Properties

Label 2075.2.a.k.1.5
Level $2075$
Weight $2$
Character 2075.1
Self dual yes
Analytic conductor $16.569$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2075,2,Mod(1,2075)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2075.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2075, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2075 = 5^{2} \cdot 83 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2075.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [11,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.5689584194\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 20x^{9} - x^{8} + 146x^{7} + 15x^{6} - 464x^{5} - 76x^{4} + 567x^{3} + 136x^{2} - 100x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 415)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.381602\) of defining polynomial
Character \(\chi\) \(=\) 2075.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.381602 q^{2} -1.63018 q^{3} -1.85438 q^{4} +0.622079 q^{6} +0.0761781 q^{7} +1.47084 q^{8} -0.342523 q^{9} +4.79348 q^{11} +3.02297 q^{12} -6.08842 q^{13} -0.0290697 q^{14} +3.14748 q^{16} -7.73742 q^{17} +0.130708 q^{18} -0.833555 q^{19} -0.124184 q^{21} -1.82920 q^{22} +8.25464 q^{23} -2.39773 q^{24} +2.32336 q^{26} +5.44890 q^{27} -0.141263 q^{28} -6.42032 q^{29} -4.72443 q^{31} -4.14277 q^{32} -7.81422 q^{33} +2.95262 q^{34} +0.635168 q^{36} -0.579319 q^{37} +0.318086 q^{38} +9.92521 q^{39} -4.08551 q^{41} +0.0473888 q^{42} -3.19950 q^{43} -8.88893 q^{44} -3.14999 q^{46} +5.36358 q^{47} -5.13095 q^{48} -6.99420 q^{49} +12.6134 q^{51} +11.2903 q^{52} +0.465047 q^{53} -2.07931 q^{54} +0.112046 q^{56} +1.35884 q^{57} +2.45001 q^{58} +7.57236 q^{59} -5.94859 q^{61} +1.80285 q^{62} -0.0260928 q^{63} -4.71408 q^{64} +2.98192 q^{66} -6.35636 q^{67} +14.3481 q^{68} -13.4565 q^{69} +2.40089 q^{71} -0.503797 q^{72} -1.19045 q^{73} +0.221069 q^{74} +1.54573 q^{76} +0.365158 q^{77} -3.78748 q^{78} +2.25348 q^{79} -7.85511 q^{81} +1.55904 q^{82} +1.00000 q^{83} +0.230284 q^{84} +1.22094 q^{86} +10.4663 q^{87} +7.05044 q^{88} +4.10871 q^{89} -0.463805 q^{91} -15.3072 q^{92} +7.70166 q^{93} -2.04676 q^{94} +6.75344 q^{96} +12.1829 q^{97} +2.66900 q^{98} -1.64188 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 18 q^{4} - 5 q^{6} + 3 q^{7} - 3 q^{8} + 21 q^{9} - q^{11} - 2 q^{12} - q^{13} + 12 q^{14} + 20 q^{16} - 28 q^{17} + 26 q^{18} - 2 q^{19} + 3 q^{21} + 20 q^{22} - q^{23} - 10 q^{24} + 21 q^{26}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.381602 −0.269834 −0.134917 0.990857i \(-0.543077\pi\)
−0.134917 + 0.990857i \(0.543077\pi\)
\(3\) −1.63018 −0.941183 −0.470592 0.882351i \(-0.655959\pi\)
−0.470592 + 0.882351i \(0.655959\pi\)
\(4\) −1.85438 −0.927190
\(5\) 0 0
\(6\) 0.622079 0.253963
\(7\) 0.0761781 0.0287926 0.0143963 0.999896i \(-0.495417\pi\)
0.0143963 + 0.999896i \(0.495417\pi\)
\(8\) 1.47084 0.520020
\(9\) −0.342523 −0.114174
\(10\) 0 0
\(11\) 4.79348 1.44529 0.722644 0.691220i \(-0.242926\pi\)
0.722644 + 0.691220i \(0.242926\pi\)
\(12\) 3.02297 0.872655
\(13\) −6.08842 −1.68863 −0.844313 0.535851i \(-0.819991\pi\)
−0.844313 + 0.535851i \(0.819991\pi\)
\(14\) −0.0290697 −0.00776921
\(15\) 0 0
\(16\) 3.14748 0.786871
\(17\) −7.73742 −1.87660 −0.938300 0.345823i \(-0.887600\pi\)
−0.938300 + 0.345823i \(0.887600\pi\)
\(18\) 0.130708 0.0308081
\(19\) −0.833555 −0.191231 −0.0956153 0.995418i \(-0.530482\pi\)
−0.0956153 + 0.995418i \(0.530482\pi\)
\(20\) 0 0
\(21\) −0.124184 −0.0270991
\(22\) −1.82920 −0.389987
\(23\) 8.25464 1.72121 0.860606 0.509271i \(-0.170085\pi\)
0.860606 + 0.509271i \(0.170085\pi\)
\(24\) −2.39773 −0.489434
\(25\) 0 0
\(26\) 2.32336 0.455648
\(27\) 5.44890 1.04864
\(28\) −0.141263 −0.0266962
\(29\) −6.42032 −1.19222 −0.596112 0.802901i \(-0.703289\pi\)
−0.596112 + 0.802901i \(0.703289\pi\)
\(30\) 0 0
\(31\) −4.72443 −0.848533 −0.424267 0.905537i \(-0.639468\pi\)
−0.424267 + 0.905537i \(0.639468\pi\)
\(32\) −4.14277 −0.732345
\(33\) −7.81422 −1.36028
\(34\) 2.95262 0.506370
\(35\) 0 0
\(36\) 0.635168 0.105861
\(37\) −0.579319 −0.0952394 −0.0476197 0.998866i \(-0.515164\pi\)
−0.0476197 + 0.998866i \(0.515164\pi\)
\(38\) 0.318086 0.0516004
\(39\) 9.92521 1.58931
\(40\) 0 0
\(41\) −4.08551 −0.638049 −0.319025 0.947746i \(-0.603355\pi\)
−0.319025 + 0.947746i \(0.603355\pi\)
\(42\) 0.0473888 0.00731225
\(43\) −3.19950 −0.487920 −0.243960 0.969785i \(-0.578447\pi\)
−0.243960 + 0.969785i \(0.578447\pi\)
\(44\) −8.88893 −1.34006
\(45\) 0 0
\(46\) −3.14999 −0.464441
\(47\) 5.36358 0.782359 0.391179 0.920314i \(-0.372067\pi\)
0.391179 + 0.920314i \(0.372067\pi\)
\(48\) −5.13095 −0.740590
\(49\) −6.99420 −0.999171
\(50\) 0 0
\(51\) 12.6134 1.76622
\(52\) 11.2903 1.56568
\(53\) 0.465047 0.0638791 0.0319395 0.999490i \(-0.489832\pi\)
0.0319395 + 0.999490i \(0.489832\pi\)
\(54\) −2.07931 −0.282959
\(55\) 0 0
\(56\) 0.112046 0.0149727
\(57\) 1.35884 0.179983
\(58\) 2.45001 0.321702
\(59\) 7.57236 0.985838 0.492919 0.870075i \(-0.335930\pi\)
0.492919 + 0.870075i \(0.335930\pi\)
\(60\) 0 0
\(61\) −5.94859 −0.761638 −0.380819 0.924650i \(-0.624358\pi\)
−0.380819 + 0.924650i \(0.624358\pi\)
\(62\) 1.80285 0.228963
\(63\) −0.0260928 −0.00328738
\(64\) −4.71408 −0.589260
\(65\) 0 0
\(66\) 2.98192 0.367050
\(67\) −6.35636 −0.776553 −0.388276 0.921543i \(-0.626929\pi\)
−0.388276 + 0.921543i \(0.626929\pi\)
\(68\) 14.3481 1.73996
\(69\) −13.4565 −1.61998
\(70\) 0 0
\(71\) 2.40089 0.284933 0.142466 0.989800i \(-0.454497\pi\)
0.142466 + 0.989800i \(0.454497\pi\)
\(72\) −0.503797 −0.0593731
\(73\) −1.19045 −0.139332 −0.0696658 0.997570i \(-0.522193\pi\)
−0.0696658 + 0.997570i \(0.522193\pi\)
\(74\) 0.221069 0.0256988
\(75\) 0 0
\(76\) 1.54573 0.177307
\(77\) 0.365158 0.0416136
\(78\) −3.78748 −0.428848
\(79\) 2.25348 0.253537 0.126768 0.991932i \(-0.459540\pi\)
0.126768 + 0.991932i \(0.459540\pi\)
\(80\) 0 0
\(81\) −7.85511 −0.872790
\(82\) 1.55904 0.172167
\(83\) 1.00000 0.109764
\(84\) 0.230284 0.0251260
\(85\) 0 0
\(86\) 1.22094 0.131657
\(87\) 10.4663 1.12210
\(88\) 7.05044 0.751580
\(89\) 4.10871 0.435523 0.217761 0.976002i \(-0.430125\pi\)
0.217761 + 0.976002i \(0.430125\pi\)
\(90\) 0 0
\(91\) −0.463805 −0.0486199
\(92\) −15.3072 −1.59589
\(93\) 7.70166 0.798625
\(94\) −2.04676 −0.211107
\(95\) 0 0
\(96\) 6.75344 0.689270
\(97\) 12.1829 1.23698 0.618492 0.785791i \(-0.287744\pi\)
0.618492 + 0.785791i \(0.287744\pi\)
\(98\) 2.66900 0.269610
\(99\) −1.64188 −0.165015
\(100\) 0 0
\(101\) 13.3255 1.32593 0.662966 0.748649i \(-0.269297\pi\)
0.662966 + 0.748649i \(0.269297\pi\)
\(102\) −4.81329 −0.476586
\(103\) 10.3909 1.02385 0.511923 0.859031i \(-0.328933\pi\)
0.511923 + 0.859031i \(0.328933\pi\)
\(104\) −8.95510 −0.878120
\(105\) 0 0
\(106\) −0.177463 −0.0172367
\(107\) 15.6812 1.51596 0.757979 0.652279i \(-0.226187\pi\)
0.757979 + 0.652279i \(0.226187\pi\)
\(108\) −10.1043 −0.972290
\(109\) 17.0197 1.63019 0.815095 0.579328i \(-0.196685\pi\)
0.815095 + 0.579328i \(0.196685\pi\)
\(110\) 0 0
\(111\) 0.944392 0.0896377
\(112\) 0.239769 0.0226561
\(113\) 2.67610 0.251746 0.125873 0.992046i \(-0.459827\pi\)
0.125873 + 0.992046i \(0.459827\pi\)
\(114\) −0.518537 −0.0485654
\(115\) 0 0
\(116\) 11.9057 1.10542
\(117\) 2.08543 0.192798
\(118\) −2.88963 −0.266012
\(119\) −0.589422 −0.0540322
\(120\) 0 0
\(121\) 11.9775 1.08886
\(122\) 2.26999 0.205516
\(123\) 6.66010 0.600521
\(124\) 8.76089 0.786751
\(125\) 0 0
\(126\) 0.00995706 0.000887046 0
\(127\) 2.16302 0.191937 0.0959684 0.995384i \(-0.469405\pi\)
0.0959684 + 0.995384i \(0.469405\pi\)
\(128\) 10.0844 0.891347
\(129\) 5.21576 0.459222
\(130\) 0 0
\(131\) 18.3932 1.60702 0.803509 0.595293i \(-0.202964\pi\)
0.803509 + 0.595293i \(0.202964\pi\)
\(132\) 14.4905 1.26124
\(133\) −0.0634986 −0.00550603
\(134\) 2.42560 0.209540
\(135\) 0 0
\(136\) −11.3805 −0.975870
\(137\) 17.4166 1.48800 0.744001 0.668178i \(-0.232926\pi\)
0.744001 + 0.668178i \(0.232926\pi\)
\(138\) 5.13504 0.437124
\(139\) −13.2880 −1.12707 −0.563535 0.826092i \(-0.690559\pi\)
−0.563535 + 0.826092i \(0.690559\pi\)
\(140\) 0 0
\(141\) −8.74359 −0.736343
\(142\) −0.916184 −0.0768845
\(143\) −29.1847 −2.44055
\(144\) −1.07809 −0.0898406
\(145\) 0 0
\(146\) 0.454278 0.0375963
\(147\) 11.4018 0.940403
\(148\) 1.07428 0.0883050
\(149\) 17.6410 1.44521 0.722605 0.691261i \(-0.242944\pi\)
0.722605 + 0.691261i \(0.242944\pi\)
\(150\) 0 0
\(151\) −16.8357 −1.37007 −0.685033 0.728512i \(-0.740212\pi\)
−0.685033 + 0.728512i \(0.740212\pi\)
\(152\) −1.22603 −0.0994438
\(153\) 2.65025 0.214260
\(154\) −0.139345 −0.0112288
\(155\) 0 0
\(156\) −18.4051 −1.47359
\(157\) 13.6620 1.09035 0.545175 0.838322i \(-0.316463\pi\)
0.545175 + 0.838322i \(0.316463\pi\)
\(158\) −0.859934 −0.0684127
\(159\) −0.758108 −0.0601219
\(160\) 0 0
\(161\) 0.628823 0.0495582
\(162\) 2.99753 0.235508
\(163\) −1.28882 −0.100948 −0.0504741 0.998725i \(-0.516073\pi\)
−0.0504741 + 0.998725i \(0.516073\pi\)
\(164\) 7.57608 0.591593
\(165\) 0 0
\(166\) −0.381602 −0.0296181
\(167\) 17.5230 1.35597 0.677985 0.735076i \(-0.262854\pi\)
0.677985 + 0.735076i \(0.262854\pi\)
\(168\) −0.182654 −0.0140921
\(169\) 24.0689 1.85145
\(170\) 0 0
\(171\) 0.285512 0.0218336
\(172\) 5.93309 0.452394
\(173\) −16.7053 −1.27008 −0.635040 0.772479i \(-0.719017\pi\)
−0.635040 + 0.772479i \(0.719017\pi\)
\(174\) −3.99395 −0.302781
\(175\) 0 0
\(176\) 15.0874 1.13726
\(177\) −12.3443 −0.927854
\(178\) −1.56789 −0.117519
\(179\) 1.30846 0.0977988 0.0488994 0.998804i \(-0.484429\pi\)
0.0488994 + 0.998804i \(0.484429\pi\)
\(180\) 0 0
\(181\) −10.8110 −0.803578 −0.401789 0.915732i \(-0.631611\pi\)
−0.401789 + 0.915732i \(0.631611\pi\)
\(182\) 0.176989 0.0131193
\(183\) 9.69725 0.716841
\(184\) 12.1413 0.895065
\(185\) 0 0
\(186\) −2.93897 −0.215496
\(187\) −37.0892 −2.71223
\(188\) −9.94612 −0.725395
\(189\) 0.415087 0.0301931
\(190\) 0 0
\(191\) −13.5911 −0.983415 −0.491707 0.870760i \(-0.663627\pi\)
−0.491707 + 0.870760i \(0.663627\pi\)
\(192\) 7.68478 0.554601
\(193\) 9.19181 0.661641 0.330820 0.943694i \(-0.392675\pi\)
0.330820 + 0.943694i \(0.392675\pi\)
\(194\) −4.64901 −0.333780
\(195\) 0 0
\(196\) 12.9699 0.926421
\(197\) −24.8615 −1.77131 −0.885655 0.464344i \(-0.846290\pi\)
−0.885655 + 0.464344i \(0.846290\pi\)
\(198\) 0.626545 0.0445266
\(199\) −11.0180 −0.781048 −0.390524 0.920593i \(-0.627706\pi\)
−0.390524 + 0.920593i \(0.627706\pi\)
\(200\) 0 0
\(201\) 10.3620 0.730878
\(202\) −5.08502 −0.357781
\(203\) −0.489088 −0.0343272
\(204\) −23.3900 −1.63762
\(205\) 0 0
\(206\) −3.96519 −0.276268
\(207\) −2.82741 −0.196518
\(208\) −19.1632 −1.32873
\(209\) −3.99563 −0.276383
\(210\) 0 0
\(211\) 22.5868 1.55494 0.777471 0.628918i \(-0.216502\pi\)
0.777471 + 0.628918i \(0.216502\pi\)
\(212\) −0.862373 −0.0592280
\(213\) −3.91387 −0.268174
\(214\) −5.98398 −0.409056
\(215\) 0 0
\(216\) 8.01447 0.545315
\(217\) −0.359898 −0.0244315
\(218\) −6.49475 −0.439880
\(219\) 1.94064 0.131136
\(220\) 0 0
\(221\) 47.1087 3.16887
\(222\) −0.360382 −0.0241873
\(223\) 14.8867 0.996887 0.498444 0.866922i \(-0.333905\pi\)
0.498444 + 0.866922i \(0.333905\pi\)
\(224\) −0.315588 −0.0210861
\(225\) 0 0
\(226\) −1.02121 −0.0679296
\(227\) −9.68451 −0.642784 −0.321392 0.946946i \(-0.604151\pi\)
−0.321392 + 0.946946i \(0.604151\pi\)
\(228\) −2.51981 −0.166878
\(229\) −20.2691 −1.33942 −0.669711 0.742621i \(-0.733582\pi\)
−0.669711 + 0.742621i \(0.733582\pi\)
\(230\) 0 0
\(231\) −0.595272 −0.0391661
\(232\) −9.44327 −0.619981
\(233\) −19.7228 −1.29208 −0.646041 0.763303i \(-0.723577\pi\)
−0.646041 + 0.763303i \(0.723577\pi\)
\(234\) −0.795804 −0.0520233
\(235\) 0 0
\(236\) −14.0420 −0.914059
\(237\) −3.67357 −0.238624
\(238\) 0.224925 0.0145797
\(239\) 23.2525 1.50408 0.752039 0.659119i \(-0.229070\pi\)
0.752039 + 0.659119i \(0.229070\pi\)
\(240\) 0 0
\(241\) −10.4213 −0.671298 −0.335649 0.941987i \(-0.608956\pi\)
−0.335649 + 0.941987i \(0.608956\pi\)
\(242\) −4.57062 −0.293811
\(243\) −3.54150 −0.227187
\(244\) 11.0309 0.706183
\(245\) 0 0
\(246\) −2.54151 −0.162041
\(247\) 5.07503 0.322917
\(248\) −6.94888 −0.441255
\(249\) −1.63018 −0.103308
\(250\) 0 0
\(251\) −3.62296 −0.228679 −0.114340 0.993442i \(-0.536475\pi\)
−0.114340 + 0.993442i \(0.536475\pi\)
\(252\) 0.0483859 0.00304803
\(253\) 39.5685 2.48765
\(254\) −0.825413 −0.0517910
\(255\) 0 0
\(256\) 5.57991 0.348744
\(257\) −6.32617 −0.394616 −0.197308 0.980342i \(-0.563220\pi\)
−0.197308 + 0.980342i \(0.563220\pi\)
\(258\) −1.99034 −0.123913
\(259\) −0.0441314 −0.00274219
\(260\) 0 0
\(261\) 2.19911 0.136122
\(262\) −7.01887 −0.433627
\(263\) 15.4402 0.952082 0.476041 0.879423i \(-0.342071\pi\)
0.476041 + 0.879423i \(0.342071\pi\)
\(264\) −11.4935 −0.707374
\(265\) 0 0
\(266\) 0.0242312 0.00148571
\(267\) −6.69793 −0.409907
\(268\) 11.7871 0.720012
\(269\) 12.1989 0.743777 0.371889 0.928277i \(-0.378710\pi\)
0.371889 + 0.928277i \(0.378710\pi\)
\(270\) 0 0
\(271\) −3.43954 −0.208937 −0.104469 0.994528i \(-0.533314\pi\)
−0.104469 + 0.994528i \(0.533314\pi\)
\(272\) −24.3534 −1.47664
\(273\) 0.756083 0.0457603
\(274\) −6.64622 −0.401513
\(275\) 0 0
\(276\) 24.9535 1.50202
\(277\) 9.74712 0.585648 0.292824 0.956166i \(-0.405405\pi\)
0.292824 + 0.956166i \(0.405405\pi\)
\(278\) 5.07072 0.304122
\(279\) 1.61823 0.0968808
\(280\) 0 0
\(281\) −6.98593 −0.416746 −0.208373 0.978049i \(-0.566817\pi\)
−0.208373 + 0.978049i \(0.566817\pi\)
\(282\) 3.33657 0.198690
\(283\) 19.2612 1.14496 0.572478 0.819920i \(-0.305982\pi\)
0.572478 + 0.819920i \(0.305982\pi\)
\(284\) −4.45216 −0.264187
\(285\) 0 0
\(286\) 11.1370 0.658543
\(287\) −0.311226 −0.0183711
\(288\) 1.41899 0.0836151
\(289\) 42.8677 2.52163
\(290\) 0 0
\(291\) −19.8602 −1.16423
\(292\) 2.20754 0.129187
\(293\) −15.3470 −0.896579 −0.448289 0.893888i \(-0.647967\pi\)
−0.448289 + 0.893888i \(0.647967\pi\)
\(294\) −4.35094 −0.253752
\(295\) 0 0
\(296\) −0.852085 −0.0495265
\(297\) 26.1192 1.51559
\(298\) −6.73186 −0.389966
\(299\) −50.2578 −2.90648
\(300\) 0 0
\(301\) −0.243732 −0.0140485
\(302\) 6.42453 0.369690
\(303\) −21.7228 −1.24794
\(304\) −2.62360 −0.150474
\(305\) 0 0
\(306\) −1.01134 −0.0578145
\(307\) 6.92676 0.395331 0.197665 0.980270i \(-0.436664\pi\)
0.197665 + 0.980270i \(0.436664\pi\)
\(308\) −0.677142 −0.0385837
\(309\) −16.9390 −0.963627
\(310\) 0 0
\(311\) −19.6813 −1.11602 −0.558011 0.829833i \(-0.688435\pi\)
−0.558011 + 0.829833i \(0.688435\pi\)
\(312\) 14.5984 0.826471
\(313\) 3.87220 0.218869 0.109435 0.993994i \(-0.465096\pi\)
0.109435 + 0.993994i \(0.465096\pi\)
\(314\) −5.21347 −0.294213
\(315\) 0 0
\(316\) −4.17881 −0.235076
\(317\) −17.7095 −0.994666 −0.497333 0.867560i \(-0.665687\pi\)
−0.497333 + 0.867560i \(0.665687\pi\)
\(318\) 0.289296 0.0162229
\(319\) −30.7757 −1.72311
\(320\) 0 0
\(321\) −25.5631 −1.42679
\(322\) −0.239960 −0.0133725
\(323\) 6.44956 0.358863
\(324\) 14.5664 0.809242
\(325\) 0 0
\(326\) 0.491816 0.0272392
\(327\) −27.7451 −1.53431
\(328\) −6.00913 −0.331799
\(329\) 0.408587 0.0225262
\(330\) 0 0
\(331\) 10.7130 0.588839 0.294419 0.955676i \(-0.404874\pi\)
0.294419 + 0.955676i \(0.404874\pi\)
\(332\) −1.85438 −0.101772
\(333\) 0.198430 0.0108739
\(334\) −6.68681 −0.365886
\(335\) 0 0
\(336\) −0.390866 −0.0213235
\(337\) −16.0911 −0.876540 −0.438270 0.898843i \(-0.644409\pi\)
−0.438270 + 0.898843i \(0.644409\pi\)
\(338\) −9.18475 −0.499585
\(339\) −4.36251 −0.236939
\(340\) 0 0
\(341\) −22.6465 −1.22638
\(342\) −0.108952 −0.00589145
\(343\) −1.06605 −0.0575614
\(344\) −4.70596 −0.253728
\(345\) 0 0
\(346\) 6.37478 0.342710
\(347\) −3.82853 −0.205526 −0.102763 0.994706i \(-0.532768\pi\)
−0.102763 + 0.994706i \(0.532768\pi\)
\(348\) −19.4084 −1.04040
\(349\) 15.5449 0.832101 0.416050 0.909342i \(-0.363414\pi\)
0.416050 + 0.909342i \(0.363414\pi\)
\(350\) 0 0
\(351\) −33.1752 −1.77076
\(352\) −19.8583 −1.05845
\(353\) −9.50263 −0.505774 −0.252887 0.967496i \(-0.581380\pi\)
−0.252887 + 0.967496i \(0.581380\pi\)
\(354\) 4.71061 0.250366
\(355\) 0 0
\(356\) −7.61911 −0.403812
\(357\) 0.960862 0.0508542
\(358\) −0.499311 −0.0263894
\(359\) −3.38446 −0.178625 −0.0893125 0.996004i \(-0.528467\pi\)
−0.0893125 + 0.996004i \(0.528467\pi\)
\(360\) 0 0
\(361\) −18.3052 −0.963431
\(362\) 4.12551 0.216832
\(363\) −19.5254 −1.02482
\(364\) 0.860070 0.0450799
\(365\) 0 0
\(366\) −3.70049 −0.193428
\(367\) −2.22778 −0.116289 −0.0581446 0.998308i \(-0.518518\pi\)
−0.0581446 + 0.998308i \(0.518518\pi\)
\(368\) 25.9814 1.35437
\(369\) 1.39938 0.0728489
\(370\) 0 0
\(371\) 0.0354264 0.00183924
\(372\) −14.2818 −0.740477
\(373\) 33.4446 1.73170 0.865849 0.500306i \(-0.166779\pi\)
0.865849 + 0.500306i \(0.166779\pi\)
\(374\) 14.1533 0.731850
\(375\) 0 0
\(376\) 7.88897 0.406843
\(377\) 39.0897 2.01322
\(378\) −0.158398 −0.00814712
\(379\) 29.3505 1.50763 0.753817 0.657084i \(-0.228210\pi\)
0.753817 + 0.657084i \(0.228210\pi\)
\(380\) 0 0
\(381\) −3.52610 −0.180648
\(382\) 5.18638 0.265358
\(383\) 4.51068 0.230485 0.115243 0.993337i \(-0.463235\pi\)
0.115243 + 0.993337i \(0.463235\pi\)
\(384\) −16.4394 −0.838920
\(385\) 0 0
\(386\) −3.50762 −0.178533
\(387\) 1.09590 0.0557080
\(388\) −22.5917 −1.14692
\(389\) −7.92259 −0.401691 −0.200846 0.979623i \(-0.564369\pi\)
−0.200846 + 0.979623i \(0.564369\pi\)
\(390\) 0 0
\(391\) −63.8696 −3.23003
\(392\) −10.2873 −0.519589
\(393\) −29.9841 −1.51250
\(394\) 9.48721 0.477959
\(395\) 0 0
\(396\) 3.04467 0.153000
\(397\) 0.720345 0.0361531 0.0180765 0.999837i \(-0.494246\pi\)
0.0180765 + 0.999837i \(0.494246\pi\)
\(398\) 4.20451 0.210753
\(399\) 0.103514 0.00518218
\(400\) 0 0
\(401\) 39.7909 1.98706 0.993531 0.113563i \(-0.0362264\pi\)
0.993531 + 0.113563i \(0.0362264\pi\)
\(402\) −3.95416 −0.197215
\(403\) 28.7643 1.43285
\(404\) −24.7104 −1.22939
\(405\) 0 0
\(406\) 0.186637 0.00926264
\(407\) −2.77695 −0.137648
\(408\) 18.5522 0.918473
\(409\) 4.80091 0.237390 0.118695 0.992931i \(-0.462129\pi\)
0.118695 + 0.992931i \(0.462129\pi\)
\(410\) 0 0
\(411\) −28.3922 −1.40048
\(412\) −19.2687 −0.949300
\(413\) 0.576848 0.0283848
\(414\) 1.07895 0.0530273
\(415\) 0 0
\(416\) 25.2229 1.23666
\(417\) 21.6617 1.06078
\(418\) 1.52474 0.0745775
\(419\) 32.3407 1.57995 0.789973 0.613141i \(-0.210094\pi\)
0.789973 + 0.613141i \(0.210094\pi\)
\(420\) 0 0
\(421\) 26.2043 1.27712 0.638560 0.769572i \(-0.279530\pi\)
0.638560 + 0.769572i \(0.279530\pi\)
\(422\) −8.61919 −0.419576
\(423\) −1.83715 −0.0893254
\(424\) 0.684009 0.0332184
\(425\) 0 0
\(426\) 1.49354 0.0723624
\(427\) −0.453152 −0.0219296
\(428\) −29.0789 −1.40558
\(429\) 47.5763 2.29701
\(430\) 0 0
\(431\) 14.2425 0.686036 0.343018 0.939329i \(-0.388551\pi\)
0.343018 + 0.939329i \(0.388551\pi\)
\(432\) 17.1503 0.825146
\(433\) −18.8710 −0.906882 −0.453441 0.891286i \(-0.649804\pi\)
−0.453441 + 0.891286i \(0.649804\pi\)
\(434\) 0.137338 0.00659243
\(435\) 0 0
\(436\) −31.5609 −1.51150
\(437\) −6.88069 −0.329148
\(438\) −0.740554 −0.0353850
\(439\) 25.5166 1.21784 0.608920 0.793232i \(-0.291603\pi\)
0.608920 + 0.793232i \(0.291603\pi\)
\(440\) 0 0
\(441\) 2.39568 0.114080
\(442\) −17.9768 −0.855068
\(443\) 27.9646 1.32864 0.664318 0.747450i \(-0.268722\pi\)
0.664318 + 0.747450i \(0.268722\pi\)
\(444\) −1.75126 −0.0831112
\(445\) 0 0
\(446\) −5.68080 −0.268994
\(447\) −28.7580 −1.36021
\(448\) −0.359109 −0.0169663
\(449\) −20.4268 −0.964002 −0.482001 0.876171i \(-0.660090\pi\)
−0.482001 + 0.876171i \(0.660090\pi\)
\(450\) 0 0
\(451\) −19.5838 −0.922165
\(452\) −4.96250 −0.233416
\(453\) 27.4451 1.28948
\(454\) 3.69563 0.173445
\(455\) 0 0
\(456\) 1.99864 0.0935948
\(457\) −10.9786 −0.513559 −0.256780 0.966470i \(-0.582661\pi\)
−0.256780 + 0.966470i \(0.582661\pi\)
\(458\) 7.73475 0.361421
\(459\) −42.1605 −1.96788
\(460\) 0 0
\(461\) −38.1410 −1.77640 −0.888201 0.459455i \(-0.848045\pi\)
−0.888201 + 0.459455i \(0.848045\pi\)
\(462\) 0.227157 0.0105683
\(463\) 20.1515 0.936519 0.468259 0.883591i \(-0.344881\pi\)
0.468259 + 0.883591i \(0.344881\pi\)
\(464\) −20.2079 −0.938126
\(465\) 0 0
\(466\) 7.52626 0.348647
\(467\) −31.6392 −1.46409 −0.732045 0.681257i \(-0.761434\pi\)
−0.732045 + 0.681257i \(0.761434\pi\)
\(468\) −3.86718 −0.178760
\(469\) −0.484215 −0.0223590
\(470\) 0 0
\(471\) −22.2715 −1.02622
\(472\) 11.1377 0.512656
\(473\) −15.3368 −0.705185
\(474\) 1.40184 0.0643888
\(475\) 0 0
\(476\) 1.09301 0.0500981
\(477\) −0.159289 −0.00729336
\(478\) −8.87320 −0.405851
\(479\) 23.8341 1.08901 0.544505 0.838758i \(-0.316718\pi\)
0.544505 + 0.838758i \(0.316718\pi\)
\(480\) 0 0
\(481\) 3.52714 0.160824
\(482\) 3.97681 0.181139
\(483\) −1.02509 −0.0466433
\(484\) −22.2108 −1.00958
\(485\) 0 0
\(486\) 1.35144 0.0613027
\(487\) 11.4881 0.520575 0.260287 0.965531i \(-0.416183\pi\)
0.260287 + 0.965531i \(0.416183\pi\)
\(488\) −8.74942 −0.396068
\(489\) 2.10100 0.0950107
\(490\) 0 0
\(491\) −27.1086 −1.22339 −0.611696 0.791093i \(-0.709513\pi\)
−0.611696 + 0.791093i \(0.709513\pi\)
\(492\) −12.3504 −0.556797
\(493\) 49.6767 2.23733
\(494\) −1.93664 −0.0871338
\(495\) 0 0
\(496\) −14.8701 −0.667686
\(497\) 0.182895 0.00820396
\(498\) 0.622079 0.0278760
\(499\) 0.465902 0.0208566 0.0104283 0.999946i \(-0.496681\pi\)
0.0104283 + 0.999946i \(0.496681\pi\)
\(500\) 0 0
\(501\) −28.5656 −1.27622
\(502\) 1.38253 0.0617053
\(503\) 40.9594 1.82629 0.913144 0.407638i \(-0.133647\pi\)
0.913144 + 0.407638i \(0.133647\pi\)
\(504\) −0.0383783 −0.00170951
\(505\) 0 0
\(506\) −15.0994 −0.671251
\(507\) −39.2366 −1.74256
\(508\) −4.01106 −0.177962
\(509\) −5.75767 −0.255204 −0.127602 0.991825i \(-0.540728\pi\)
−0.127602 + 0.991825i \(0.540728\pi\)
\(510\) 0 0
\(511\) −0.0906862 −0.00401172
\(512\) −22.2982 −0.985450
\(513\) −4.54196 −0.200532
\(514\) 2.41408 0.106481
\(515\) 0 0
\(516\) −9.67199 −0.425786
\(517\) 25.7102 1.13073
\(518\) 0.0168406 0.000739935 0
\(519\) 27.2326 1.19538
\(520\) 0 0
\(521\) 39.7262 1.74044 0.870218 0.492666i \(-0.163978\pi\)
0.870218 + 0.492666i \(0.163978\pi\)
\(522\) −0.839186 −0.0367302
\(523\) −16.0767 −0.702985 −0.351493 0.936191i \(-0.614326\pi\)
−0.351493 + 0.936191i \(0.614326\pi\)
\(524\) −34.1079 −1.49001
\(525\) 0 0
\(526\) −5.89201 −0.256904
\(527\) 36.5549 1.59236
\(528\) −24.5951 −1.07037
\(529\) 45.1391 1.96257
\(530\) 0 0
\(531\) −2.59371 −0.112557
\(532\) 0.117751 0.00510513
\(533\) 24.8743 1.07743
\(534\) 2.55594 0.110607
\(535\) 0 0
\(536\) −9.34918 −0.403823
\(537\) −2.13302 −0.0920466
\(538\) −4.65511 −0.200696
\(539\) −33.5265 −1.44409
\(540\) 0 0
\(541\) 37.9691 1.63242 0.816210 0.577755i \(-0.196071\pi\)
0.816210 + 0.577755i \(0.196071\pi\)
\(542\) 1.31254 0.0563782
\(543\) 17.6239 0.756314
\(544\) 32.0543 1.37432
\(545\) 0 0
\(546\) −0.288523 −0.0123477
\(547\) 2.29088 0.0979509 0.0489754 0.998800i \(-0.484404\pi\)
0.0489754 + 0.998800i \(0.484404\pi\)
\(548\) −32.2970 −1.37966
\(549\) 2.03753 0.0869597
\(550\) 0 0
\(551\) 5.35169 0.227990
\(552\) −19.7924 −0.842420
\(553\) 0.171666 0.00729998
\(554\) −3.71952 −0.158027
\(555\) 0 0
\(556\) 24.6409 1.04501
\(557\) 4.96293 0.210286 0.105143 0.994457i \(-0.466470\pi\)
0.105143 + 0.994457i \(0.466470\pi\)
\(558\) −0.617520 −0.0261417
\(559\) 19.4799 0.823913
\(560\) 0 0
\(561\) 60.4619 2.55270
\(562\) 2.66585 0.112452
\(563\) −8.06701 −0.339984 −0.169992 0.985445i \(-0.554374\pi\)
−0.169992 + 0.985445i \(0.554374\pi\)
\(564\) 16.2139 0.682730
\(565\) 0 0
\(566\) −7.35010 −0.308948
\(567\) −0.598387 −0.0251299
\(568\) 3.53132 0.148171
\(569\) −3.30222 −0.138436 −0.0692182 0.997602i \(-0.522050\pi\)
−0.0692182 + 0.997602i \(0.522050\pi\)
\(570\) 0 0
\(571\) −17.3300 −0.725238 −0.362619 0.931937i \(-0.618117\pi\)
−0.362619 + 0.931937i \(0.618117\pi\)
\(572\) 54.1196 2.26285
\(573\) 22.1558 0.925573
\(574\) 0.118765 0.00495714
\(575\) 0 0
\(576\) 1.61468 0.0672784
\(577\) −9.99784 −0.416216 −0.208108 0.978106i \(-0.566730\pi\)
−0.208108 + 0.978106i \(0.566730\pi\)
\(578\) −16.3584 −0.680420
\(579\) −14.9843 −0.622725
\(580\) 0 0
\(581\) 0.0761781 0.00316040
\(582\) 7.57871 0.314148
\(583\) 2.22919 0.0923237
\(584\) −1.75096 −0.0724553
\(585\) 0 0
\(586\) 5.85643 0.241927
\(587\) −17.9292 −0.740018 −0.370009 0.929028i \(-0.620645\pi\)
−0.370009 + 0.929028i \(0.620645\pi\)
\(588\) −21.1432 −0.871932
\(589\) 3.93807 0.162265
\(590\) 0 0
\(591\) 40.5287 1.66713
\(592\) −1.82340 −0.0749411
\(593\) −7.04507 −0.289306 −0.144653 0.989482i \(-0.546207\pi\)
−0.144653 + 0.989482i \(0.546207\pi\)
\(594\) −9.96715 −0.408957
\(595\) 0 0
\(596\) −32.7132 −1.33998
\(597\) 17.9613 0.735109
\(598\) 19.1785 0.784266
\(599\) −16.1538 −0.660028 −0.330014 0.943976i \(-0.607053\pi\)
−0.330014 + 0.943976i \(0.607053\pi\)
\(600\) 0 0
\(601\) −41.6254 −1.69794 −0.848968 0.528444i \(-0.822776\pi\)
−0.848968 + 0.528444i \(0.822776\pi\)
\(602\) 0.0930087 0.00379075
\(603\) 2.17720 0.0886625
\(604\) 31.2197 1.27031
\(605\) 0 0
\(606\) 8.28949 0.336737
\(607\) 2.47890 0.100616 0.0503078 0.998734i \(-0.483980\pi\)
0.0503078 + 0.998734i \(0.483980\pi\)
\(608\) 3.45322 0.140047
\(609\) 0.797300 0.0323082
\(610\) 0 0
\(611\) −32.6558 −1.32111
\(612\) −4.91457 −0.198660
\(613\) −46.9158 −1.89491 −0.947455 0.319889i \(-0.896354\pi\)
−0.947455 + 0.319889i \(0.896354\pi\)
\(614\) −2.64327 −0.106674
\(615\) 0 0
\(616\) 0.537089 0.0216399
\(617\) −3.90275 −0.157119 −0.0785594 0.996909i \(-0.525032\pi\)
−0.0785594 + 0.996909i \(0.525032\pi\)
\(618\) 6.46397 0.260019
\(619\) 26.5939 1.06890 0.534450 0.845200i \(-0.320519\pi\)
0.534450 + 0.845200i \(0.320519\pi\)
\(620\) 0 0
\(621\) 44.9788 1.80494
\(622\) 7.51042 0.301140
\(623\) 0.312994 0.0125398
\(624\) 31.2394 1.25058
\(625\) 0 0
\(626\) −1.47764 −0.0590583
\(627\) 6.51358 0.260127
\(628\) −25.3346 −1.01096
\(629\) 4.48243 0.178726
\(630\) 0 0
\(631\) −28.3391 −1.12816 −0.564082 0.825719i \(-0.690770\pi\)
−0.564082 + 0.825719i \(0.690770\pi\)
\(632\) 3.31451 0.131844
\(633\) −36.8206 −1.46349
\(634\) 6.75799 0.268394
\(635\) 0 0
\(636\) 1.40582 0.0557444
\(637\) 42.5836 1.68723
\(638\) 11.7441 0.464952
\(639\) −0.822360 −0.0325321
\(640\) 0 0
\(641\) 37.6459 1.48692 0.743462 0.668778i \(-0.233182\pi\)
0.743462 + 0.668778i \(0.233182\pi\)
\(642\) 9.75494 0.384997
\(643\) 10.5720 0.416920 0.208460 0.978031i \(-0.433155\pi\)
0.208460 + 0.978031i \(0.433155\pi\)
\(644\) −1.16608 −0.0459498
\(645\) 0 0
\(646\) −2.46117 −0.0968333
\(647\) −28.6602 −1.12675 −0.563374 0.826202i \(-0.690497\pi\)
−0.563374 + 0.826202i \(0.690497\pi\)
\(648\) −11.5536 −0.453869
\(649\) 36.2980 1.42482
\(650\) 0 0
\(651\) 0.586698 0.0229945
\(652\) 2.38996 0.0935981
\(653\) −8.23646 −0.322318 −0.161159 0.986928i \(-0.551523\pi\)
−0.161159 + 0.986928i \(0.551523\pi\)
\(654\) 10.5876 0.414007
\(655\) 0 0
\(656\) −12.8591 −0.502062
\(657\) 0.407757 0.0159081
\(658\) −0.155918 −0.00607831
\(659\) 6.51555 0.253810 0.126905 0.991915i \(-0.459496\pi\)
0.126905 + 0.991915i \(0.459496\pi\)
\(660\) 0 0
\(661\) 30.5093 1.18668 0.593338 0.804954i \(-0.297810\pi\)
0.593338 + 0.804954i \(0.297810\pi\)
\(662\) −4.08810 −0.158888
\(663\) −76.7955 −2.98249
\(664\) 1.47084 0.0570797
\(665\) 0 0
\(666\) −0.0757214 −0.00293415
\(667\) −52.9975 −2.05207
\(668\) −32.4943 −1.25724
\(669\) −24.2680 −0.938253
\(670\) 0 0
\(671\) −28.5144 −1.10079
\(672\) 0.514464 0.0198459
\(673\) −30.8237 −1.18817 −0.594084 0.804403i \(-0.702485\pi\)
−0.594084 + 0.804403i \(0.702485\pi\)
\(674\) 6.14041 0.236520
\(675\) 0 0
\(676\) −44.6329 −1.71665
\(677\) −30.9153 −1.18817 −0.594086 0.804402i \(-0.702486\pi\)
−0.594086 + 0.804402i \(0.702486\pi\)
\(678\) 1.66474 0.0639341
\(679\) 0.928068 0.0356160
\(680\) 0 0
\(681\) 15.7875 0.604977
\(682\) 8.64195 0.330917
\(683\) 0.759911 0.0290772 0.0145386 0.999894i \(-0.495372\pi\)
0.0145386 + 0.999894i \(0.495372\pi\)
\(684\) −0.529448 −0.0202439
\(685\) 0 0
\(686\) 0.406808 0.0155320
\(687\) 33.0423 1.26064
\(688\) −10.0704 −0.383930
\(689\) −2.83140 −0.107868
\(690\) 0 0
\(691\) 35.9938 1.36927 0.684634 0.728887i \(-0.259962\pi\)
0.684634 + 0.728887i \(0.259962\pi\)
\(692\) 30.9780 1.17761
\(693\) −0.125075 −0.00475122
\(694\) 1.46098 0.0554579
\(695\) 0 0
\(696\) 15.3942 0.583516
\(697\) 31.6113 1.19736
\(698\) −5.93198 −0.224529
\(699\) 32.1516 1.21609
\(700\) 0 0
\(701\) −8.20111 −0.309752 −0.154876 0.987934i \(-0.549498\pi\)
−0.154876 + 0.987934i \(0.549498\pi\)
\(702\) 12.6597 0.477811
\(703\) 0.482894 0.0182127
\(704\) −22.5968 −0.851650
\(705\) 0 0
\(706\) 3.62623 0.136475
\(707\) 1.01511 0.0381770
\(708\) 22.8910 0.860296
\(709\) −22.3663 −0.839984 −0.419992 0.907528i \(-0.637967\pi\)
−0.419992 + 0.907528i \(0.637967\pi\)
\(710\) 0 0
\(711\) −0.771870 −0.0289474
\(712\) 6.04326 0.226481
\(713\) −38.9985 −1.46051
\(714\) −0.366667 −0.0137222
\(715\) 0 0
\(716\) −2.42638 −0.0906781
\(717\) −37.9057 −1.41561
\(718\) 1.29152 0.0481990
\(719\) −8.41809 −0.313942 −0.156971 0.987603i \(-0.550173\pi\)
−0.156971 + 0.987603i \(0.550173\pi\)
\(720\) 0 0
\(721\) 0.791560 0.0294792
\(722\) 6.98530 0.259966
\(723\) 16.9886 0.631814
\(724\) 20.0478 0.745069
\(725\) 0 0
\(726\) 7.45093 0.276530
\(727\) −32.7173 −1.21342 −0.606709 0.794924i \(-0.707511\pi\)
−0.606709 + 0.794924i \(0.707511\pi\)
\(728\) −0.682182 −0.0252834
\(729\) 29.3386 1.08661
\(730\) 0 0
\(731\) 24.7559 0.915630
\(732\) −17.9824 −0.664648
\(733\) 17.7563 0.655844 0.327922 0.944705i \(-0.393652\pi\)
0.327922 + 0.944705i \(0.393652\pi\)
\(734\) 0.850126 0.0313787
\(735\) 0 0
\(736\) −34.1971 −1.26052
\(737\) −30.4691 −1.12234
\(738\) −0.534007 −0.0196571
\(739\) 16.2783 0.598805 0.299403 0.954127i \(-0.403213\pi\)
0.299403 + 0.954127i \(0.403213\pi\)
\(740\) 0 0
\(741\) −8.27320 −0.303924
\(742\) −0.0135188 −0.000496290 0
\(743\) 39.4194 1.44616 0.723079 0.690765i \(-0.242726\pi\)
0.723079 + 0.690765i \(0.242726\pi\)
\(744\) 11.3279 0.415301
\(745\) 0 0
\(746\) −12.7626 −0.467270
\(747\) −0.342523 −0.0125323
\(748\) 68.7774 2.51475
\(749\) 1.19456 0.0436484
\(750\) 0 0
\(751\) −32.5955 −1.18943 −0.594714 0.803937i \(-0.702735\pi\)
−0.594714 + 0.803937i \(0.702735\pi\)
\(752\) 16.8818 0.615615
\(753\) 5.90607 0.215229
\(754\) −14.9167 −0.543234
\(755\) 0 0
\(756\) −0.769729 −0.0279948
\(757\) 38.1681 1.38724 0.693621 0.720340i \(-0.256014\pi\)
0.693621 + 0.720340i \(0.256014\pi\)
\(758\) −11.2002 −0.406811
\(759\) −64.5036 −2.34133
\(760\) 0 0
\(761\) −14.3504 −0.520201 −0.260100 0.965582i \(-0.583756\pi\)
−0.260100 + 0.965582i \(0.583756\pi\)
\(762\) 1.34557 0.0487448
\(763\) 1.29653 0.0469374
\(764\) 25.2030 0.911812
\(765\) 0 0
\(766\) −1.72129 −0.0621926
\(767\) −46.1038 −1.66471
\(768\) −9.09624 −0.328232
\(769\) −50.4182 −1.81813 −0.909064 0.416657i \(-0.863201\pi\)
−0.909064 + 0.416657i \(0.863201\pi\)
\(770\) 0 0
\(771\) 10.3128 0.371405
\(772\) −17.0451 −0.613467
\(773\) 12.5954 0.453025 0.226512 0.974008i \(-0.427268\pi\)
0.226512 + 0.974008i \(0.427268\pi\)
\(774\) −0.418200 −0.0150319
\(775\) 0 0
\(776\) 17.9191 0.643257
\(777\) 0.0719420 0.00258090
\(778\) 3.02328 0.108390
\(779\) 3.40549 0.122014
\(780\) 0 0
\(781\) 11.5086 0.411810
\(782\) 24.3728 0.871569
\(783\) −34.9837 −1.25022
\(784\) −22.0141 −0.786219
\(785\) 0 0
\(786\) 11.4420 0.408123
\(787\) 44.8914 1.60021 0.800103 0.599862i \(-0.204778\pi\)
0.800103 + 0.599862i \(0.204778\pi\)
\(788\) 46.1027 1.64234
\(789\) −25.1702 −0.896084
\(790\) 0 0
\(791\) 0.203860 0.00724843
\(792\) −2.41494 −0.0858112
\(793\) 36.2175 1.28612
\(794\) −0.274885 −0.00975531
\(795\) 0 0
\(796\) 20.4316 0.724179
\(797\) −2.08094 −0.0737105 −0.0368553 0.999321i \(-0.511734\pi\)
−0.0368553 + 0.999321i \(0.511734\pi\)
\(798\) −0.0395012 −0.00139833
\(799\) −41.5003 −1.46817
\(800\) 0 0
\(801\) −1.40733 −0.0497256
\(802\) −15.1843 −0.536176
\(803\) −5.70640 −0.201374
\(804\) −19.2151 −0.677663
\(805\) 0 0
\(806\) −10.9765 −0.386632
\(807\) −19.8863 −0.700031
\(808\) 19.5996 0.689512
\(809\) −13.3820 −0.470485 −0.235243 0.971937i \(-0.575588\pi\)
−0.235243 + 0.971937i \(0.575588\pi\)
\(810\) 0 0
\(811\) −1.57763 −0.0553981 −0.0276990 0.999616i \(-0.508818\pi\)
−0.0276990 + 0.999616i \(0.508818\pi\)
\(812\) 0.906955 0.0318279
\(813\) 5.60706 0.196648
\(814\) 1.05969 0.0371422
\(815\) 0 0
\(816\) 39.7003 1.38979
\(817\) 2.66696 0.0933051
\(818\) −1.83204 −0.0640557
\(819\) 0.158864 0.00555115
\(820\) 0 0
\(821\) −20.3887 −0.711570 −0.355785 0.934568i \(-0.615786\pi\)
−0.355785 + 0.934568i \(0.615786\pi\)
\(822\) 10.8345 0.377897
\(823\) −11.1627 −0.389106 −0.194553 0.980892i \(-0.562326\pi\)
−0.194553 + 0.980892i \(0.562326\pi\)
\(824\) 15.2834 0.532421
\(825\) 0 0
\(826\) −0.220127 −0.00765918
\(827\) 14.2386 0.495124 0.247562 0.968872i \(-0.420371\pi\)
0.247562 + 0.968872i \(0.420371\pi\)
\(828\) 5.24309 0.182210
\(829\) 15.9964 0.555580 0.277790 0.960642i \(-0.410398\pi\)
0.277790 + 0.960642i \(0.410398\pi\)
\(830\) 0 0
\(831\) −15.8895 −0.551202
\(832\) 28.7013 0.995039
\(833\) 54.1170 1.87504
\(834\) −8.26617 −0.286234
\(835\) 0 0
\(836\) 7.40941 0.256260
\(837\) −25.7430 −0.889808
\(838\) −12.3413 −0.426323
\(839\) 44.3604 1.53149 0.765746 0.643143i \(-0.222370\pi\)
0.765746 + 0.643143i \(0.222370\pi\)
\(840\) 0 0
\(841\) 12.2206 0.421398
\(842\) −9.99963 −0.344610
\(843\) 11.3883 0.392234
\(844\) −41.8846 −1.44173
\(845\) 0 0
\(846\) 0.701062 0.0241030
\(847\) 0.912420 0.0313511
\(848\) 1.46373 0.0502646
\(849\) −31.3991 −1.07761
\(850\) 0 0
\(851\) −4.78207 −0.163927
\(852\) 7.25780 0.248648
\(853\) −42.9204 −1.46957 −0.734783 0.678302i \(-0.762716\pi\)
−0.734783 + 0.678302i \(0.762716\pi\)
\(854\) 0.172924 0.00591733
\(855\) 0 0
\(856\) 23.0645 0.788329
\(857\) −18.2282 −0.622662 −0.311331 0.950302i \(-0.600775\pi\)
−0.311331 + 0.950302i \(0.600775\pi\)
\(858\) −18.1552 −0.619809
\(859\) −8.29963 −0.283180 −0.141590 0.989925i \(-0.545221\pi\)
−0.141590 + 0.989925i \(0.545221\pi\)
\(860\) 0 0
\(861\) 0.507354 0.0172906
\(862\) −5.43496 −0.185116
\(863\) −23.6589 −0.805360 −0.402680 0.915341i \(-0.631921\pi\)
−0.402680 + 0.915341i \(0.631921\pi\)
\(864\) −22.5735 −0.767967
\(865\) 0 0
\(866\) 7.20121 0.244707
\(867\) −69.8819 −2.37331
\(868\) 0.667388 0.0226526
\(869\) 10.8020 0.366433
\(870\) 0 0
\(871\) 38.7002 1.31131
\(872\) 25.0332 0.847732
\(873\) −4.17292 −0.141232
\(874\) 2.62569 0.0888152
\(875\) 0 0
\(876\) −3.59869 −0.121588
\(877\) 53.7913 1.81640 0.908202 0.418532i \(-0.137455\pi\)
0.908202 + 0.418532i \(0.137455\pi\)
\(878\) −9.73719 −0.328614
\(879\) 25.0183 0.843845
\(880\) 0 0
\(881\) 12.8646 0.433419 0.216710 0.976236i \(-0.430468\pi\)
0.216710 + 0.976236i \(0.430468\pi\)
\(882\) −0.914196 −0.0307826
\(883\) 16.6092 0.558945 0.279472 0.960154i \(-0.409840\pi\)
0.279472 + 0.960154i \(0.409840\pi\)
\(884\) −87.3574 −2.93815
\(885\) 0 0
\(886\) −10.6713 −0.358511
\(887\) 19.0785 0.640593 0.320296 0.947317i \(-0.396218\pi\)
0.320296 + 0.947317i \(0.396218\pi\)
\(888\) 1.38905 0.0466135
\(889\) 0.164775 0.00552636
\(890\) 0 0
\(891\) −37.6533 −1.26143
\(892\) −27.6056 −0.924304
\(893\) −4.47084 −0.149611
\(894\) 10.9741 0.367030
\(895\) 0 0
\(896\) 0.768213 0.0256642
\(897\) 81.9290 2.73553
\(898\) 7.79492 0.260120
\(899\) 30.3324 1.01164
\(900\) 0 0
\(901\) −3.59826 −0.119875
\(902\) 7.47322 0.248831
\(903\) 0.397326 0.0132222
\(904\) 3.93611 0.130913
\(905\) 0 0
\(906\) −10.4731 −0.347946
\(907\) 11.0744 0.367720 0.183860 0.982952i \(-0.441141\pi\)
0.183860 + 0.982952i \(0.441141\pi\)
\(908\) 17.9588 0.595982
\(909\) −4.56428 −0.151388
\(910\) 0 0
\(911\) 20.8399 0.690456 0.345228 0.938519i \(-0.387802\pi\)
0.345228 + 0.938519i \(0.387802\pi\)
\(912\) 4.27693 0.141623
\(913\) 4.79348 0.158641
\(914\) 4.18947 0.138575
\(915\) 0 0
\(916\) 37.5867 1.24190
\(917\) 1.40116 0.0462702
\(918\) 16.0885 0.531001
\(919\) −43.4535 −1.43340 −0.716700 0.697382i \(-0.754348\pi\)
−0.716700 + 0.697382i \(0.754348\pi\)
\(920\) 0 0
\(921\) −11.2918 −0.372079
\(922\) 14.5547 0.479333
\(923\) −14.6176 −0.481145
\(924\) 1.10386 0.0363144
\(925\) 0 0
\(926\) −7.68985 −0.252704
\(927\) −3.55913 −0.116897
\(928\) 26.5979 0.873119
\(929\) −13.8883 −0.455660 −0.227830 0.973701i \(-0.573163\pi\)
−0.227830 + 0.973701i \(0.573163\pi\)
\(930\) 0 0
\(931\) 5.83004 0.191072
\(932\) 36.5735 1.19801
\(933\) 32.0840 1.05038
\(934\) 12.0736 0.395060
\(935\) 0 0
\(936\) 3.06733 0.100259
\(937\) 0.990239 0.0323497 0.0161748 0.999869i \(-0.494851\pi\)
0.0161748 + 0.999869i \(0.494851\pi\)
\(938\) 0.184778 0.00603320
\(939\) −6.31236 −0.205996
\(940\) 0 0
\(941\) 21.6651 0.706263 0.353131 0.935574i \(-0.385117\pi\)
0.353131 + 0.935574i \(0.385117\pi\)
\(942\) 8.49887 0.276908
\(943\) −33.7244 −1.09822
\(944\) 23.8339 0.775727
\(945\) 0 0
\(946\) 5.85254 0.190283
\(947\) −7.53272 −0.244780 −0.122390 0.992482i \(-0.539056\pi\)
−0.122390 + 0.992482i \(0.539056\pi\)
\(948\) 6.81220 0.221250
\(949\) 7.24796 0.235279
\(950\) 0 0
\(951\) 28.8696 0.936162
\(952\) −0.866945 −0.0280979
\(953\) −6.12024 −0.198254 −0.0991269 0.995075i \(-0.531605\pi\)
−0.0991269 + 0.995075i \(0.531605\pi\)
\(954\) 0.0607852 0.00196799
\(955\) 0 0
\(956\) −43.1189 −1.39457
\(957\) 50.1698 1.62176
\(958\) −9.09516 −0.293851
\(959\) 1.32677 0.0428435
\(960\) 0 0
\(961\) −8.67974 −0.279992
\(962\) −1.34596 −0.0433956
\(963\) −5.37118 −0.173084
\(964\) 19.3251 0.622421
\(965\) 0 0
\(966\) 0.391178 0.0125859
\(967\) 37.9234 1.21953 0.609766 0.792581i \(-0.291263\pi\)
0.609766 + 0.792581i \(0.291263\pi\)
\(968\) 17.6169 0.566229
\(969\) −10.5139 −0.337756
\(970\) 0 0
\(971\) 40.4241 1.29727 0.648636 0.761099i \(-0.275340\pi\)
0.648636 + 0.761099i \(0.275340\pi\)
\(972\) 6.56728 0.210646
\(973\) −1.01225 −0.0324513
\(974\) −4.38388 −0.140469
\(975\) 0 0
\(976\) −18.7231 −0.599311
\(977\) −1.51918 −0.0486030 −0.0243015 0.999705i \(-0.507736\pi\)
−0.0243015 + 0.999705i \(0.507736\pi\)
\(978\) −0.801748 −0.0256371
\(979\) 19.6950 0.629456
\(980\) 0 0
\(981\) −5.82964 −0.186126
\(982\) 10.3447 0.330112
\(983\) 43.5665 1.38956 0.694778 0.719224i \(-0.255503\pi\)
0.694778 + 0.719224i \(0.255503\pi\)
\(984\) 9.79594 0.312283
\(985\) 0 0
\(986\) −18.9568 −0.603706
\(987\) −0.666070 −0.0212012
\(988\) −9.41104 −0.299405
\(989\) −26.4108 −0.839813
\(990\) 0 0
\(991\) 60.2012 1.91235 0.956177 0.292789i \(-0.0945832\pi\)
0.956177 + 0.292789i \(0.0945832\pi\)
\(992\) 19.5722 0.621419
\(993\) −17.4641 −0.554205
\(994\) −0.0697932 −0.00221370
\(995\) 0 0
\(996\) 3.02297 0.0957864
\(997\) −22.9234 −0.725990 −0.362995 0.931791i \(-0.618246\pi\)
−0.362995 + 0.931791i \(0.618246\pi\)
\(998\) −0.177789 −0.00562782
\(999\) −3.15665 −0.0998721
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2075.2.a.k.1.5 11
5.4 even 2 415.2.a.e.1.7 11
15.14 odd 2 3735.2.a.s.1.5 11
20.19 odd 2 6640.2.a.bi.1.3 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
415.2.a.e.1.7 11 5.4 even 2
2075.2.a.k.1.5 11 1.1 even 1 trivial
3735.2.a.s.1.5 11 15.14 odd 2
6640.2.a.bi.1.3 11 20.19 odd 2