Properties

Label 41.2.g
Level 41
Weight 2
Character orbit g
Rep. character \(\chi_{41}(2,\cdot)\)
Character field \(\Q(\zeta_{20})\)
Dimension 24
Newforms 1
Sturm bound 7
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 41.g (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 41 \)
Character field: \(\Q(\zeta_{20})\)
Newforms: \( 1 \)
Sturm bound: \(7\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(41, [\chi])\).

Total New Old
Modular forms 40 40 0
Cusp forms 24 24 0
Eisenstein series 16 16 0

Trace form

\( 24q - 10q^{2} - 6q^{3} - 10q^{5} - 2q^{6} - 8q^{7} - 10q^{8} + O(q^{10}) \) \( 24q - 10q^{2} - 6q^{3} - 10q^{5} - 2q^{6} - 8q^{7} - 10q^{8} + 6q^{10} - 16q^{11} + 2q^{12} + 14q^{14} + 8q^{15} - 20q^{16} + 8q^{17} + 16q^{19} + 20q^{20} - 10q^{21} + 6q^{22} + 12q^{23} + 68q^{24} - 8q^{25} - 28q^{26} - 6q^{27} + 18q^{28} + 40q^{29} - 36q^{30} - 12q^{31} + 10q^{33} - 16q^{34} - 36q^{35} - 40q^{36} + 46q^{38} - 50q^{39} - 44q^{40} - 4q^{41} - 40q^{42} - 48q^{44} + 16q^{45} + 70q^{46} - 12q^{47} - 50q^{48} - 30q^{49} - 24q^{51} + 20q^{52} - 26q^{53} + 68q^{54} + 20q^{55} + 106q^{56} + 10q^{57} - 20q^{58} + 6q^{59} + 76q^{60} + 30q^{61} - 10q^{62} + 92q^{63} + 70q^{64} + 68q^{65} + 34q^{66} - 22q^{67} - 20q^{68} - 38q^{69} - 20q^{70} + 4q^{71} - 74q^{72} + 10q^{74} + 4q^{75} - 128q^{76} - 20q^{77} - 10q^{78} - 2q^{79} - 70q^{80} + 28q^{81} - 90q^{82} + 80q^{83} - 30q^{84} - 56q^{85} - 46q^{86} - 10q^{87} + 10q^{88} - 72q^{89} - 70q^{90} - 6q^{93} - 18q^{94} - 40q^{95} + 66q^{96} - 22q^{97} + 6q^{98} + 14q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(41, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
41.2.g.a \(24\) \(0.327\) None \(-10\) \(-6\) \(-10\) \(-8\)