 −0.232333
\(945\) 0 0
\(946\) 23842.7 0.819443
\(947\) −7896.17 −0.270952 −0.135476 0.990781i \(-0.543256\pi\)
−0.135476 + 0.990781i \(0.543256\pi\)
\(948\) −15501.0 −0.531064
\(949\) 35129.1 1.20162
\(950\) 0 0
\(951\) −20701.8 −0.705892
\(952\) −17338.8 −0.590287
\(953\) −18152.5 −0.617017 −0.308508 0.951222i \(-0.599830\pi\)
−0.308508 + 0.951222i \(0.599830\pi\)
\(954\) −17688.1 −0.600287
\(955\) 0 0
\(956\) −64.2520 −0.00217370
\(957\) −5193.85 −0.175437
\(958\) 551.827 0.0186104
\(959\) −13753.2 −0.463101
\(960\) 0 0
\(961\) −4345.81 −0.145876
\(962\) 18330.5 0.614343
\(963\) −13882.3 −0.464538
\(964\) 11556.9 0.386123
\(965\) 0 0
\(966\) −5997.60 −0.199761
\(967\) 23418.6 0.778791 0.389396 0.921071i \(-0.372684\pi\)
0.389396 + 0.921071i \(0.372684\pi\)
\(968\) −43196.2 −1.43427
\(969\) −24273.5 −0.804724
\(970\) 0 0
\(971\) 43994.5 1.45402 0.727009 0.686628i \(-0.240910\pi\)
0.727009 + 0.686628i \(0.240910\pi\)
\(972\) 21397.5 0.706097
\(973\) 4146.59 0.136622
\(974\) −6883.15 −0.226438
\(975\) 0 0
\(976\) 4441.38 0.145661
\(977\) 40451.4 1.32462 0.662310 0.749230i \(-0.269576\pi\)
0.662310 + 0.749230i \(0.269576\pi\)
\(978\) −5839.54 −0.190928
\(979\) −9943.25 −0.324604
\(980\) 0 0
\(981\) −45889.1 −1.49350
\(982\) 20655.4 0.671224
\(983\) 20180.4 0.654785 0.327393 0.944888i \(-0.393830\pi\)
0.327393 + 0.944888i \(0.393830\pi\)
\(984\) −11032.2 −0.357412
\(985\) 0 0
\(986\) −5189.68 −0.167620
\(987\) −8123.04 −0.261965
\(988\) 47669.0 1.53497
\(989\) −48565.3 −1.56146
\(990\) 0 0
\(991\) −37145.5 −1.19068 −0.595341 0.803473i \(-0.702983\pi\)
−0.595341 + 0.803473i \(0.702983\pi\)
\(992\) −29919.3 −0.957599
\(993\) −12227.4 −0.390760
\(994\) 15241.4 0.486346
\(995\) 0 0
\(996\) −1074.66 −0.0341886
\(997\) −6005.07 −0.190755 −0.0953774 0.995441i \(-0.530406\pi\)
−0.0953774 + 0.995441i \(0.530406\pi\)
\(998\) −14272.4 −0.452691
\(999\) 19463.2 0.616405
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2075.4.a.g.1.14 21
5.4 even 2 415.4.a.c.1.8 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
415.4.a.c.1.8 21 5.4 even 2
2075.4.a.g.1.14 21 1.1 even 1 trivial