Properties

Label 415.2.a.e.1.7
Level $415$
Weight $2$
Character 415.1
Self dual yes
Analytic conductor $3.314$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [415,2,Mod(1,415)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("415.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(415, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 415 = 5 \cdot 83 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 415.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.31379168388\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 20x^{9} - x^{8} + 146x^{7} + 15x^{6} - 464x^{5} - 76x^{4} + 567x^{3} + 136x^{2} - 100x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(0.381602\) of defining polynomial
Character \(\chi\) \(=\) 415.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.381602 q^{2} +1.63018 q^{3} -1.85438 q^{4} +1.00000 q^{5} +0.622079 q^{6} -0.0761781 q^{7} -1.47084 q^{8} -0.342523 q^{9} +0.381602 q^{10} +4.79348 q^{11} -3.02297 q^{12} +6.08842 q^{13} -0.0290697 q^{14} +1.63018 q^{15} +3.14748 q^{16} +7.73742 q^{17} -0.130708 q^{18} -0.833555 q^{19} -1.85438 q^{20} -0.124184 q^{21} +1.82920 q^{22} -8.25464 q^{23} -2.39773 q^{24} +1.00000 q^{25} +2.32336 q^{26} -5.44890 q^{27} +0.141263 q^{28} -6.42032 q^{29} +0.622079 q^{30} -4.72443 q^{31} +4.14277 q^{32} +7.81422 q^{33} +2.95262 q^{34} -0.0761781 q^{35} +0.635168 q^{36} +0.579319 q^{37} -0.318086 q^{38} +9.92521 q^{39} -1.47084 q^{40} -4.08551 q^{41} -0.0473888 q^{42} +3.19950 q^{43} -8.88893 q^{44} -0.342523 q^{45} -3.14999 q^{46} -5.36358 q^{47} +5.13095 q^{48} -6.99420 q^{49} +0.381602 q^{50} +12.6134 q^{51} -11.2903 q^{52} -0.465047 q^{53} -2.07931 q^{54} +4.79348 q^{55} +0.112046 q^{56} -1.35884 q^{57} -2.45001 q^{58} +7.57236 q^{59} -3.02297 q^{60} -5.94859 q^{61} -1.80285 q^{62} +0.0260928 q^{63} -4.71408 q^{64} +6.08842 q^{65} +2.98192 q^{66} +6.35636 q^{67} -14.3481 q^{68} -13.4565 q^{69} -0.0290697 q^{70} +2.40089 q^{71} +0.503797 q^{72} +1.19045 q^{73} +0.221069 q^{74} +1.63018 q^{75} +1.54573 q^{76} -0.365158 q^{77} +3.78748 q^{78} +2.25348 q^{79} +3.14748 q^{80} -7.85511 q^{81} -1.55904 q^{82} -1.00000 q^{83} +0.230284 q^{84} +7.73742 q^{85} +1.22094 q^{86} -10.4663 q^{87} -7.05044 q^{88} +4.10871 q^{89} -0.130708 q^{90} -0.463805 q^{91} +15.3072 q^{92} -7.70166 q^{93} -2.04676 q^{94} -0.833555 q^{95} +6.75344 q^{96} -12.1829 q^{97} -2.66900 q^{98} -1.64188 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 18 q^{4} + 11 q^{5} - 5 q^{6} - 3 q^{7} + 3 q^{8} + 21 q^{9} - q^{11} + 2 q^{12} + q^{13} + 12 q^{14} + 20 q^{16} + 28 q^{17} - 26 q^{18} - 2 q^{19} + 18 q^{20} + 3 q^{21} - 20 q^{22} + q^{23}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.381602 0.269834 0.134917 0.990857i \(-0.456923\pi\)
0.134917 + 0.990857i \(0.456923\pi\)
\(3\) 1.63018 0.941183 0.470592 0.882351i \(-0.344041\pi\)
0.470592 + 0.882351i \(0.344041\pi\)
\(4\) −1.85438 −0.927190
\(5\) 1.00000 0.447214
\(6\) 0.622079 0.253963
\(7\) −0.0761781 −0.0287926 −0.0143963 0.999896i \(-0.504583\pi\)
−0.0143963 + 0.999896i \(0.504583\pi\)
\(8\) −1.47084 −0.520020
\(9\) −0.342523 −0.114174
\(10\) 0.381602 0.120673
\(11\) 4.79348 1.44529 0.722644 0.691220i \(-0.242926\pi\)
0.722644 + 0.691220i \(0.242926\pi\)
\(12\) −3.02297 −0.872655
\(13\) 6.08842 1.68863 0.844313 0.535851i \(-0.180009\pi\)
0.844313 + 0.535851i \(0.180009\pi\)
\(14\) −0.0290697 −0.00776921
\(15\) 1.63018 0.420910
\(16\) 3.14748 0.786871
\(17\) 7.73742 1.87660 0.938300 0.345823i \(-0.112400\pi\)
0.938300 + 0.345823i \(0.112400\pi\)
\(18\) −0.130708 −0.0308081
\(19\) −0.833555 −0.191231 −0.0956153 0.995418i \(-0.530482\pi\)
−0.0956153 + 0.995418i \(0.530482\pi\)
\(20\) −1.85438 −0.414652
\(21\) −0.124184 −0.0270991
\(22\) 1.82920 0.389987
\(23\) −8.25464 −1.72121 −0.860606 0.509271i \(-0.829915\pi\)
−0.860606 + 0.509271i \(0.829915\pi\)
\(24\) −2.39773 −0.489434
\(25\) 1.00000 0.200000
\(26\) 2.32336 0.455648
\(27\) −5.44890 −1.04864
\(28\) 0.141263 0.0266962
\(29\) −6.42032 −1.19222 −0.596112 0.802901i \(-0.703289\pi\)
−0.596112 + 0.802901i \(0.703289\pi\)
\(30\) 0.622079 0.113576
\(31\) −4.72443 −0.848533 −0.424267 0.905537i \(-0.639468\pi\)
−0.424267 + 0.905537i \(0.639468\pi\)
\(32\) 4.14277 0.732345
\(33\) 7.81422 1.36028
\(34\) 2.95262 0.506370
\(35\) −0.0761781 −0.0128764
\(36\) 0.635168 0.105861
\(37\) 0.579319 0.0952394 0.0476197 0.998866i \(-0.484836\pi\)
0.0476197 + 0.998866i \(0.484836\pi\)
\(38\) −0.318086 −0.0516004
\(39\) 9.92521 1.58931
\(40\) −1.47084 −0.232560
\(41\) −4.08551 −0.638049 −0.319025 0.947746i \(-0.603355\pi\)
−0.319025 + 0.947746i \(0.603355\pi\)
\(42\) −0.0473888 −0.00731225
\(43\) 3.19950 0.487920 0.243960 0.969785i \(-0.421553\pi\)
0.243960 + 0.969785i \(0.421553\pi\)
\(44\) −8.88893 −1.34006
\(45\) −0.342523 −0.0510604
\(46\) −3.14999 −0.464441
\(47\) −5.36358 −0.782359 −0.391179 0.920314i \(-0.627933\pi\)
−0.391179 + 0.920314i \(0.627933\pi\)
\(48\) 5.13095 0.740590
\(49\) −6.99420 −0.999171
\(50\) 0.381602 0.0539667
\(51\) 12.6134 1.76622
\(52\) −11.2903 −1.56568
\(53\) −0.465047 −0.0638791 −0.0319395 0.999490i \(-0.510168\pi\)
−0.0319395 + 0.999490i \(0.510168\pi\)
\(54\) −2.07931 −0.282959
\(55\) 4.79348 0.646353
\(56\) 0.112046 0.0149727
\(57\) −1.35884 −0.179983
\(58\) −2.45001 −0.321702
\(59\) 7.57236 0.985838 0.492919 0.870075i \(-0.335930\pi\)
0.492919 + 0.870075i \(0.335930\pi\)
\(60\) −3.02297 −0.390263
\(61\) −5.94859 −0.761638 −0.380819 0.924650i \(-0.624358\pi\)
−0.380819 + 0.924650i \(0.624358\pi\)
\(62\) −1.80285 −0.228963
\(63\) 0.0260928 0.00328738
\(64\) −4.71408 −0.589260
\(65\) 6.08842 0.755176
\(66\) 2.98192 0.367050
\(67\) 6.35636 0.776553 0.388276 0.921543i \(-0.373071\pi\)
0.388276 + 0.921543i \(0.373071\pi\)
\(68\) −14.3481 −1.73996
\(69\) −13.4565 −1.61998
\(70\) −0.0290697 −0.00347450
\(71\) 2.40089 0.284933 0.142466 0.989800i \(-0.454497\pi\)
0.142466 + 0.989800i \(0.454497\pi\)
\(72\) 0.503797 0.0593731
\(73\) 1.19045 0.139332 0.0696658 0.997570i \(-0.477807\pi\)
0.0696658 + 0.997570i \(0.477807\pi\)
\(74\) 0.221069 0.0256988
\(75\) 1.63018 0.188237
\(76\) 1.54573 0.177307
\(77\) −0.365158 −0.0416136
\(78\) 3.78748 0.428848
\(79\) 2.25348 0.253537 0.126768 0.991932i \(-0.459540\pi\)
0.126768 + 0.991932i \(0.459540\pi\)
\(80\) 3.14748 0.351899
\(81\) −7.85511 −0.872790
\(82\) −1.55904 −0.172167
\(83\) −1.00000 −0.109764
\(84\) 0.230284 0.0251260
\(85\) 7.73742 0.839241
\(86\) 1.22094 0.131657
\(87\) −10.4663 −1.12210
\(88\) −7.05044 −0.751580
\(89\) 4.10871 0.435523 0.217761 0.976002i \(-0.430125\pi\)
0.217761 + 0.976002i \(0.430125\pi\)
\(90\) −0.130708 −0.0137778
\(91\) −0.463805 −0.0486199
\(92\) 15.3072 1.59589
\(93\) −7.70166 −0.798625
\(94\) −2.04676 −0.211107
\(95\) −0.833555 −0.0855209
\(96\) 6.75344 0.689270
\(97\) −12.1829 −1.23698 −0.618492 0.785791i \(-0.712256\pi\)
−0.618492 + 0.785791i \(0.712256\pi\)
\(98\) −2.66900 −0.269610
\(99\) −1.64188 −0.165015
\(100\) −1.85438 −0.185438
\(101\) 13.3255 1.32593 0.662966 0.748649i \(-0.269297\pi\)
0.662966 + 0.748649i \(0.269297\pi\)
\(102\) 4.81329 0.476586
\(103\) −10.3909 −1.02385 −0.511923 0.859031i \(-0.671067\pi\)
−0.511923 + 0.859031i \(0.671067\pi\)
\(104\) −8.95510 −0.878120
\(105\) −0.124184 −0.0121191
\(106\) −0.177463 −0.0172367
\(107\) −15.6812 −1.51596 −0.757979 0.652279i \(-0.773813\pi\)
−0.757979 + 0.652279i \(0.773813\pi\)
\(108\) 10.1043 0.972290
\(109\) 17.0197 1.63019 0.815095 0.579328i \(-0.196685\pi\)
0.815095 + 0.579328i \(0.196685\pi\)
\(110\) 1.82920 0.174408
\(111\) 0.944392 0.0896377
\(112\) −0.239769 −0.0226561
\(113\) −2.67610 −0.251746 −0.125873 0.992046i \(-0.540173\pi\)
−0.125873 + 0.992046i \(0.540173\pi\)
\(114\) −0.518537 −0.0485654
\(115\) −8.25464 −0.769749
\(116\) 11.9057 1.10542
\(117\) −2.08543 −0.192798
\(118\) 2.88963 0.266012
\(119\) −0.589422 −0.0540322
\(120\) −2.39773 −0.218882
\(121\) 11.9775 1.08886
\(122\) −2.26999 −0.205516
\(123\) −6.66010 −0.600521
\(124\) 8.76089 0.786751
\(125\) 1.00000 0.0894427
\(126\) 0.00995706 0.000887046 0
\(127\) −2.16302 −0.191937 −0.0959684 0.995384i \(-0.530595\pi\)
−0.0959684 + 0.995384i \(0.530595\pi\)
\(128\) −10.0844 −0.891347
\(129\) 5.21576 0.459222
\(130\) 2.32336 0.203772
\(131\) 18.3932 1.60702 0.803509 0.595293i \(-0.202964\pi\)
0.803509 + 0.595293i \(0.202964\pi\)
\(132\) −14.4905 −1.26124
\(133\) 0.0634986 0.00550603
\(134\) 2.42560 0.209540
\(135\) −5.44890 −0.468967
\(136\) −11.3805 −0.975870
\(137\) −17.4166 −1.48800 −0.744001 0.668178i \(-0.767074\pi\)
−0.744001 + 0.668178i \(0.767074\pi\)
\(138\) −5.13504 −0.437124
\(139\) −13.2880 −1.12707 −0.563535 0.826092i \(-0.690559\pi\)
−0.563535 + 0.826092i \(0.690559\pi\)
\(140\) 0.141263 0.0119389
\(141\) −8.74359 −0.736343
\(142\) 0.916184 0.0768845
\(143\) 29.1847 2.44055
\(144\) −1.07809 −0.0898406
\(145\) −6.42032 −0.533179
\(146\) 0.454278 0.0375963
\(147\) −11.4018 −0.940403
\(148\) −1.07428 −0.0883050
\(149\) 17.6410 1.44521 0.722605 0.691261i \(-0.242944\pi\)
0.722605 + 0.691261i \(0.242944\pi\)
\(150\) 0.622079 0.0507926
\(151\) −16.8357 −1.37007 −0.685033 0.728512i \(-0.740212\pi\)
−0.685033 + 0.728512i \(0.740212\pi\)
\(152\) 1.22603 0.0994438
\(153\) −2.65025 −0.214260
\(154\) −0.139345 −0.0112288
\(155\) −4.72443 −0.379476
\(156\) −18.4051 −1.47359
\(157\) −13.6620 −1.09035 −0.545175 0.838322i \(-0.683537\pi\)
−0.545175 + 0.838322i \(0.683537\pi\)
\(158\) 0.859934 0.0684127
\(159\) −0.758108 −0.0601219
\(160\) 4.14277 0.327514
\(161\) 0.628823 0.0495582
\(162\) −2.99753 −0.235508
\(163\) 1.28882 0.100948 0.0504741 0.998725i \(-0.483927\pi\)
0.0504741 + 0.998725i \(0.483927\pi\)
\(164\) 7.57608 0.591593
\(165\) 7.81422 0.608336
\(166\) −0.381602 −0.0296181
\(167\) −17.5230 −1.35597 −0.677985 0.735076i \(-0.737146\pi\)
−0.677985 + 0.735076i \(0.737146\pi\)
\(168\) 0.182654 0.0140921
\(169\) 24.0689 1.85145
\(170\) 2.95262 0.226455
\(171\) 0.285512 0.0218336
\(172\) −5.93309 −0.452394
\(173\) 16.7053 1.27008 0.635040 0.772479i \(-0.280983\pi\)
0.635040 + 0.772479i \(0.280983\pi\)
\(174\) −3.99395 −0.302781
\(175\) −0.0761781 −0.00575852
\(176\) 15.0874 1.13726
\(177\) 12.3443 0.927854
\(178\) 1.56789 0.117519
\(179\) 1.30846 0.0977988 0.0488994 0.998804i \(-0.484429\pi\)
0.0488994 + 0.998804i \(0.484429\pi\)
\(180\) 0.635168 0.0473427
\(181\) −10.8110 −0.803578 −0.401789 0.915732i \(-0.631611\pi\)
−0.401789 + 0.915732i \(0.631611\pi\)
\(182\) −0.176989 −0.0131193
\(183\) −9.69725 −0.716841
\(184\) 12.1413 0.895065
\(185\) 0.579319 0.0425924
\(186\) −2.93897 −0.215496
\(187\) 37.0892 2.71223
\(188\) 9.94612 0.725395
\(189\) 0.415087 0.0301931
\(190\) −0.318086 −0.0230764
\(191\) −13.5911 −0.983415 −0.491707 0.870760i \(-0.663627\pi\)
−0.491707 + 0.870760i \(0.663627\pi\)
\(192\) −7.68478 −0.554601
\(193\) −9.19181 −0.661641 −0.330820 0.943694i \(-0.607325\pi\)
−0.330820 + 0.943694i \(0.607325\pi\)
\(194\) −4.64901 −0.333780
\(195\) 9.92521 0.710759
\(196\) 12.9699 0.926421
\(197\) 24.8615 1.77131 0.885655 0.464344i \(-0.153710\pi\)
0.885655 + 0.464344i \(0.153710\pi\)
\(198\) −0.626545 −0.0445266
\(199\) −11.0180 −0.781048 −0.390524 0.920593i \(-0.627706\pi\)
−0.390524 + 0.920593i \(0.627706\pi\)
\(200\) −1.47084 −0.104004
\(201\) 10.3620 0.730878
\(202\) 5.08502 0.357781
\(203\) 0.489088 0.0343272
\(204\) −23.3900 −1.63762
\(205\) −4.08551 −0.285344
\(206\) −3.96519 −0.276268
\(207\) 2.82741 0.196518
\(208\) 19.1632 1.32873
\(209\) −3.99563 −0.276383
\(210\) −0.0473888 −0.00327014
\(211\) 22.5868 1.55494 0.777471 0.628918i \(-0.216502\pi\)
0.777471 + 0.628918i \(0.216502\pi\)
\(212\) 0.862373 0.0592280
\(213\) 3.91387 0.268174
\(214\) −5.98398 −0.409056
\(215\) 3.19950 0.218204
\(216\) 8.01447 0.545315
\(217\) 0.359898 0.0244315
\(218\) 6.49475 0.439880
\(219\) 1.94064 0.131136
\(220\) −8.88893 −0.599292
\(221\) 47.1087 3.16887
\(222\) 0.360382 0.0241873
\(223\) −14.8867 −0.996887 −0.498444 0.866922i \(-0.666095\pi\)
−0.498444 + 0.866922i \(0.666095\pi\)
\(224\) −0.315588 −0.0210861
\(225\) −0.342523 −0.0228349
\(226\) −1.02121 −0.0679296
\(227\) 9.68451 0.642784 0.321392 0.946946i \(-0.395849\pi\)
0.321392 + 0.946946i \(0.395849\pi\)
\(228\) 2.51981 0.166878
\(229\) −20.2691 −1.33942 −0.669711 0.742621i \(-0.733582\pi\)
−0.669711 + 0.742621i \(0.733582\pi\)
\(230\) −3.14999 −0.207704
\(231\) −0.595272 −0.0391661
\(232\) 9.44327 0.619981
\(233\) 19.7228 1.29208 0.646041 0.763303i \(-0.276423\pi\)
0.646041 + 0.763303i \(0.276423\pi\)
\(234\) −0.795804 −0.0520233
\(235\) −5.36358 −0.349882
\(236\) −14.0420 −0.914059
\(237\) 3.67357 0.238624
\(238\) −0.224925 −0.0145797
\(239\) 23.2525 1.50408 0.752039 0.659119i \(-0.229070\pi\)
0.752039 + 0.659119i \(0.229070\pi\)
\(240\) 5.13095 0.331202
\(241\) −10.4213 −0.671298 −0.335649 0.941987i \(-0.608956\pi\)
−0.335649 + 0.941987i \(0.608956\pi\)
\(242\) 4.57062 0.293811
\(243\) 3.54150 0.227187
\(244\) 11.0309 0.706183
\(245\) −6.99420 −0.446843
\(246\) −2.54151 −0.162041
\(247\) −5.07503 −0.322917
\(248\) 6.94888 0.441255
\(249\) −1.63018 −0.103308
\(250\) 0.381602 0.0241346
\(251\) −3.62296 −0.228679 −0.114340 0.993442i \(-0.536475\pi\)
−0.114340 + 0.993442i \(0.536475\pi\)
\(252\) −0.0483859 −0.00304803
\(253\) −39.5685 −2.48765
\(254\) −0.825413 −0.0517910
\(255\) 12.6134 0.789879
\(256\) 5.57991 0.348744
\(257\) 6.32617 0.394616 0.197308 0.980342i \(-0.436780\pi\)
0.197308 + 0.980342i \(0.436780\pi\)
\(258\) 1.99034 0.123913
\(259\) −0.0441314 −0.00274219
\(260\) −11.2903 −0.700192
\(261\) 2.19911 0.136122
\(262\) 7.01887 0.433627
\(263\) −15.4402 −0.952082 −0.476041 0.879423i \(-0.657929\pi\)
−0.476041 + 0.879423i \(0.657929\pi\)
\(264\) −11.4935 −0.707374
\(265\) −0.465047 −0.0285676
\(266\) 0.0242312 0.00148571
\(267\) 6.69793 0.409907
\(268\) −11.7871 −0.720012
\(269\) 12.1989 0.743777 0.371889 0.928277i \(-0.378710\pi\)
0.371889 + 0.928277i \(0.378710\pi\)
\(270\) −2.07931 −0.126543
\(271\) −3.43954 −0.208937 −0.104469 0.994528i \(-0.533314\pi\)
−0.104469 + 0.994528i \(0.533314\pi\)
\(272\) 24.3534 1.47664
\(273\) −0.756083 −0.0457603
\(274\) −6.64622 −0.401513
\(275\) 4.79348 0.289058
\(276\) 24.9535 1.50202
\(277\) −9.74712 −0.585648 −0.292824 0.956166i \(-0.594595\pi\)
−0.292824 + 0.956166i \(0.594595\pi\)
\(278\) −5.07072 −0.304122
\(279\) 1.61823 0.0968808
\(280\) 0.112046 0.00669602
\(281\) −6.98593 −0.416746 −0.208373 0.978049i \(-0.566817\pi\)
−0.208373 + 0.978049i \(0.566817\pi\)
\(282\) −3.33657 −0.198690
\(283\) −19.2612 −1.14496 −0.572478 0.819920i \(-0.694018\pi\)
−0.572478 + 0.819920i \(0.694018\pi\)
\(284\) −4.45216 −0.264187
\(285\) −1.35884 −0.0804908
\(286\) 11.1370 0.658543
\(287\) 0.311226 0.0183711
\(288\) −1.41899 −0.0836151
\(289\) 42.8677 2.52163
\(290\) −2.45001 −0.143870
\(291\) −19.8602 −1.16423
\(292\) −2.20754 −0.129187
\(293\) 15.3470 0.896579 0.448289 0.893888i \(-0.352033\pi\)
0.448289 + 0.893888i \(0.352033\pi\)
\(294\) −4.35094 −0.253752
\(295\) 7.57236 0.440880
\(296\) −0.852085 −0.0495265
\(297\) −26.1192 −1.51559
\(298\) 6.73186 0.389966
\(299\) −50.2578 −2.90648
\(300\) −3.02297 −0.174531
\(301\) −0.243732 −0.0140485
\(302\) −6.42453 −0.369690
\(303\) 21.7228 1.24794
\(304\) −2.62360 −0.150474
\(305\) −5.94859 −0.340615
\(306\) −1.01134 −0.0578145
\(307\) −6.92676 −0.395331 −0.197665 0.980270i \(-0.563336\pi\)
−0.197665 + 0.980270i \(0.563336\pi\)
\(308\) 0.677142 0.0385837
\(309\) −16.9390 −0.963627
\(310\) −1.80285 −0.102395
\(311\) −19.6813 −1.11602 −0.558011 0.829833i \(-0.688435\pi\)
−0.558011 + 0.829833i \(0.688435\pi\)
\(312\) −14.5984 −0.826471
\(313\) −3.87220 −0.218869 −0.109435 0.993994i \(-0.534904\pi\)
−0.109435 + 0.993994i \(0.534904\pi\)
\(314\) −5.21347 −0.294213
\(315\) 0.0260928 0.00147016
\(316\) −4.17881 −0.235076
\(317\) 17.7095 0.994666 0.497333 0.867560i \(-0.334313\pi\)
0.497333 + 0.867560i \(0.334313\pi\)
\(318\) −0.289296 −0.0162229
\(319\) −30.7757 −1.72311
\(320\) −4.71408 −0.263525
\(321\) −25.5631 −1.42679
\(322\) 0.239960 0.0133725
\(323\) −6.44956 −0.358863
\(324\) 14.5664 0.809242
\(325\) 6.08842 0.337725
\(326\) 0.491816 0.0272392
\(327\) 27.7451 1.53431
\(328\) 6.00913 0.331799
\(329\) 0.408587 0.0225262
\(330\) 2.98192 0.164150
\(331\) 10.7130 0.588839 0.294419 0.955676i \(-0.404874\pi\)
0.294419 + 0.955676i \(0.404874\pi\)
\(332\) 1.85438 0.101772
\(333\) −0.198430 −0.0108739
\(334\) −6.68681 −0.365886
\(335\) 6.35636 0.347285
\(336\) −0.390866 −0.0213235
\(337\) 16.0911 0.876540 0.438270 0.898843i \(-0.355591\pi\)
0.438270 + 0.898843i \(0.355591\pi\)
\(338\) 9.18475 0.499585
\(339\) −4.36251 −0.236939
\(340\) −14.3481 −0.778136
\(341\) −22.6465 −1.22638
\(342\) 0.108952 0.00589145
\(343\) 1.06605 0.0575614
\(344\) −4.70596 −0.253728
\(345\) −13.4565 −0.724475
\(346\) 6.37478 0.342710
\(347\) 3.82853 0.205526 0.102763 0.994706i \(-0.467232\pi\)
0.102763 + 0.994706i \(0.467232\pi\)
\(348\) 19.4084 1.04040
\(349\) 15.5449 0.832101 0.416050 0.909342i \(-0.363414\pi\)
0.416050 + 0.909342i \(0.363414\pi\)
\(350\) −0.0290697 −0.00155384
\(351\) −33.1752 −1.77076
\(352\) 19.8583 1.05845
\(353\) 9.50263 0.505774 0.252887 0.967496i \(-0.418620\pi\)
0.252887 + 0.967496i \(0.418620\pi\)
\(354\) 4.71061 0.250366
\(355\) 2.40089 0.127426
\(356\) −7.61911 −0.403812
\(357\) −0.960862 −0.0508542
\(358\) 0.499311 0.0263894
\(359\) −3.38446 −0.178625 −0.0893125 0.996004i \(-0.528467\pi\)
−0.0893125 + 0.996004i \(0.528467\pi\)
\(360\) 0.503797 0.0265524
\(361\) −18.3052 −0.963431
\(362\) −4.12551 −0.216832
\(363\) 19.5254 1.02482
\(364\) 0.860070 0.0450799
\(365\) 1.19045 0.0623110
\(366\) −3.70049 −0.193428
\(367\) 2.22778 0.116289 0.0581446 0.998308i \(-0.481482\pi\)
0.0581446 + 0.998308i \(0.481482\pi\)
\(368\) −25.9814 −1.35437
\(369\) 1.39938 0.0728489
\(370\) 0.221069 0.0114929
\(371\) 0.0354264 0.00183924
\(372\) 14.2818 0.740477
\(373\) −33.4446 −1.73170 −0.865849 0.500306i \(-0.833221\pi\)
−0.865849 + 0.500306i \(0.833221\pi\)
\(374\) 14.1533 0.731850
\(375\) 1.63018 0.0841820
\(376\) 7.88897 0.406843
\(377\) −39.0897 −2.01322
\(378\) 0.158398 0.00814712
\(379\) 29.3505 1.50763 0.753817 0.657084i \(-0.228210\pi\)
0.753817 + 0.657084i \(0.228210\pi\)
\(380\) 1.54573 0.0792941
\(381\) −3.52610 −0.180648
\(382\) −5.18638 −0.265358
\(383\) −4.51068 −0.230485 −0.115243 0.993337i \(-0.536765\pi\)
−0.115243 + 0.993337i \(0.536765\pi\)
\(384\) −16.4394 −0.838920
\(385\) −0.365158 −0.0186102
\(386\) −3.50762 −0.178533
\(387\) −1.09590 −0.0557080
\(388\) 22.5917 1.14692
\(389\) −7.92259 −0.401691 −0.200846 0.979623i \(-0.564369\pi\)
−0.200846 + 0.979623i \(0.564369\pi\)
\(390\) 3.78748 0.191787
\(391\) −63.8696 −3.23003
\(392\) 10.2873 0.519589
\(393\) 29.9841 1.51250
\(394\) 9.48721 0.477959
\(395\) 2.25348 0.113385
\(396\) 3.04467 0.153000
\(397\) −0.720345 −0.0361531 −0.0180765 0.999837i \(-0.505754\pi\)
−0.0180765 + 0.999837i \(0.505754\pi\)
\(398\) −4.20451 −0.210753
\(399\) 0.103514 0.00518218
\(400\) 3.14748 0.157374
\(401\) 39.7909 1.98706 0.993531 0.113563i \(-0.0362264\pi\)
0.993531 + 0.113563i \(0.0362264\pi\)
\(402\) 3.95416 0.197215
\(403\) −28.7643 −1.43285
\(404\) −24.7104 −1.22939
\(405\) −7.85511 −0.390323
\(406\) 0.186637 0.00926264
\(407\) 2.77695 0.137648
\(408\) −18.5522 −0.918473
\(409\) 4.80091 0.237390 0.118695 0.992931i \(-0.462129\pi\)
0.118695 + 0.992931i \(0.462129\pi\)
\(410\) −1.55904 −0.0769954
\(411\) −28.3922 −1.40048
\(412\) 19.2687 0.949300
\(413\) −0.576848 −0.0283848
\(414\) 1.07895 0.0530273
\(415\) −1.00000 −0.0490881
\(416\) 25.2229 1.23666
\(417\) −21.6617 −1.06078
\(418\) −1.52474 −0.0745775
\(419\) 32.3407 1.57995 0.789973 0.613141i \(-0.210094\pi\)
0.789973 + 0.613141i \(0.210094\pi\)
\(420\) 0.230284 0.0112367
\(421\) 26.2043 1.27712 0.638560 0.769572i \(-0.279530\pi\)
0.638560 + 0.769572i \(0.279530\pi\)
\(422\) 8.61919 0.419576
\(423\) 1.83715 0.0893254
\(424\) 0.684009 0.0332184
\(425\) 7.73742 0.375320
\(426\) 1.49354 0.0723624
\(427\) 0.453152 0.0219296
\(428\) 29.0789 1.40558
\(429\) 47.5763 2.29701
\(430\) 1.22094 0.0588788
\(431\) 14.2425 0.686036 0.343018 0.939329i \(-0.388551\pi\)
0.343018 + 0.939329i \(0.388551\pi\)
\(432\) −17.1503 −0.825146
\(433\) 18.8710 0.906882 0.453441 0.891286i \(-0.350196\pi\)
0.453441 + 0.891286i \(0.350196\pi\)
\(434\) 0.137338 0.00659243
\(435\) −10.4663 −0.501819
\(436\) −31.5609 −1.51150
\(437\) 6.88069 0.329148
\(438\) 0.740554 0.0353850
\(439\) 25.5166 1.21784 0.608920 0.793232i \(-0.291603\pi\)
0.608920 + 0.793232i \(0.291603\pi\)
\(440\) −7.05044 −0.336117
\(441\) 2.39568 0.114080
\(442\) 17.9768 0.855068
\(443\) −27.9646 −1.32864 −0.664318 0.747450i \(-0.731278\pi\)
−0.664318 + 0.747450i \(0.731278\pi\)
\(444\) −1.75126 −0.0831112
\(445\) 4.10871 0.194772
\(446\) −5.68080 −0.268994
\(447\) 28.7580 1.36021
\(448\) 0.359109 0.0169663
\(449\) −20.4268 −0.964002 −0.482001 0.876171i \(-0.660090\pi\)
−0.482001 + 0.876171i \(0.660090\pi\)
\(450\) −0.130708 −0.00616162
\(451\) −19.5838 −0.922165
\(452\) 4.96250 0.233416
\(453\) −27.4451 −1.28948
\(454\) 3.69563 0.173445
\(455\) −0.463805 −0.0217435
\(456\) 1.99864 0.0935948
\(457\) 10.9786 0.513559 0.256780 0.966470i \(-0.417339\pi\)
0.256780 + 0.966470i \(0.417339\pi\)
\(458\) −7.73475 −0.361421
\(459\) −42.1605 −1.96788
\(460\) 15.3072 0.713704
\(461\) −38.1410 −1.77640 −0.888201 0.459455i \(-0.848045\pi\)
−0.888201 + 0.459455i \(0.848045\pi\)
\(462\) −0.227157 −0.0105683
\(463\) −20.1515 −0.936519 −0.468259 0.883591i \(-0.655119\pi\)
−0.468259 + 0.883591i \(0.655119\pi\)
\(464\) −20.2079 −0.938126
\(465\) −7.70166 −0.357156
\(466\) 7.52626 0.348647
\(467\) 31.6392 1.46409 0.732045 0.681257i \(-0.238566\pi\)
0.732045 + 0.681257i \(0.238566\pi\)
\(468\) 3.86718 0.178760
\(469\) −0.484215 −0.0223590
\(470\) −2.04676 −0.0944098
\(471\) −22.2715 −1.02622
\(472\) −11.1377 −0.512656
\(473\) 15.3368 0.705185
\(474\) 1.40184 0.0643888
\(475\) −0.833555 −0.0382461
\(476\) 1.09301 0.0500981
\(477\) 0.159289 0.00729336
\(478\) 8.87320 0.405851
\(479\) 23.8341 1.08901 0.544505 0.838758i \(-0.316718\pi\)
0.544505 + 0.838758i \(0.316718\pi\)
\(480\) 6.75344 0.308251
\(481\) 3.52714 0.160824
\(482\) −3.97681 −0.181139
\(483\) 1.02509 0.0466433
\(484\) −22.2108 −1.00958
\(485\) −12.1829 −0.553196
\(486\) 1.35144 0.0613027
\(487\) −11.4881 −0.520575 −0.260287 0.965531i \(-0.583817\pi\)
−0.260287 + 0.965531i \(0.583817\pi\)
\(488\) 8.74942 0.396068
\(489\) 2.10100 0.0950107
\(490\) −2.66900 −0.120573
\(491\) −27.1086 −1.22339 −0.611696 0.791093i \(-0.709513\pi\)
−0.611696 + 0.791093i \(0.709513\pi\)
\(492\) 12.3504 0.556797
\(493\) −49.6767 −2.23733
\(494\) −1.93664 −0.0871338
\(495\) −1.64188 −0.0737970
\(496\) −14.8701 −0.667686
\(497\) −0.182895 −0.00820396
\(498\) −0.622079 −0.0278760
\(499\) 0.465902 0.0208566 0.0104283 0.999946i \(-0.496681\pi\)
0.0104283 + 0.999946i \(0.496681\pi\)
\(500\) −1.85438 −0.0829304
\(501\) −28.5656 −1.27622
\(502\) −1.38253 −0.0617053
\(503\) −40.9594 −1.82629 −0.913144 0.407638i \(-0.866353\pi\)
−0.913144 + 0.407638i \(0.866353\pi\)
\(504\) −0.0383783 −0.00170951
\(505\) 13.3255 0.592975
\(506\) −15.0994 −0.671251
\(507\) 39.2366 1.74256
\(508\) 4.01106 0.177962
\(509\) −5.75767 −0.255204 −0.127602 0.991825i \(-0.540728\pi\)
−0.127602 + 0.991825i \(0.540728\pi\)
\(510\) 4.81329 0.213136
\(511\) −0.0906862 −0.00401172
\(512\) 22.2982 0.985450
\(513\) 4.54196 0.200532
\(514\) 2.41408 0.106481
\(515\) −10.3909 −0.457878
\(516\) −9.67199 −0.425786
\(517\) −25.7102 −1.13073
\(518\) −0.0168406 −0.000739935 0
\(519\) 27.2326 1.19538
\(520\) −8.95510 −0.392707
\(521\) 39.7262 1.74044 0.870218 0.492666i \(-0.163978\pi\)
0.870218 + 0.492666i \(0.163978\pi\)
\(522\) 0.839186 0.0367302
\(523\) 16.0767 0.702985 0.351493 0.936191i \(-0.385674\pi\)
0.351493 + 0.936191i \(0.385674\pi\)
\(524\) −34.1079 −1.49001
\(525\) −0.124184 −0.00541982
\(526\) −5.89201 −0.256904
\(527\) −36.5549 −1.59236
\(528\) 24.5951 1.07037
\(529\) 45.1391 1.96257
\(530\) −0.177463 −0.00770849
\(531\) −2.59371 −0.112557
\(532\) −0.117751 −0.00510513
\(533\) −24.8743 −1.07743
\(534\) 2.55594 0.110607
\(535\) −15.6812 −0.677957
\(536\) −9.34918 −0.403823
\(537\) 2.13302 0.0920466
\(538\) 4.65511 0.200696
\(539\) −33.5265 −1.44409
\(540\) 10.1043 0.434821
\(541\) 37.9691 1.63242 0.816210 0.577755i \(-0.196071\pi\)
0.816210 + 0.577755i \(0.196071\pi\)
\(542\) −1.31254 −0.0563782
\(543\) −17.6239 −0.756314
\(544\) 32.0543 1.37432
\(545\) 17.0197 0.729043
\(546\) −0.288523 −0.0123477
\(547\) −2.29088 −0.0979509 −0.0489754 0.998800i \(-0.515596\pi\)
−0.0489754 + 0.998800i \(0.515596\pi\)
\(548\) 32.2970 1.37966
\(549\) 2.03753 0.0869597
\(550\) 1.82920 0.0779975
\(551\) 5.35169 0.227990
\(552\) 19.7924 0.842420
\(553\) −0.171666 −0.00729998
\(554\) −3.71952 −0.158027
\(555\) 0.944392 0.0400872
\(556\) 24.6409 1.04501
\(557\) −4.96293 −0.210286 −0.105143 0.994457i \(-0.533530\pi\)
−0.105143 + 0.994457i \(0.533530\pi\)
\(558\) 0.617520 0.0261417
\(559\) 19.4799 0.823913
\(560\) −0.239769 −0.0101321
\(561\) 60.4619 2.55270
\(562\) −2.66585 −0.112452
\(563\) 8.06701 0.339984 0.169992 0.985445i \(-0.445626\pi\)
0.169992 + 0.985445i \(0.445626\pi\)
\(564\) 16.2139 0.682730
\(565\) −2.67610 −0.112584
\(566\) −7.35010 −0.308948
\(567\) 0.598387 0.0251299
\(568\) −3.53132 −0.148171
\(569\) −3.30222 −0.138436 −0.0692182 0.997602i \(-0.522050\pi\)
−0.0692182 + 0.997602i \(0.522050\pi\)
\(570\) −0.518537 −0.0217191
\(571\) −17.3300 −0.725238 −0.362619 0.931937i \(-0.618117\pi\)
−0.362619 + 0.931937i \(0.618117\pi\)
\(572\) −54.1196 −2.26285
\(573\) −22.1558 −0.925573
\(574\) 0.118765 0.00495714
\(575\) −8.25464 −0.344242
\(576\) 1.61468 0.0672784
\(577\) 9.99784 0.416216 0.208108 0.978106i \(-0.433270\pi\)
0.208108 + 0.978106i \(0.433270\pi\)
\(578\) 16.3584 0.680420
\(579\) −14.9843 −0.622725
\(580\) 11.9057 0.494358
\(581\) 0.0761781 0.00316040
\(582\) −7.57871 −0.314148
\(583\) −2.22919 −0.0923237
\(584\) −1.75096 −0.0724553
\(585\) −2.08543 −0.0862218
\(586\) 5.85643 0.241927
\(587\) 17.9292 0.740018 0.370009 0.929028i \(-0.379355\pi\)
0.370009 + 0.929028i \(0.379355\pi\)
\(588\) 21.1432 0.871932
\(589\) 3.93807 0.162265
\(590\) 2.88963 0.118964
\(591\) 40.5287 1.66713
\(592\) 1.82340 0.0749411
\(593\) 7.04507 0.289306 0.144653 0.989482i \(-0.453793\pi\)
0.144653 + 0.989482i \(0.453793\pi\)
\(594\) −9.96715 −0.408957
\(595\) −0.589422 −0.0241639
\(596\) −32.7132 −1.33998
\(597\) −17.9613 −0.735109
\(598\) −19.1785 −0.784266
\(599\) −16.1538 −0.660028 −0.330014 0.943976i \(-0.607053\pi\)
−0.330014 + 0.943976i \(0.607053\pi\)
\(600\) −2.39773 −0.0978869
\(601\) −41.6254 −1.69794 −0.848968 0.528444i \(-0.822776\pi\)
−0.848968 + 0.528444i \(0.822776\pi\)
\(602\) −0.0930087 −0.00379075
\(603\) −2.17720 −0.0886625
\(604\) 31.2197 1.27031
\(605\) 11.9775 0.486953
\(606\) 8.28949 0.336737
\(607\) −2.47890 −0.100616 −0.0503078 0.998734i \(-0.516020\pi\)
−0.0503078 + 0.998734i \(0.516020\pi\)
\(608\) −3.45322 −0.140047
\(609\) 0.797300 0.0323082
\(610\) −2.26999 −0.0919094
\(611\) −32.6558 −1.32111
\(612\) 4.91457 0.198660
\(613\) 46.9158 1.89491 0.947455 0.319889i \(-0.103646\pi\)
0.947455 + 0.319889i \(0.103646\pi\)
\(614\) −2.64327 −0.106674
\(615\) −6.66010 −0.268561
\(616\) 0.537089 0.0216399
\(617\) 3.90275 0.157119 0.0785594 0.996909i \(-0.474968\pi\)
0.0785594 + 0.996909i \(0.474968\pi\)
\(618\) −6.46397 −0.260019
\(619\) 26.5939 1.06890 0.534450 0.845200i \(-0.320519\pi\)
0.534450 + 0.845200i \(0.320519\pi\)
\(620\) 8.76089 0.351846
\(621\) 44.9788 1.80494
\(622\) −7.51042 −0.301140
\(623\) −0.312994 −0.0125398
\(624\) 31.2394 1.25058
\(625\) 1.00000 0.0400000
\(626\) −1.47764 −0.0590583
\(627\) −6.51358 −0.260127
\(628\) 25.3346 1.01096
\(629\) 4.48243 0.178726
\(630\) 0.00995706 0.000396699 0
\(631\) −28.3391 −1.12816 −0.564082 0.825719i \(-0.690770\pi\)
−0.564082 + 0.825719i \(0.690770\pi\)
\(632\) −3.31451 −0.131844
\(633\) 36.8206 1.46349
\(634\) 6.75799 0.268394
\(635\) −2.16302 −0.0858368
\(636\) 1.40582 0.0557444
\(637\) −42.5836 −1.68723
\(638\) −11.7441 −0.464952
\(639\) −0.822360 −0.0325321
\(640\) −10.0844 −0.398622
\(641\) 37.6459 1.48692 0.743462 0.668778i \(-0.233182\pi\)
0.743462 + 0.668778i \(0.233182\pi\)
\(642\) −9.75494 −0.384997
\(643\) −10.5720 −0.416920 −0.208460 0.978031i \(-0.566845\pi\)
−0.208460 + 0.978031i \(0.566845\pi\)
\(644\) −1.16608 −0.0459498
\(645\) 5.21576 0.205370
\(646\) −2.46117 −0.0968333
\(647\) 28.6602 1.12675 0.563374 0.826202i \(-0.309503\pi\)
0.563374 + 0.826202i \(0.309503\pi\)
\(648\) 11.5536 0.453869
\(649\) 36.2980 1.42482
\(650\) 2.32336 0.0911295
\(651\) 0.586698 0.0229945
\(652\) −2.38996 −0.0935981
\(653\) 8.23646 0.322318 0.161159 0.986928i \(-0.448477\pi\)
0.161159 + 0.986928i \(0.448477\pi\)
\(654\) 10.5876 0.414007
\(655\) 18.3932 0.718680
\(656\) −12.8591 −0.502062
\(657\) −0.407757 −0.0159081
\(658\) 0.155918 0.00607831
\(659\) 6.51555 0.253810 0.126905 0.991915i \(-0.459496\pi\)
0.126905 + 0.991915i \(0.459496\pi\)
\(660\) −14.4905 −0.564043
\(661\) 30.5093 1.18668 0.593338 0.804954i \(-0.297810\pi\)
0.593338 + 0.804954i \(0.297810\pi\)
\(662\) 4.08810 0.158888
\(663\) 76.7955 2.98249
\(664\) 1.47084 0.0570797
\(665\) 0.0634986 0.00246237
\(666\) −0.0757214 −0.00293415
\(667\) 52.9975 2.05207
\(668\) 32.4943 1.25724
\(669\) −24.2680 −0.938253
\(670\) 2.42560 0.0937091
\(671\) −28.5144 −1.10079
\(672\) −0.514464 −0.0198459
\(673\) 30.8237 1.18817 0.594084 0.804403i \(-0.297515\pi\)
0.594084 + 0.804403i \(0.297515\pi\)
\(674\) 6.14041 0.236520
\(675\) −5.44890 −0.209728
\(676\) −44.6329 −1.71665
\(677\) 30.9153 1.18817 0.594086 0.804402i \(-0.297514\pi\)
0.594086 + 0.804402i \(0.297514\pi\)
\(678\) −1.66474 −0.0639341
\(679\) 0.928068 0.0356160
\(680\) −11.3805 −0.436423
\(681\) 15.7875 0.604977
\(682\) −8.64195 −0.330917
\(683\) −0.759911 −0.0290772 −0.0145386 0.999894i \(-0.504628\pi\)
−0.0145386 + 0.999894i \(0.504628\pi\)
\(684\) −0.529448 −0.0202439
\(685\) −17.4166 −0.665455
\(686\) 0.406808 0.0155320
\(687\) −33.0423 −1.26064
\(688\) 10.0704 0.383930
\(689\) −2.83140 −0.107868
\(690\) −5.13504 −0.195488
\(691\) 35.9938 1.36927 0.684634 0.728887i \(-0.259962\pi\)
0.684634 + 0.728887i \(0.259962\pi\)
\(692\) −30.9780 −1.17761
\(693\) 0.125075 0.00475122
\(694\) 1.46098 0.0554579
\(695\) −13.2880 −0.504041
\(696\) 15.3942 0.583516
\(697\) −31.6113 −1.19736
\(698\) 5.93198 0.224529
\(699\) 32.1516 1.21609
\(700\) 0.141263 0.00533924
\(701\) −8.20111 −0.309752 −0.154876 0.987934i \(-0.549498\pi\)
−0.154876 + 0.987934i \(0.549498\pi\)
\(702\) −12.6597 −0.477811
\(703\) −0.482894 −0.0182127
\(704\) −22.5968 −0.851650
\(705\) −8.74359 −0.329303
\(706\) 3.62623 0.136475
\(707\) −1.01511 −0.0381770
\(708\) −22.8910 −0.860296
\(709\) −22.3663 −0.839984 −0.419992 0.907528i \(-0.637967\pi\)
−0.419992 + 0.907528i \(0.637967\pi\)
\(710\) 0.916184 0.0343838
\(711\) −0.771870 −0.0289474
\(712\) −6.04326 −0.226481
\(713\) 38.9985 1.46051
\(714\) −0.366667 −0.0137222
\(715\) 29.1847 1.09145
\(716\) −2.42638 −0.0906781
\(717\) 37.9057 1.41561
\(718\) −1.29152 −0.0481990
\(719\) −8.41809 −0.313942 −0.156971 0.987603i \(-0.550173\pi\)
−0.156971 + 0.987603i \(0.550173\pi\)
\(720\) −1.07809 −0.0401779
\(721\) 0.791560 0.0294792
\(722\) −6.98530 −0.259966
\(723\) −16.9886 −0.631814
\(724\) 20.0478 0.745069
\(725\) −6.42032 −0.238445
\(726\) 7.45093 0.276530
\(727\) 32.7173 1.21342 0.606709 0.794924i \(-0.292489\pi\)
0.606709 + 0.794924i \(0.292489\pi\)
\(728\) 0.682182 0.0252834
\(729\) 29.3386 1.08661
\(730\) 0.454278 0.0168136
\(731\) 24.7559 0.915630
\(732\) 17.9824 0.664648
\(733\) −17.7563 −0.655844 −0.327922 0.944705i \(-0.606348\pi\)
−0.327922 + 0.944705i \(0.606348\pi\)
\(734\) 0.850126 0.0313787
\(735\) −11.4018 −0.420561
\(736\) −34.1971 −1.26052
\(737\) 30.4691 1.12234
\(738\) 0.534007 0.0196571
\(739\) 16.2783 0.598805 0.299403 0.954127i \(-0.403213\pi\)
0.299403 + 0.954127i \(0.403213\pi\)
\(740\) −1.07428 −0.0394912
\(741\) −8.27320 −0.303924
\(742\) 0.0135188 0.000496290 0
\(743\) −39.4194 −1.44616 −0.723079 0.690765i \(-0.757274\pi\)
−0.723079 + 0.690765i \(0.757274\pi\)
\(744\) 11.3279 0.415301
\(745\) 17.6410 0.646318
\(746\) −12.7626 −0.467270
\(747\) 0.342523 0.0125323
\(748\) −68.7774 −2.51475
\(749\) 1.19456 0.0436484
\(750\) 0.622079 0.0227151
\(751\) −32.5955 −1.18943 −0.594714 0.803937i \(-0.702735\pi\)
−0.594714 + 0.803937i \(0.702735\pi\)
\(752\) −16.8818 −0.615615
\(753\) −5.90607 −0.215229
\(754\) −14.9167 −0.543234
\(755\) −16.8357 −0.612712
\(756\) −0.769729 −0.0279948
\(757\) −38.1681 −1.38724 −0.693621 0.720340i \(-0.743986\pi\)
−0.693621 + 0.720340i \(0.743986\pi\)
\(758\) 11.2002 0.406811
\(759\) −64.5036 −2.34133
\(760\) 1.22603 0.0444726
\(761\) −14.3504 −0.520201 −0.260100 0.965582i \(-0.583756\pi\)
−0.260100 + 0.965582i \(0.583756\pi\)
\(762\) −1.34557 −0.0487448
\(763\) −1.29653 −0.0469374
\(764\) 25.2030 0.911812
\(765\) −2.65025 −0.0958199
\(766\) −1.72129 −0.0621926
\(767\) 46.1038 1.66471
\(768\) 9.09624 0.328232
\(769\) −50.4182 −1.81813 −0.909064 0.416657i \(-0.863201\pi\)
−0.909064 + 0.416657i \(0.863201\pi\)
\(770\) −0.139345 −0.00502165
\(771\) 10.3128 0.371405
\(772\) 17.0451 0.613467
\(773\) −12.5954 −0.453025 −0.226512 0.974008i \(-0.572732\pi\)
−0.226512 + 0.974008i \(0.572732\pi\)
\(774\) −0.418200 −0.0150319
\(775\) −4.72443 −0.169707
\(776\) 17.9191 0.643257
\(777\) −0.0719420 −0.00258090
\(778\) −3.02328 −0.108390
\(779\) 3.40549 0.122014
\(780\) −18.4051 −0.659008
\(781\) 11.5086 0.411810
\(782\) −24.3728 −0.871569
\(783\) 34.9837 1.25022
\(784\) −22.0141 −0.786219
\(785\) −13.6620 −0.487619
\(786\) 11.4420 0.408123
\(787\) −44.8914 −1.60021 −0.800103 0.599862i \(-0.795222\pi\)
−0.800103 + 0.599862i \(0.795222\pi\)
\(788\) −46.1027 −1.64234
\(789\) −25.1702 −0.896084
\(790\) 0.859934 0.0305951
\(791\) 0.203860 0.00724843
\(792\) 2.41494 0.0858112
\(793\) −36.2175 −1.28612
\(794\) −0.274885 −0.00975531
\(795\) −0.758108 −0.0268873
\(796\) 20.4316 0.724179
\(797\) 2.08094 0.0737105 0.0368553 0.999321i \(-0.488266\pi\)
0.0368553 + 0.999321i \(0.488266\pi\)
\(798\) 0.0395012 0.00139833
\(799\) −41.5003 −1.46817
\(800\) 4.14277 0.146469
\(801\) −1.40733 −0.0497256
\(802\) 15.1843 0.536176
\(803\) 5.70640 0.201374
\(804\) −19.2151 −0.677663
\(805\) 0.628823 0.0221631
\(806\) −10.9765 −0.386632
\(807\) 19.8863 0.700031
\(808\) −19.5996 −0.689512
\(809\) −13.3820 −0.470485 −0.235243 0.971937i \(-0.575588\pi\)
−0.235243 + 0.971937i \(0.575588\pi\)
\(810\) −2.99753 −0.105322
\(811\) −1.57763 −0.0553981 −0.0276990 0.999616i \(-0.508818\pi\)
−0.0276990 + 0.999616i \(0.508818\pi\)
\(812\) −0.906955 −0.0318279
\(813\) −5.60706 −0.196648
\(814\) 1.05969 0.0371422
\(815\) 1.28882 0.0451454
\(816\) 39.7003 1.38979
\(817\) −2.66696 −0.0933051
\(818\) 1.83204 0.0640557
\(819\) 0.158864 0.00555115
\(820\) 7.57608 0.264568
\(821\) −20.3887 −0.711570 −0.355785 0.934568i \(-0.615786\pi\)
−0.355785 + 0.934568i \(0.615786\pi\)
\(822\) −10.8345 −0.377897
\(823\) 11.1627 0.389106 0.194553 0.980892i \(-0.437674\pi\)
0.194553 + 0.980892i \(0.437674\pi\)
\(824\) 15.2834 0.532421
\(825\) 7.81422 0.272056
\(826\) −0.220127 −0.00765918
\(827\) −14.2386 −0.495124 −0.247562 0.968872i \(-0.579629\pi\)
−0.247562 + 0.968872i \(0.579629\pi\)
\(828\) −5.24309 −0.182210
\(829\) 15.9964 0.555580 0.277790 0.960642i \(-0.410398\pi\)
0.277790 + 0.960642i \(0.410398\pi\)
\(830\) −0.381602 −0.0132456
\(831\) −15.8895 −0.551202
\(832\) −28.7013 −0.995039
\(833\) −54.1170 −1.87504
\(834\) −8.26617 −0.286234
\(835\) −17.5230 −0.606408
\(836\) 7.40941 0.256260
\(837\) 25.7430 0.889808
\(838\) 12.3413 0.426323
\(839\) 44.3604 1.53149 0.765746 0.643143i \(-0.222370\pi\)
0.765746 + 0.643143i \(0.222370\pi\)
\(840\) 0.182654 0.00630218
\(841\) 12.2206 0.421398
\(842\) 9.99963 0.344610
\(843\) −11.3883 −0.392234
\(844\) −41.8846 −1.44173
\(845\) 24.0689 0.827996
\(846\) 0.701062 0.0241030
\(847\) −0.912420 −0.0313511
\(848\) −1.46373 −0.0502646
\(849\) −31.3991 −1.07761
\(850\) 2.95262 0.101274
\(851\) −4.78207 −0.163927
\(852\) −7.25780 −0.248648
\(853\) 42.9204 1.46957 0.734783 0.678302i \(-0.237284\pi\)
0.734783 + 0.678302i \(0.237284\pi\)
\(854\) 0.172924 0.00591733
\(855\) 0.285512 0.00976430
\(856\) 23.0645 0.788329
\(857\) 18.2282 0.622662 0.311331 0.950302i \(-0.399225\pi\)
0.311331 + 0.950302i \(0.399225\pi\)
\(858\) 18.1552 0.619809
\(859\) −8.29963 −0.283180 −0.141590 0.989925i \(-0.545221\pi\)
−0.141590 + 0.989925i \(0.545221\pi\)
\(860\) −5.93309 −0.202317
\(861\) 0.507354 0.0172906
\(862\) 5.43496 0.185116
\(863\) 23.6589 0.805360 0.402680 0.915341i \(-0.368079\pi\)
0.402680 + 0.915341i \(0.368079\pi\)
\(864\) −22.5735 −0.767967
\(865\) 16.7053 0.567997
\(866\) 7.20121 0.244707
\(867\) 69.8819 2.37331
\(868\) −0.667388 −0.0226526
\(869\) 10.8020 0.366433
\(870\) −3.99395 −0.135408
\(871\) 38.7002 1.31131
\(872\) −25.0332 −0.847732
\(873\) 4.17292 0.141232
\(874\) 2.62569 0.0888152
\(875\) −0.0761781 −0.00257529
\(876\) −3.59869 −0.121588
\(877\) −53.7913 −1.81640 −0.908202 0.418532i \(-0.862545\pi\)
−0.908202 + 0.418532i \(0.862545\pi\)
\(878\) 9.73719 0.328614
\(879\) 25.0183 0.843845
\(880\) 15.0874 0.508596
\(881\) 12.8646 0.433419 0.216710 0.976236i \(-0.430468\pi\)
0.216710 + 0.976236i \(0.430468\pi\)
\(882\) 0.914196 0.0307826
\(883\) −16.6092 −0.558945 −0.279472 0.960154i \(-0.590160\pi\)
−0.279472 + 0.960154i \(0.590160\pi\)
\(884\) −87.3574 −2.93815
\(885\) 12.3443 0.414949
\(886\) −10.6713 −0.358511
\(887\) −19.0785 −0.640593 −0.320296 0.947317i \(-0.603782\pi\)
−0.320296 + 0.947317i \(0.603782\pi\)
\(888\) −1.38905 −0.0466135
\(889\) 0.164775 0.00552636
\(890\) 1.56789 0.0525559
\(891\) −37.6533 −1.26143
\(892\) 27.6056 0.924304
\(893\) 4.47084 0.149611
\(894\) 10.9741 0.367030
\(895\) 1.30846 0.0437370
\(896\) 0.768213 0.0256642
\(897\) −81.9290 −2.73553
\(898\) −7.79492 −0.260120
\(899\) 30.3324 1.01164
\(900\) 0.635168 0.0211723
\(901\) −3.59826 −0.119875
\(902\) −7.47322 −0.248831
\(903\) −0.397326 −0.0132222
\(904\) 3.93611 0.130913
\(905\) −10.8110 −0.359371
\(906\) −10.4731 −0.347946
\(907\) −11.0744 −0.367720 −0.183860 0.982952i \(-0.558859\pi\)
−0.183860 + 0.982952i \(0.558859\pi\)
\(908\) −17.9588 −0.595982
\(909\) −4.56428 −0.151388
\(910\) −0.176989 −0.00586712
\(911\) 20.8399 0.690456 0.345228 0.938519i \(-0.387802\pi\)
0.345228 + 0.938519i \(0.387802\pi\)
\(912\) −4.27693 −0.141623
\(913\) −4.79348 −0.158641
\(914\) 4.18947 0.138575
\(915\) −9.69725 −0.320581
\(916\) 37.5867 1.24190
\(917\) −1.40116 −0.0462702
\(918\) −16.0885 −0.531001
\(919\) −43.4535 −1.43340 −0.716700 0.697382i \(-0.754348\pi\)
−0.716700 + 0.697382i \(0.754348\pi\)
\(920\) 12.1413 0.400285
\(921\) −11.2918 −0.372079
\(922\) −14.5547 −0.479333
\(923\) 14.6176 0.481145
\(924\) 1.10386 0.0363144
\(925\) 0.579319 0.0190479
\(926\) −7.68985 −0.252704
\(927\) 3.55913 0.116897
\(928\) −26.5979 −0.873119
\(929\) −13.8883 −0.455660 −0.227830 0.973701i \(-0.573163\pi\)
−0.227830 + 0.973701i \(0.573163\pi\)
\(930\) −2.93897 −0.0963727
\(931\) 5.83004 0.191072
\(932\) −36.5735 −1.19801
\(933\) −32.0840 −1.05038
\(934\) 12.0736 0.395060
\(935\) 37.0892 1.21295
\(936\) 3.06733 0.100259
\(937\) −0.990239 −0.0323497 −0.0161748 0.999869i \(-0.505149\pi\)
−0.0161748 + 0.999869i \(0.505149\pi\)
\(938\) −0.184778 −0.00603320
\(939\) −6.31236 −0.205996
\(940\) 9.94612 0.324407
\(941\) 21.6651 0.706263 0.353131 0.935574i \(-0.385117\pi\)
0.353131 + 0.935574i \(0.385117\pi\)
\(942\) −8.49887 −0.276908
\(943\) 33.7244 1.09822
\(944\) 23.8339 0.775727
\(945\) 0.415087 0.0135028
\(946\) 5.85254 0.190283
\(947\) 7.53272 0.244780 0.122390 0.992482i \(-0.460944\pi\)
0.122390 + 0.992482i \(0.460944\pi\)
\(948\) −6.81220 −0.221250
\(949\) 7.24796 0.235279
\(950\) −0.318086 −0.0103201
\(951\) 28.8696 0.936162
\(952\) 0.866945 0.0280979
\(953\) 6.12024 0.198254 0.0991269 0.995075i \(-0.468395\pi\)
0.0991269 + 0.995075i \(0.468395\pi\)
\(954\) 0.0607852 0.00196799
\(955\) −13.5911 −0.439797
\(956\) −43.1189 −1.39457
\(957\) −50.1698 −1.62176
\(958\) 9.09516 0.293851
\(959\) 1.32677 0.0428435
\(960\) −7.68478 −0.248025
\(961\) −8.67974 −0.279992
\(962\) 1.34596 0.0433956
\(963\) 5.37118 0.173084
\(964\) 19.3251 0.622421
\(965\) −9.19181 −0.295895
\(966\) 0.391178 0.0125859
\(967\) −37.9234 −1.21953 −0.609766 0.792581i \(-0.708737\pi\)
−0.609766 + 0.792581i \(0.708737\pi\)
\(968\) −17.6169 −0.566229
\(969\) −10.5139 −0.337756
\(970\) −4.64901 −0.149271
\(971\) 40.4241 1.29727 0.648636 0.761099i \(-0.275340\pi\)
0.648636 + 0.761099i \(0.275340\pi\)
\(972\) −6.56728 −0.210646
\(973\) 1.01225 0.0324513
\(974\) −4.38388 −0.140469
\(975\) 9.92521 0.317861
\(976\) −18.7231 −0.599311
\(977\) 1.51918 0.0486030 0.0243015 0.999705i \(-0.492264\pi\)
0.0243015 + 0.999705i \(0.492264\pi\)
\(978\) 0.801748 0.0256371
\(979\) 19.6950 0.629456
\(980\) 12.9699 0.414308
\(981\) −5.82964 −0.186126
\(982\) −10.3447 −0.330112
\(983\) −43.5665 −1.38956 −0.694778 0.719224i \(-0.744497\pi\)
−0.694778 + 0.719224i \(0.744497\pi\)
\(984\) 9.79594 0.312283
\(985\) 24.8615 0.792154
\(986\) −18.9568 −0.603706
\(987\) 0.666070 0.0212012
\(988\) 9.41104 0.299405
\(989\) −26.4108 −0.839813
\(990\) −0.626545 −0.0199129
\(991\) 60.2012 1.91235 0.956177 0.292789i \(-0.0945832\pi\)
0.956177 + 0.292789i \(0.0945832\pi\)
\(992\) −19.5722 −0.621419
\(993\) 17.4641 0.554205
\(994\) −0.0697932 −0.00221370
\(995\) −11.0180 −0.349295
\(996\) 3.02297 0.0957864
\(997\) 22.9234 0.725990 0.362995 0.931791i \(-0.381754\pi\)
0.362995 + 0.931791i \(0.381754\pi\)
\(998\) 0.177789 0.00562782
\(999\) −3.15665 −0.0998721
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 415.2.a.e.1.7 11
3.2 odd 2 3735.2.a.s.1.5 11
4.3 odd 2 6640.2.a.bi.1.3 11
5.4 even 2 2075.2.a.k.1.5 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
415.2.a.e.1.7 11 1.1 even 1 trivial
2075.2.a.k.1.5 11 5.4 even 2
3735.2.a.s.1.5 11 3.2 odd 2
6640.2.a.bi.1.3 11 4.3 odd 2