Properties

Label 409.4.a.b.1.3
Level $409$
Weight $4$
Character 409.1
Self dual yes
Analytic conductor $24.132$
Analytic rank $0$
Dimension $55$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [409,4,Mod(1,409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("409.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 409 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [55] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.1317811923\)
Analytic rank: \(0\)
Dimension: \(55\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Character \(\chi\) \(=\) 409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.12250 q^{2} +1.94641 q^{3} +18.2400 q^{4} +18.8054 q^{5} -9.97048 q^{6} +21.6967 q^{7} -52.4542 q^{8} -23.2115 q^{9} -96.3307 q^{10} +62.6075 q^{11} +35.5025 q^{12} +36.7490 q^{13} -111.141 q^{14} +36.6031 q^{15} +122.777 q^{16} +128.125 q^{17} +118.901 q^{18} +117.205 q^{19} +343.010 q^{20} +42.2306 q^{21} -320.707 q^{22} -146.331 q^{23} -102.097 q^{24} +228.644 q^{25} -188.246 q^{26} -97.7322 q^{27} +395.746 q^{28} -5.75419 q^{29} -187.499 q^{30} -124.600 q^{31} -209.289 q^{32} +121.860 q^{33} -656.320 q^{34} +408.015 q^{35} -423.377 q^{36} -38.7969 q^{37} -600.381 q^{38} +71.5286 q^{39} -986.423 q^{40} -377.297 q^{41} -216.326 q^{42} -288.174 q^{43} +1141.96 q^{44} -436.502 q^{45} +749.578 q^{46} +257.894 q^{47} +238.974 q^{48} +127.745 q^{49} -1171.23 q^{50} +249.384 q^{51} +670.300 q^{52} -58.4100 q^{53} +500.633 q^{54} +1177.36 q^{55} -1138.08 q^{56} +228.129 q^{57} +29.4758 q^{58} +26.3658 q^{59} +667.639 q^{60} -878.809 q^{61} +638.264 q^{62} -503.611 q^{63} +89.8703 q^{64} +691.080 q^{65} -624.227 q^{66} -783.749 q^{67} +2337.00 q^{68} -284.820 q^{69} -2090.05 q^{70} +347.770 q^{71} +1217.54 q^{72} -722.580 q^{73} +198.737 q^{74} +445.035 q^{75} +2137.81 q^{76} +1358.37 q^{77} -366.405 q^{78} -340.400 q^{79} +2308.87 q^{80} +436.483 q^{81} +1932.70 q^{82} -500.823 q^{83} +770.285 q^{84} +2409.45 q^{85} +1476.17 q^{86} -11.2000 q^{87} -3284.03 q^{88} -693.112 q^{89} +2235.98 q^{90} +797.330 q^{91} -2669.07 q^{92} -242.523 q^{93} -1321.06 q^{94} +2204.09 q^{95} -407.363 q^{96} -387.479 q^{97} -654.371 q^{98} -1453.21 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 55 q + 13 q^{2} + 10 q^{3} + 257 q^{4} + 60 q^{5} + 48 q^{6} + 72 q^{7} + 156 q^{8} + 639 q^{9} + 21 q^{10} + 362 q^{11} + 21 q^{12} + 48 q^{13} + 279 q^{14} + 512 q^{15} + 1237 q^{16} + 270 q^{17} + 360 q^{18}+ \cdots + 9542 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.12250 −1.81108 −0.905538 0.424265i \(-0.860532\pi\)
−0.905538 + 0.424265i \(0.860532\pi\)
\(3\) 1.94641 0.374587 0.187294 0.982304i \(-0.440028\pi\)
0.187294 + 0.982304i \(0.440028\pi\)
\(4\) 18.2400 2.28000
\(5\) 18.8054 1.68201 0.841004 0.541029i \(-0.181965\pi\)
0.841004 + 0.541029i \(0.181965\pi\)
\(6\) −9.97048 −0.678405
\(7\) 21.6967 1.17151 0.585755 0.810489i \(-0.300798\pi\)
0.585755 + 0.810489i \(0.300798\pi\)
\(8\) −52.4542 −2.31817
\(9\) −23.2115 −0.859685
\(10\) −96.3307 −3.04624
\(11\) 62.6075 1.71608 0.858040 0.513583i \(-0.171682\pi\)
0.858040 + 0.513583i \(0.171682\pi\)
\(12\) 35.5025 0.854057
\(13\) 36.7490 0.784025 0.392013 0.919960i \(-0.371779\pi\)
0.392013 + 0.919960i \(0.371779\pi\)
\(14\) −111.141 −2.12169
\(15\) 36.6031 0.630058
\(16\) 122.777 1.91838
\(17\) 128.125 1.82794 0.913968 0.405787i \(-0.133002\pi\)
0.913968 + 0.405787i \(0.133002\pi\)
\(18\) 118.901 1.55695
\(19\) 117.205 1.41519 0.707595 0.706618i \(-0.249780\pi\)
0.707595 + 0.706618i \(0.249780\pi\)
\(20\) 343.010 3.83497
\(21\) 42.2306 0.438832
\(22\) −320.707 −3.10795
\(23\) −146.331 −1.32661 −0.663305 0.748349i \(-0.730847\pi\)
−0.663305 + 0.748349i \(0.730847\pi\)
\(24\) −102.097 −0.868356
\(25\) 228.644 1.82915
\(26\) −188.246 −1.41993
\(27\) −97.7322 −0.696614
\(28\) 395.746 2.67104
\(29\) −5.75419 −0.0368457 −0.0184229 0.999830i \(-0.505865\pi\)
−0.0184229 + 0.999830i \(0.505865\pi\)
\(30\) −187.499 −1.14108
\(31\) −124.600 −0.721898 −0.360949 0.932586i \(-0.617547\pi\)
−0.360949 + 0.932586i \(0.617547\pi\)
\(32\) −209.289 −1.15617
\(33\) 121.860 0.642821
\(34\) −656.320 −3.31053
\(35\) 408.015 1.97049
\(36\) −423.377 −1.96008
\(37\) −38.7969 −0.172383 −0.0861914 0.996279i \(-0.527470\pi\)
−0.0861914 + 0.996279i \(0.527470\pi\)
\(38\) −600.381 −2.56302
\(39\) 71.5286 0.293686
\(40\) −986.423 −3.89918
\(41\) −377.297 −1.43717 −0.718585 0.695439i \(-0.755210\pi\)
−0.718585 + 0.695439i \(0.755210\pi\)
\(42\) −216.326 −0.794758
\(43\) −288.174 −1.02200 −0.511002 0.859579i \(-0.670726\pi\)
−0.511002 + 0.859579i \(0.670726\pi\)
\(44\) 1141.96 3.91265
\(45\) −436.502 −1.44600
\(46\) 749.578 2.40259
\(47\) 257.894 0.800376 0.400188 0.916433i \(-0.368945\pi\)
0.400188 + 0.916433i \(0.368945\pi\)
\(48\) 238.974 0.718602
\(49\) 127.745 0.372433
\(50\) −1171.23 −3.31273
\(51\) 249.384 0.684721
\(52\) 670.300 1.78757
\(53\) −58.4100 −0.151382 −0.0756908 0.997131i \(-0.524116\pi\)
−0.0756908 + 0.997131i \(0.524116\pi\)
\(54\) 500.633 1.26162
\(55\) 1177.36 2.88646
\(56\) −1138.08 −2.71576
\(57\) 228.129 0.530112
\(58\) 29.4758 0.0667304
\(59\) 26.3658 0.0581786 0.0290893 0.999577i \(-0.490739\pi\)
0.0290893 + 0.999577i \(0.490739\pi\)
\(60\) 667.639 1.43653
\(61\) −878.809 −1.84459 −0.922294 0.386488i \(-0.873688\pi\)
−0.922294 + 0.386488i \(0.873688\pi\)
\(62\) 638.264 1.30741
\(63\) −503.611 −1.00713
\(64\) 89.8703 0.175528
\(65\) 691.080 1.31874
\(66\) −624.227 −1.16420
\(67\) −783.749 −1.42911 −0.714554 0.699580i \(-0.753370\pi\)
−0.714554 + 0.699580i \(0.753370\pi\)
\(68\) 2337.00 4.16769
\(69\) −284.820 −0.496931
\(70\) −2090.05 −3.56870
\(71\) 347.770 0.581306 0.290653 0.956828i \(-0.406127\pi\)
0.290653 + 0.956828i \(0.406127\pi\)
\(72\) 1217.54 1.99289
\(73\) −722.580 −1.15851 −0.579257 0.815145i \(-0.696657\pi\)
−0.579257 + 0.815145i \(0.696657\pi\)
\(74\) 198.737 0.312198
\(75\) 445.035 0.685177
\(76\) 2137.81 3.22663
\(77\) 1358.37 2.01040
\(78\) −366.405 −0.531887
\(79\) −340.400 −0.484785 −0.242392 0.970178i \(-0.577932\pi\)
−0.242392 + 0.970178i \(0.577932\pi\)
\(80\) 2308.87 3.22674
\(81\) 436.483 0.598742
\(82\) 1932.70 2.60282
\(83\) −500.823 −0.662319 −0.331159 0.943575i \(-0.607440\pi\)
−0.331159 + 0.943575i \(0.607440\pi\)
\(84\) 770.285 1.00054
\(85\) 2409.45 3.07460
\(86\) 1476.17 1.85093
\(87\) −11.2000 −0.0138019
\(88\) −3284.03 −3.97816
\(89\) −693.112 −0.825503 −0.412751 0.910844i \(-0.635432\pi\)
−0.412751 + 0.910844i \(0.635432\pi\)
\(90\) 2235.98 2.61881
\(91\) 797.330 0.918493
\(92\) −2669.07 −3.02467
\(93\) −242.523 −0.270414
\(94\) −1321.06 −1.44954
\(95\) 2204.09 2.38036
\(96\) −407.363 −0.433086
\(97\) −387.479 −0.405593 −0.202796 0.979221i \(-0.565003\pi\)
−0.202796 + 0.979221i \(0.565003\pi\)
\(98\) −654.371 −0.674505
\(99\) −1453.21 −1.47529
\(100\) 4170.46 4.17046
\(101\) 941.265 0.927320 0.463660 0.886013i \(-0.346536\pi\)
0.463660 + 0.886013i \(0.346536\pi\)
\(102\) −1277.47 −1.24008
\(103\) −551.594 −0.527672 −0.263836 0.964568i \(-0.584988\pi\)
−0.263836 + 0.964568i \(0.584988\pi\)
\(104\) −1927.64 −1.81750
\(105\) 794.164 0.738119
\(106\) 299.205 0.274164
\(107\) 549.783 0.496724 0.248362 0.968667i \(-0.420108\pi\)
0.248362 + 0.968667i \(0.420108\pi\)
\(108\) −1782.63 −1.58828
\(109\) 1334.04 1.17227 0.586135 0.810213i \(-0.300649\pi\)
0.586135 + 0.810213i \(0.300649\pi\)
\(110\) −6031.03 −5.22760
\(111\) −75.5146 −0.0645724
\(112\) 2663.84 2.24740
\(113\) −224.426 −0.186833 −0.0934167 0.995627i \(-0.529779\pi\)
−0.0934167 + 0.995627i \(0.529779\pi\)
\(114\) −1168.59 −0.960073
\(115\) −2751.81 −2.23137
\(116\) −104.956 −0.0840081
\(117\) −852.998 −0.674015
\(118\) −135.059 −0.105366
\(119\) 2779.89 2.14144
\(120\) −1919.99 −1.46058
\(121\) 2588.70 1.94493
\(122\) 4501.69 3.34069
\(123\) −734.376 −0.538345
\(124\) −2272.70 −1.64592
\(125\) 1949.07 1.39464
\(126\) 2579.75 1.82399
\(127\) −2407.26 −1.68196 −0.840982 0.541064i \(-0.818022\pi\)
−0.840982 + 0.541064i \(0.818022\pi\)
\(128\) 1213.95 0.838276
\(129\) −560.906 −0.382830
\(130\) −3540.05 −2.38833
\(131\) −527.365 −0.351726 −0.175863 0.984415i \(-0.556272\pi\)
−0.175863 + 0.984415i \(0.556272\pi\)
\(132\) 2222.72 1.46563
\(133\) 2542.95 1.65791
\(134\) 4014.75 2.58822
\(135\) −1837.90 −1.17171
\(136\) −6720.70 −4.23746
\(137\) 1955.60 1.21955 0.609775 0.792574i \(-0.291260\pi\)
0.609775 + 0.792574i \(0.291260\pi\)
\(138\) 1458.99 0.899980
\(139\) 77.2170 0.0471184 0.0235592 0.999722i \(-0.492500\pi\)
0.0235592 + 0.999722i \(0.492500\pi\)
\(140\) 7442.17 4.49270
\(141\) 501.968 0.299811
\(142\) −1781.45 −1.05279
\(143\) 2300.76 1.34545
\(144\) −2849.83 −1.64921
\(145\) −108.210 −0.0619748
\(146\) 3701.41 2.09816
\(147\) 248.644 0.139509
\(148\) −707.653 −0.393032
\(149\) −464.056 −0.255147 −0.127574 0.991829i \(-0.540719\pi\)
−0.127574 + 0.991829i \(0.540719\pi\)
\(150\) −2279.69 −1.24091
\(151\) −1905.89 −1.02714 −0.513572 0.858046i \(-0.671678\pi\)
−0.513572 + 0.858046i \(0.671678\pi\)
\(152\) −6147.88 −3.28065
\(153\) −2973.97 −1.57145
\(154\) −6958.26 −3.64099
\(155\) −2343.16 −1.21424
\(156\) 1304.68 0.669602
\(157\) −87.4100 −0.0444336 −0.0222168 0.999753i \(-0.507072\pi\)
−0.0222168 + 0.999753i \(0.507072\pi\)
\(158\) 1743.70 0.877982
\(159\) −113.690 −0.0567056
\(160\) −3935.77 −1.94469
\(161\) −3174.88 −1.55414
\(162\) −2235.88 −1.08437
\(163\) 1250.22 0.600765 0.300383 0.953819i \(-0.402886\pi\)
0.300383 + 0.953819i \(0.402886\pi\)
\(164\) −6881.89 −3.27674
\(165\) 2291.63 1.08123
\(166\) 2565.46 1.19951
\(167\) −1155.59 −0.535462 −0.267731 0.963494i \(-0.586274\pi\)
−0.267731 + 0.963494i \(0.586274\pi\)
\(168\) −2215.17 −1.01729
\(169\) −846.513 −0.385304
\(170\) −12342.4 −5.56834
\(171\) −2720.50 −1.21662
\(172\) −5256.29 −2.33017
\(173\) 3206.24 1.40905 0.704526 0.709679i \(-0.251160\pi\)
0.704526 + 0.709679i \(0.251160\pi\)
\(174\) 57.3720 0.0249963
\(175\) 4960.81 2.14287
\(176\) 7686.74 3.29210
\(177\) 51.3187 0.0217929
\(178\) 3550.46 1.49505
\(179\) 3971.93 1.65853 0.829263 0.558858i \(-0.188760\pi\)
0.829263 + 0.558858i \(0.188760\pi\)
\(180\) −7961.78 −3.29687
\(181\) 865.035 0.355235 0.177617 0.984100i \(-0.443161\pi\)
0.177617 + 0.984100i \(0.443161\pi\)
\(182\) −4084.32 −1.66346
\(183\) −1710.52 −0.690959
\(184\) 7675.65 3.07531
\(185\) −729.591 −0.289949
\(186\) 1242.32 0.489740
\(187\) 8021.59 3.13688
\(188\) 4703.98 1.82485
\(189\) −2120.46 −0.816089
\(190\) −11290.4 −4.31102
\(191\) 4109.58 1.55685 0.778426 0.627736i \(-0.216018\pi\)
0.778426 + 0.627736i \(0.216018\pi\)
\(192\) 174.925 0.0657505
\(193\) −3650.52 −1.36150 −0.680751 0.732515i \(-0.738346\pi\)
−0.680751 + 0.732515i \(0.738346\pi\)
\(194\) 1984.86 0.734560
\(195\) 1345.13 0.493982
\(196\) 2330.06 0.849146
\(197\) −3463.14 −1.25248 −0.626240 0.779631i \(-0.715407\pi\)
−0.626240 + 0.779631i \(0.715407\pi\)
\(198\) 7444.08 2.67186
\(199\) −836.797 −0.298085 −0.149043 0.988831i \(-0.547619\pi\)
−0.149043 + 0.988831i \(0.547619\pi\)
\(200\) −11993.3 −4.24028
\(201\) −1525.50 −0.535325
\(202\) −4821.63 −1.67945
\(203\) −124.847 −0.0431651
\(204\) 4548.76 1.56116
\(205\) −7095.24 −2.41733
\(206\) 2825.54 0.955654
\(207\) 3396.55 1.14047
\(208\) 4511.91 1.50406
\(209\) 7337.90 2.42858
\(210\) −4068.10 −1.33679
\(211\) −116.001 −0.0378474 −0.0189237 0.999821i \(-0.506024\pi\)
−0.0189237 + 0.999821i \(0.506024\pi\)
\(212\) −1065.40 −0.345149
\(213\) 676.904 0.217750
\(214\) −2816.26 −0.899605
\(215\) −5419.24 −1.71902
\(216\) 5126.46 1.61487
\(217\) −2703.41 −0.845710
\(218\) −6833.59 −2.12307
\(219\) −1406.44 −0.433965
\(220\) 21475.0 6.58112
\(221\) 4708.47 1.43315
\(222\) 386.823 0.116945
\(223\) −2188.95 −0.657322 −0.328661 0.944448i \(-0.606597\pi\)
−0.328661 + 0.944448i \(0.606597\pi\)
\(224\) −4540.87 −1.35446
\(225\) −5307.17 −1.57249
\(226\) 1149.62 0.338370
\(227\) −123.136 −0.0360037 −0.0180018 0.999838i \(-0.505730\pi\)
−0.0180018 + 0.999838i \(0.505730\pi\)
\(228\) 4161.06 1.20865
\(229\) 2272.16 0.655672 0.327836 0.944735i \(-0.393681\pi\)
0.327836 + 0.944735i \(0.393681\pi\)
\(230\) 14096.1 4.04118
\(231\) 2643.95 0.753071
\(232\) 301.831 0.0854146
\(233\) −1831.90 −0.515071 −0.257535 0.966269i \(-0.582910\pi\)
−0.257535 + 0.966269i \(0.582910\pi\)
\(234\) 4369.48 1.22069
\(235\) 4849.80 1.34624
\(236\) 480.911 0.132647
\(237\) −662.559 −0.181594
\(238\) −14240.0 −3.87832
\(239\) −2646.63 −0.716302 −0.358151 0.933664i \(-0.616593\pi\)
−0.358151 + 0.933664i \(0.616593\pi\)
\(240\) 4494.00 1.20869
\(241\) 2462.13 0.658090 0.329045 0.944314i \(-0.393273\pi\)
0.329045 + 0.944314i \(0.393273\pi\)
\(242\) −13260.6 −3.52241
\(243\) 3488.34 0.920895
\(244\) −16029.4 −4.20565
\(245\) 2402.29 0.626436
\(246\) 3761.84 0.974984
\(247\) 4307.15 1.10955
\(248\) 6535.80 1.67348
\(249\) −974.807 −0.248096
\(250\) −9984.10 −2.52580
\(251\) 411.889 0.103579 0.0517893 0.998658i \(-0.483508\pi\)
0.0517893 + 0.998658i \(0.483508\pi\)
\(252\) −9185.86 −2.29625
\(253\) −9161.39 −2.27657
\(254\) 12331.2 3.04616
\(255\) 4689.78 1.15171
\(256\) −6937.43 −1.69371
\(257\) −3990.68 −0.968607 −0.484303 0.874900i \(-0.660927\pi\)
−0.484303 + 0.874900i \(0.660927\pi\)
\(258\) 2873.24 0.693333
\(259\) −841.762 −0.201948
\(260\) 12605.3 3.00672
\(261\) 133.563 0.0316757
\(262\) 2701.42 0.637002
\(263\) −956.868 −0.224346 −0.112173 0.993689i \(-0.535781\pi\)
−0.112173 + 0.993689i \(0.535781\pi\)
\(264\) −6392.06 −1.49017
\(265\) −1098.42 −0.254625
\(266\) −13026.3 −3.00260
\(267\) −1349.08 −0.309223
\(268\) −14295.6 −3.25836
\(269\) 5754.01 1.30419 0.652097 0.758136i \(-0.273890\pi\)
0.652097 + 0.758136i \(0.273890\pi\)
\(270\) 9414.61 2.12206
\(271\) 3500.95 0.784752 0.392376 0.919805i \(-0.371653\pi\)
0.392376 + 0.919805i \(0.371653\pi\)
\(272\) 15730.8 3.50668
\(273\) 1551.93 0.344055
\(274\) −10017.6 −2.20870
\(275\) 14314.8 3.13897
\(276\) −5195.10 −1.13300
\(277\) 7881.07 1.70949 0.854743 0.519051i \(-0.173715\pi\)
0.854743 + 0.519051i \(0.173715\pi\)
\(278\) −395.544 −0.0853350
\(279\) 2892.15 0.620605
\(280\) −21402.1 −4.56792
\(281\) 1883.35 0.399827 0.199913 0.979814i \(-0.435934\pi\)
0.199913 + 0.979814i \(0.435934\pi\)
\(282\) −2571.33 −0.542980
\(283\) 3761.63 0.790126 0.395063 0.918654i \(-0.370723\pi\)
0.395063 + 0.918654i \(0.370723\pi\)
\(284\) 6343.32 1.32538
\(285\) 4290.06 0.891653
\(286\) −11785.6 −2.43671
\(287\) −8186.09 −1.68366
\(288\) 4857.91 0.993942
\(289\) 11503.0 2.34135
\(290\) 554.305 0.112241
\(291\) −754.193 −0.151930
\(292\) −13179.8 −2.64141
\(293\) −300.672 −0.0599503 −0.0299751 0.999551i \(-0.509543\pi\)
−0.0299751 + 0.999551i \(0.509543\pi\)
\(294\) −1273.68 −0.252661
\(295\) 495.820 0.0978568
\(296\) 2035.06 0.399613
\(297\) −6118.77 −1.19544
\(298\) 2377.13 0.462091
\(299\) −5377.50 −1.04010
\(300\) 8117.43 1.56220
\(301\) −6252.42 −1.19729
\(302\) 9762.90 1.86024
\(303\) 1832.09 0.347362
\(304\) 14390.0 2.71488
\(305\) −16526.4 −3.10261
\(306\) 15234.2 2.84601
\(307\) 9446.42 1.75614 0.878071 0.478530i \(-0.158830\pi\)
0.878071 + 0.478530i \(0.158830\pi\)
\(308\) 24776.7 4.58371
\(309\) −1073.63 −0.197659
\(310\) 12002.8 2.19908
\(311\) −3652.98 −0.666050 −0.333025 0.942918i \(-0.608069\pi\)
−0.333025 + 0.942918i \(0.608069\pi\)
\(312\) −3751.97 −0.680813
\(313\) 1245.20 0.224865 0.112433 0.993659i \(-0.464136\pi\)
0.112433 + 0.993659i \(0.464136\pi\)
\(314\) 447.757 0.0804726
\(315\) −9470.63 −1.69400
\(316\) −6208.89 −1.10531
\(317\) −10083.5 −1.78657 −0.893286 0.449488i \(-0.851606\pi\)
−0.893286 + 0.449488i \(0.851606\pi\)
\(318\) 582.376 0.102698
\(319\) −360.255 −0.0632302
\(320\) 1690.05 0.295239
\(321\) 1070.10 0.186066
\(322\) 16263.3 2.81466
\(323\) 15016.9 2.58688
\(324\) 7961.44 1.36513
\(325\) 8402.43 1.43410
\(326\) −6404.24 −1.08803
\(327\) 2596.58 0.439117
\(328\) 19790.8 3.33160
\(329\) 5595.43 0.937648
\(330\) −11738.9 −1.95819
\(331\) −2550.14 −0.423469 −0.211734 0.977327i \(-0.567911\pi\)
−0.211734 + 0.977327i \(0.567911\pi\)
\(332\) −9134.99 −1.51008
\(333\) 900.533 0.148195
\(334\) 5919.50 0.969762
\(335\) −14738.7 −2.40377
\(336\) 5184.93 0.841849
\(337\) −11928.5 −1.92816 −0.964079 0.265616i \(-0.914425\pi\)
−0.964079 + 0.265616i \(0.914425\pi\)
\(338\) 4336.26 0.697815
\(339\) −436.824 −0.0699854
\(340\) 43948.2 7.01008
\(341\) −7800.90 −1.23883
\(342\) 13935.7 2.20339
\(343\) −4670.32 −0.735200
\(344\) 15116.0 2.36918
\(345\) −5356.15 −0.835842
\(346\) −16423.9 −2.55190
\(347\) −5778.52 −0.893970 −0.446985 0.894542i \(-0.647502\pi\)
−0.446985 + 0.894542i \(0.647502\pi\)
\(348\) −204.288 −0.0314683
\(349\) −2629.49 −0.403305 −0.201652 0.979457i \(-0.564631\pi\)
−0.201652 + 0.979457i \(0.564631\pi\)
\(350\) −25411.7 −3.88090
\(351\) −3591.56 −0.546163
\(352\) −13103.1 −1.98408
\(353\) −11040.9 −1.66472 −0.832360 0.554235i \(-0.813011\pi\)
−0.832360 + 0.554235i \(0.813011\pi\)
\(354\) −262.880 −0.0394687
\(355\) 6539.97 0.977762
\(356\) −12642.3 −1.88214
\(357\) 5410.80 0.802157
\(358\) −20346.2 −3.00372
\(359\) 12954.3 1.90446 0.952229 0.305384i \(-0.0987849\pi\)
0.952229 + 0.305384i \(0.0987849\pi\)
\(360\) 22896.3 3.35206
\(361\) 6877.95 1.00276
\(362\) −4431.14 −0.643357
\(363\) 5038.68 0.728545
\(364\) 14543.3 2.09416
\(365\) −13588.4 −1.94863
\(366\) 8762.15 1.25138
\(367\) 1763.13 0.250776 0.125388 0.992108i \(-0.459982\pi\)
0.125388 + 0.992108i \(0.459982\pi\)
\(368\) −17966.0 −2.54495
\(369\) 8757.63 1.23551
\(370\) 3737.33 0.525120
\(371\) −1267.30 −0.177345
\(372\) −4423.61 −0.616542
\(373\) −3490.28 −0.484503 −0.242252 0.970213i \(-0.577886\pi\)
−0.242252 + 0.970213i \(0.577886\pi\)
\(374\) −41090.6 −5.68113
\(375\) 3793.69 0.522414
\(376\) −13527.6 −1.85541
\(377\) −211.460 −0.0288880
\(378\) 10862.1 1.47800
\(379\) −3148.23 −0.426686 −0.213343 0.976977i \(-0.568435\pi\)
−0.213343 + 0.976977i \(0.568435\pi\)
\(380\) 40202.4 5.42721
\(381\) −4685.51 −0.630042
\(382\) −21051.3 −2.81958
\(383\) 3915.75 0.522417 0.261208 0.965282i \(-0.415879\pi\)
0.261208 + 0.965282i \(0.415879\pi\)
\(384\) 2362.85 0.314007
\(385\) 25544.8 3.38151
\(386\) 18699.7 2.46578
\(387\) 6688.96 0.878601
\(388\) −7067.60 −0.924750
\(389\) 11321.5 1.47563 0.737817 0.675000i \(-0.235857\pi\)
0.737817 + 0.675000i \(0.235857\pi\)
\(390\) −6890.40 −0.894639
\(391\) −18748.6 −2.42496
\(392\) −6700.74 −0.863364
\(393\) −1026.47 −0.131752
\(394\) 17739.9 2.26834
\(395\) −6401.37 −0.815412
\(396\) −26506.6 −3.36365
\(397\) −6039.93 −0.763565 −0.381782 0.924252i \(-0.624690\pi\)
−0.381782 + 0.924252i \(0.624690\pi\)
\(398\) 4286.49 0.539855
\(399\) 4949.63 0.621031
\(400\) 28072.1 3.50902
\(401\) −10201.6 −1.27043 −0.635215 0.772336i \(-0.719088\pi\)
−0.635215 + 0.772336i \(0.719088\pi\)
\(402\) 7814.36 0.969515
\(403\) −4578.93 −0.565987
\(404\) 17168.6 2.11429
\(405\) 8208.25 1.00709
\(406\) 639.526 0.0781752
\(407\) −2428.97 −0.295823
\(408\) −13081.2 −1.58730
\(409\) −409.000 −0.0494468
\(410\) 36345.3 4.37797
\(411\) 3806.41 0.456828
\(412\) −10061.1 −1.20309
\(413\) 572.050 0.0681567
\(414\) −17398.8 −2.06547
\(415\) −9418.19 −1.11403
\(416\) −7691.16 −0.906467
\(417\) 150.296 0.0176499
\(418\) −37588.4 −4.39834
\(419\) 9702.59 1.13127 0.565636 0.824655i \(-0.308631\pi\)
0.565636 + 0.824655i \(0.308631\pi\)
\(420\) 14485.5 1.68291
\(421\) 4479.12 0.518525 0.259263 0.965807i \(-0.416520\pi\)
0.259263 + 0.965807i \(0.416520\pi\)
\(422\) 594.212 0.0685446
\(423\) −5986.10 −0.688071
\(424\) 3063.85 0.350928
\(425\) 29295.0 3.34357
\(426\) −3467.44 −0.394361
\(427\) −19067.2 −2.16095
\(428\) 10028.0 1.13253
\(429\) 4478.23 0.503988
\(430\) 27760.0 3.11328
\(431\) −2298.84 −0.256918 −0.128459 0.991715i \(-0.541003\pi\)
−0.128459 + 0.991715i \(0.541003\pi\)
\(432\) −11999.2 −1.33637
\(433\) −14212.5 −1.57739 −0.788696 0.614783i \(-0.789244\pi\)
−0.788696 + 0.614783i \(0.789244\pi\)
\(434\) 13848.2 1.53165
\(435\) −210.621 −0.0232150
\(436\) 24332.8 2.67277
\(437\) −17150.6 −1.87741
\(438\) 7204.47 0.785943
\(439\) 8425.30 0.915986 0.457993 0.888956i \(-0.348568\pi\)
0.457993 + 0.888956i \(0.348568\pi\)
\(440\) −61757.5 −6.69130
\(441\) −2965.14 −0.320175
\(442\) −24119.1 −2.59554
\(443\) 8072.63 0.865784 0.432892 0.901446i \(-0.357493\pi\)
0.432892 + 0.901446i \(0.357493\pi\)
\(444\) −1377.38 −0.147225
\(445\) −13034.3 −1.38850
\(446\) 11212.9 1.19046
\(447\) −903.244 −0.0955749
\(448\) 1949.88 0.205633
\(449\) −4594.25 −0.482887 −0.241443 0.970415i \(-0.577621\pi\)
−0.241443 + 0.970415i \(0.577621\pi\)
\(450\) 27185.9 2.84791
\(451\) −23621.6 −2.46630
\(452\) −4093.51 −0.425980
\(453\) −3709.64 −0.384755
\(454\) 630.764 0.0652054
\(455\) 14994.1 1.54491
\(456\) −11966.3 −1.22889
\(457\) −5202.90 −0.532563 −0.266281 0.963895i \(-0.585795\pi\)
−0.266281 + 0.963895i \(0.585795\pi\)
\(458\) −11639.1 −1.18747
\(459\) −12521.9 −1.27336
\(460\) −50192.9 −5.08751
\(461\) −11224.0 −1.13395 −0.566976 0.823734i \(-0.691887\pi\)
−0.566976 + 0.823734i \(0.691887\pi\)
\(462\) −13543.6 −1.36387
\(463\) −837.261 −0.0840406 −0.0420203 0.999117i \(-0.513379\pi\)
−0.0420203 + 0.999117i \(0.513379\pi\)
\(464\) −706.479 −0.0706842
\(465\) −4560.75 −0.454838
\(466\) 9383.88 0.932833
\(467\) −16798.5 −1.66455 −0.832273 0.554365i \(-0.812961\pi\)
−0.832273 + 0.554365i \(0.812961\pi\)
\(468\) −15558.7 −1.53675
\(469\) −17004.7 −1.67421
\(470\) −24843.1 −2.43814
\(471\) −170.136 −0.0166443
\(472\) −1383.00 −0.134868
\(473\) −18041.9 −1.75384
\(474\) 3393.95 0.328881
\(475\) 26798.2 2.58860
\(476\) 50705.0 4.88248
\(477\) 1355.78 0.130140
\(478\) 13557.3 1.29728
\(479\) 6836.41 0.652116 0.326058 0.945350i \(-0.394279\pi\)
0.326058 + 0.945350i \(0.394279\pi\)
\(480\) −7660.63 −0.728455
\(481\) −1425.74 −0.135153
\(482\) −12612.2 −1.19185
\(483\) −6179.63 −0.582159
\(484\) 47217.8 4.43443
\(485\) −7286.70 −0.682211
\(486\) −17869.0 −1.66781
\(487\) 1350.28 0.125641 0.0628204 0.998025i \(-0.479990\pi\)
0.0628204 + 0.998025i \(0.479990\pi\)
\(488\) 46097.2 4.27607
\(489\) 2433.44 0.225039
\(490\) −12305.7 −1.13452
\(491\) 17872.3 1.64270 0.821349 0.570427i \(-0.193222\pi\)
0.821349 + 0.570427i \(0.193222\pi\)
\(492\) −13395.0 −1.22742
\(493\) −737.256 −0.0673516
\(494\) −22063.4 −2.00947
\(495\) −27328.3 −2.48145
\(496\) −15298.0 −1.38488
\(497\) 7545.45 0.681006
\(498\) 4993.45 0.449321
\(499\) 21653.3 1.94255 0.971276 0.237954i \(-0.0764768\pi\)
0.971276 + 0.237954i \(0.0764768\pi\)
\(500\) 35551.0 3.17978
\(501\) −2249.25 −0.200577
\(502\) −2109.90 −0.187589
\(503\) 4216.10 0.373731 0.186866 0.982385i \(-0.440167\pi\)
0.186866 + 0.982385i \(0.440167\pi\)
\(504\) 26416.5 2.33469
\(505\) 17700.9 1.55976
\(506\) 46929.2 4.12304
\(507\) −1647.66 −0.144330
\(508\) −43908.2 −3.83487
\(509\) 453.733 0.0395115 0.0197557 0.999805i \(-0.493711\pi\)
0.0197557 + 0.999805i \(0.493711\pi\)
\(510\) −24023.4 −2.08583
\(511\) −15677.6 −1.35721
\(512\) 25825.3 2.22916
\(513\) −11454.7 −0.985841
\(514\) 20442.3 1.75422
\(515\) −10373.0 −0.887548
\(516\) −10230.9 −0.872850
\(517\) 16146.1 1.37351
\(518\) 4311.92 0.365743
\(519\) 6240.66 0.527812
\(520\) −36250.0 −3.05706
\(521\) 16723.0 1.40623 0.703115 0.711076i \(-0.251792\pi\)
0.703115 + 0.711076i \(0.251792\pi\)
\(522\) −684.177 −0.0573671
\(523\) −1422.00 −0.118890 −0.0594452 0.998232i \(-0.518933\pi\)
−0.0594452 + 0.998232i \(0.518933\pi\)
\(524\) −9619.12 −0.801933
\(525\) 9655.77 0.802691
\(526\) 4901.55 0.406308
\(527\) −15964.4 −1.31958
\(528\) 14961.6 1.23318
\(529\) 9245.65 0.759895
\(530\) 5626.67 0.461145
\(531\) −611.989 −0.0500152
\(532\) 46383.3 3.78002
\(533\) −13865.3 −1.12678
\(534\) 6910.66 0.560025
\(535\) 10338.9 0.835495
\(536\) 41110.9 3.31291
\(537\) 7731.02 0.621263
\(538\) −29474.9 −2.36199
\(539\) 7997.77 0.639125
\(540\) −33523.1 −2.67149
\(541\) −14167.5 −1.12589 −0.562947 0.826493i \(-0.690332\pi\)
−0.562947 + 0.826493i \(0.690332\pi\)
\(542\) −17933.6 −1.42125
\(543\) 1683.71 0.133066
\(544\) −26815.2 −2.11341
\(545\) 25087.1 1.97177
\(546\) −7949.76 −0.623111
\(547\) 11677.9 0.912815 0.456408 0.889771i \(-0.349136\pi\)
0.456408 + 0.889771i \(0.349136\pi\)
\(548\) 35670.1 2.78057
\(549\) 20398.5 1.58576
\(550\) −73327.7 −5.68491
\(551\) −674.418 −0.0521437
\(552\) 14940.0 1.15197
\(553\) −7385.54 −0.567930
\(554\) −40370.8 −3.09601
\(555\) −1420.08 −0.108611
\(556\) 1408.44 0.107430
\(557\) −6675.38 −0.507801 −0.253900 0.967230i \(-0.581714\pi\)
−0.253900 + 0.967230i \(0.581714\pi\)
\(558\) −14815.0 −1.12396
\(559\) −10590.1 −0.801277
\(560\) 50094.7 3.78015
\(561\) 15613.3 1.17504
\(562\) −9647.47 −0.724117
\(563\) 22255.4 1.66599 0.832995 0.553280i \(-0.186624\pi\)
0.832995 + 0.553280i \(0.186624\pi\)
\(564\) 9155.87 0.683567
\(565\) −4220.42 −0.314255
\(566\) −19268.9 −1.43098
\(567\) 9470.22 0.701432
\(568\) −18242.0 −1.34757
\(569\) −17972.5 −1.32416 −0.662079 0.749434i \(-0.730326\pi\)
−0.662079 + 0.749434i \(0.730326\pi\)
\(570\) −21975.8 −1.61485
\(571\) −11889.4 −0.871374 −0.435687 0.900098i \(-0.643495\pi\)
−0.435687 + 0.900098i \(0.643495\pi\)
\(572\) 41965.8 3.06762
\(573\) 7998.93 0.583176
\(574\) 41933.2 3.04923
\(575\) −33457.6 −2.42657
\(576\) −2086.02 −0.150899
\(577\) −21393.6 −1.54355 −0.771773 0.635899i \(-0.780630\pi\)
−0.771773 + 0.635899i \(0.780630\pi\)
\(578\) −58924.3 −4.24036
\(579\) −7105.40 −0.510001
\(580\) −1973.75 −0.141302
\(581\) −10866.2 −0.775912
\(582\) 3863.35 0.275156
\(583\) −3656.90 −0.259783
\(584\) 37902.3 2.68563
\(585\) −16041.0 −1.13370
\(586\) 1540.19 0.108575
\(587\) 13429.3 0.944270 0.472135 0.881526i \(-0.343483\pi\)
0.472135 + 0.881526i \(0.343483\pi\)
\(588\) 4535.25 0.318079
\(589\) −14603.7 −1.02162
\(590\) −2539.84 −0.177226
\(591\) −6740.69 −0.469162
\(592\) −4763.35 −0.330697
\(593\) 23675.3 1.63951 0.819753 0.572717i \(-0.194110\pi\)
0.819753 + 0.572717i \(0.194110\pi\)
\(594\) 31343.4 2.16504
\(595\) 52276.9 3.60193
\(596\) −8464.37 −0.581735
\(597\) −1628.75 −0.111659
\(598\) 27546.2 1.88369
\(599\) 12978.5 0.885288 0.442644 0.896697i \(-0.354040\pi\)
0.442644 + 0.896697i \(0.354040\pi\)
\(600\) −23344.0 −1.58836
\(601\) −9750.49 −0.661781 −0.330891 0.943669i \(-0.607349\pi\)
−0.330891 + 0.943669i \(0.607349\pi\)
\(602\) 32028.0 2.16838
\(603\) 18192.0 1.22858
\(604\) −34763.3 −2.34189
\(605\) 48681.6 3.27139
\(606\) −9384.87 −0.629099
\(607\) 7100.69 0.474808 0.237404 0.971411i \(-0.423704\pi\)
0.237404 + 0.971411i \(0.423704\pi\)
\(608\) −24529.7 −1.63620
\(609\) −243.003 −0.0161691
\(610\) 84656.3 5.61907
\(611\) 9477.33 0.627515
\(612\) −54245.2 −3.58289
\(613\) 7619.49 0.502037 0.251018 0.967982i \(-0.419235\pi\)
0.251018 + 0.967982i \(0.419235\pi\)
\(614\) −48389.2 −3.18051
\(615\) −13810.2 −0.905501
\(616\) −71252.4 −4.66045
\(617\) 14786.7 0.964813 0.482406 0.875947i \(-0.339763\pi\)
0.482406 + 0.875947i \(0.339763\pi\)
\(618\) 5499.66 0.357975
\(619\) 22104.7 1.43532 0.717659 0.696395i \(-0.245214\pi\)
0.717659 + 0.696395i \(0.245214\pi\)
\(620\) −42739.1 −2.76846
\(621\) 14301.2 0.924135
\(622\) 18712.4 1.20627
\(623\) −15038.2 −0.967084
\(624\) 8782.04 0.563402
\(625\) 8072.59 0.516645
\(626\) −6378.53 −0.407248
\(627\) 14282.6 0.909714
\(628\) −1594.36 −0.101308
\(629\) −4970.85 −0.315105
\(630\) 48513.3 3.06796
\(631\) −1915.48 −0.120846 −0.0604232 0.998173i \(-0.519245\pi\)
−0.0604232 + 0.998173i \(0.519245\pi\)
\(632\) 17855.4 1.12381
\(633\) −225.785 −0.0141772
\(634\) 51652.5 3.23562
\(635\) −45269.5 −2.82908
\(636\) −2073.70 −0.129288
\(637\) 4694.48 0.291997
\(638\) 1845.41 0.114515
\(639\) −8072.27 −0.499740
\(640\) 22828.9 1.40999
\(641\) −9516.78 −0.586412 −0.293206 0.956049i \(-0.594722\pi\)
−0.293206 + 0.956049i \(0.594722\pi\)
\(642\) −5481.60 −0.336981
\(643\) 13206.9 0.809998 0.404999 0.914317i \(-0.367272\pi\)
0.404999 + 0.914317i \(0.367272\pi\)
\(644\) −57909.8 −3.54342
\(645\) −10548.1 −0.643922
\(646\) −76923.9 −4.68503
\(647\) −15539.6 −0.944241 −0.472120 0.881534i \(-0.656511\pi\)
−0.472120 + 0.881534i \(0.656511\pi\)
\(648\) −22895.4 −1.38799
\(649\) 1650.70 0.0998391
\(650\) −43041.4 −2.59727
\(651\) −5261.94 −0.316792
\(652\) 22803.9 1.36974
\(653\) −14350.5 −0.859996 −0.429998 0.902830i \(-0.641486\pi\)
−0.429998 + 0.902830i \(0.641486\pi\)
\(654\) −13301.0 −0.795275
\(655\) −9917.32 −0.591606
\(656\) −46323.3 −2.75704
\(657\) 16772.2 0.995957
\(658\) −28662.6 −1.69815
\(659\) 13987.0 0.826791 0.413396 0.910552i \(-0.364343\pi\)
0.413396 + 0.910552i \(0.364343\pi\)
\(660\) 41799.2 2.46520
\(661\) 19009.2 1.11857 0.559284 0.828976i \(-0.311076\pi\)
0.559284 + 0.828976i \(0.311076\pi\)
\(662\) 13063.1 0.766934
\(663\) 9164.61 0.536839
\(664\) 26270.2 1.53537
\(665\) 47821.3 2.78862
\(666\) −4612.98 −0.268392
\(667\) 842.014 0.0488799
\(668\) −21077.9 −1.22085
\(669\) −4260.59 −0.246224
\(670\) 75499.1 4.35341
\(671\) −55020.0 −3.16546
\(672\) −8838.41 −0.507365
\(673\) 4720.78 0.270390 0.135195 0.990819i \(-0.456834\pi\)
0.135195 + 0.990819i \(0.456834\pi\)
\(674\) 61103.9 3.49204
\(675\) −22345.9 −1.27421
\(676\) −15440.4 −0.878492
\(677\) −1929.40 −0.109532 −0.0547658 0.998499i \(-0.517441\pi\)
−0.0547658 + 0.998499i \(0.517441\pi\)
\(678\) 2237.63 0.126749
\(679\) −8406.99 −0.475156
\(680\) −126386. −7.12745
\(681\) −239.674 −0.0134865
\(682\) 39960.1 2.24362
\(683\) 12286.8 0.688346 0.344173 0.938906i \(-0.388159\pi\)
0.344173 + 0.938906i \(0.388159\pi\)
\(684\) −49621.8 −2.77388
\(685\) 36775.9 2.05129
\(686\) 23923.7 1.33150
\(687\) 4422.57 0.245606
\(688\) −35381.1 −1.96060
\(689\) −2146.51 −0.118687
\(690\) 27436.9 1.51377
\(691\) 28263.3 1.55599 0.777993 0.628273i \(-0.216238\pi\)
0.777993 + 0.628273i \(0.216238\pi\)
\(692\) 58481.7 3.21263
\(693\) −31529.9 −1.72831
\(694\) 29600.5 1.61905
\(695\) 1452.10 0.0792536
\(696\) 587.487 0.0319952
\(697\) −48341.3 −2.62705
\(698\) 13469.6 0.730416
\(699\) −3565.62 −0.192939
\(700\) 90485.0 4.88573
\(701\) 9008.52 0.485374 0.242687 0.970105i \(-0.421971\pi\)
0.242687 + 0.970105i \(0.421971\pi\)
\(702\) 18397.7 0.989142
\(703\) −4547.18 −0.243954
\(704\) 5626.56 0.301220
\(705\) 9439.71 0.504284
\(706\) 56556.8 3.01494
\(707\) 20422.3 1.08636
\(708\) 936.051 0.0496878
\(709\) 29002.8 1.53628 0.768141 0.640281i \(-0.221182\pi\)
0.768141 + 0.640281i \(0.221182\pi\)
\(710\) −33501.0 −1.77080
\(711\) 7901.19 0.416762
\(712\) 36356.6 1.91365
\(713\) 18232.8 0.957678
\(714\) −27716.8 −1.45277
\(715\) 43266.8 2.26306
\(716\) 72447.9 3.78143
\(717\) −5151.42 −0.268317
\(718\) −66358.2 −3.44912
\(719\) −37976.9 −1.96982 −0.984909 0.173070i \(-0.944631\pi\)
−0.984909 + 0.173070i \(0.944631\pi\)
\(720\) −53592.2 −2.77398
\(721\) −11967.7 −0.618172
\(722\) −35232.3 −1.81608
\(723\) 4792.31 0.246512
\(724\) 15778.2 0.809934
\(725\) −1315.66 −0.0673964
\(726\) −25810.6 −1.31945
\(727\) 1300.77 0.0663590 0.0331795 0.999449i \(-0.489437\pi\)
0.0331795 + 0.999449i \(0.489437\pi\)
\(728\) −41823.3 −2.12922
\(729\) −4995.29 −0.253787
\(730\) 69606.6 3.52912
\(731\) −36922.4 −1.86816
\(732\) −31199.9 −1.57538
\(733\) 14050.9 0.708024 0.354012 0.935241i \(-0.384817\pi\)
0.354012 + 0.935241i \(0.384817\pi\)
\(734\) −9031.65 −0.454175
\(735\) 4675.85 0.234655
\(736\) 30625.4 1.53379
\(737\) −49068.6 −2.45246
\(738\) −44860.9 −2.23761
\(739\) −14712.4 −0.732348 −0.366174 0.930546i \(-0.619333\pi\)
−0.366174 + 0.930546i \(0.619333\pi\)
\(740\) −13307.7 −0.661083
\(741\) 8383.49 0.415621
\(742\) 6491.74 0.321185
\(743\) 15063.6 0.743783 0.371892 0.928276i \(-0.378709\pi\)
0.371892 + 0.928276i \(0.378709\pi\)
\(744\) 12721.4 0.626865
\(745\) −8726.77 −0.429160
\(746\) 17878.9 0.877473
\(747\) 11624.8 0.569385
\(748\) 146314. 7.15208
\(749\) 11928.4 0.581917
\(750\) −19433.2 −0.946132
\(751\) 15183.3 0.737746 0.368873 0.929480i \(-0.379744\pi\)
0.368873 + 0.929480i \(0.379744\pi\)
\(752\) 31663.3 1.53543
\(753\) 801.705 0.0387992
\(754\) 1083.21 0.0523183
\(755\) −35841.0 −1.72767
\(756\) −38677.1 −1.86068
\(757\) 28873.6 1.38630 0.693149 0.720794i \(-0.256223\pi\)
0.693149 + 0.720794i \(0.256223\pi\)
\(758\) 16126.8 0.772760
\(759\) −17831.8 −0.852773
\(760\) −115613. −5.51808
\(761\) 16374.1 0.779973 0.389986 0.920821i \(-0.372480\pi\)
0.389986 + 0.920821i \(0.372480\pi\)
\(762\) 24001.5 1.14105
\(763\) 28944.1 1.37333
\(764\) 74958.6 3.54962
\(765\) −55926.8 −2.64319
\(766\) −20058.4 −0.946136
\(767\) 968.916 0.0456135
\(768\) −13503.1 −0.634442
\(769\) −15513.0 −0.727454 −0.363727 0.931506i \(-0.618496\pi\)
−0.363727 + 0.931506i \(0.618496\pi\)
\(770\) −130853. −6.12418
\(771\) −7767.51 −0.362827
\(772\) −66585.3 −3.10422
\(773\) −27277.0 −1.26919 −0.634595 0.772845i \(-0.718833\pi\)
−0.634595 + 0.772845i \(0.718833\pi\)
\(774\) −34264.1 −1.59121
\(775\) −28489.1 −1.32046
\(776\) 20324.9 0.940233
\(777\) −1638.41 −0.0756471
\(778\) −57994.2 −2.67249
\(779\) −44221.0 −2.03387
\(780\) 24535.0 1.12628
\(781\) 21773.0 0.997568
\(782\) 96039.8 4.39178
\(783\) 562.369 0.0256672
\(784\) 15684.1 0.714470
\(785\) −1643.78 −0.0747377
\(786\) 5258.08 0.238613
\(787\) 18599.9 0.842457 0.421229 0.906955i \(-0.361599\pi\)
0.421229 + 0.906955i \(0.361599\pi\)
\(788\) −63167.5 −2.85565
\(789\) −1862.46 −0.0840371
\(790\) 32791.0 1.47677
\(791\) −4869.28 −0.218877
\(792\) 76227.1 3.41996
\(793\) −32295.3 −1.44620
\(794\) 30939.5 1.38287
\(795\) −2137.99 −0.0953793
\(796\) −15263.2 −0.679633
\(797\) 9041.95 0.401860 0.200930 0.979606i \(-0.435604\pi\)
0.200930 + 0.979606i \(0.435604\pi\)
\(798\) −25354.4 −1.12473
\(799\) 33042.7 1.46304
\(800\) −47852.7 −2.11481
\(801\) 16088.2 0.709672
\(802\) 52257.5 2.30084
\(803\) −45238.9 −1.98810
\(804\) −27825.0 −1.22054
\(805\) −59705.0 −2.61407
\(806\) 23455.5 1.02504
\(807\) 11199.7 0.488534
\(808\) −49373.3 −2.14969
\(809\) −28216.4 −1.22625 −0.613124 0.789987i \(-0.710087\pi\)
−0.613124 + 0.789987i \(0.710087\pi\)
\(810\) −42046.7 −1.82392
\(811\) −26630.2 −1.15304 −0.576519 0.817084i \(-0.695589\pi\)
−0.576519 + 0.817084i \(0.695589\pi\)
\(812\) −2277.20 −0.0984162
\(813\) 6814.30 0.293958
\(814\) 12442.4 0.535757
\(815\) 23510.9 1.01049
\(816\) 30618.5 1.31356
\(817\) −33775.4 −1.44633
\(818\) 2095.10 0.0895519
\(819\) −18507.2 −0.789614
\(820\) −129417. −5.51150
\(821\) −19708.1 −0.837782 −0.418891 0.908036i \(-0.637581\pi\)
−0.418891 + 0.908036i \(0.637581\pi\)
\(822\) −19498.3 −0.827350
\(823\) 22800.9 0.965722 0.482861 0.875697i \(-0.339598\pi\)
0.482861 + 0.875697i \(0.339598\pi\)
\(824\) 28933.4 1.22323
\(825\) 27862.6 1.17582
\(826\) −2930.32 −0.123437
\(827\) −41147.2 −1.73014 −0.865071 0.501649i \(-0.832727\pi\)
−0.865071 + 0.501649i \(0.832727\pi\)
\(828\) 61953.0 2.60026
\(829\) 18461.8 0.773470 0.386735 0.922191i \(-0.373603\pi\)
0.386735 + 0.922191i \(0.373603\pi\)
\(830\) 48244.6 2.01758
\(831\) 15339.8 0.640351
\(832\) 3302.64 0.137618
\(833\) 16367.3 0.680784
\(834\) −769.891 −0.0319654
\(835\) −21731.3 −0.900651
\(836\) 133843. 5.53715
\(837\) 12177.4 0.502884
\(838\) −49701.5 −2.04882
\(839\) 32667.9 1.34424 0.672121 0.740441i \(-0.265383\pi\)
0.672121 + 0.740441i \(0.265383\pi\)
\(840\) −41657.2 −1.71109
\(841\) −24355.9 −0.998642
\(842\) −22944.3 −0.939089
\(843\) 3665.78 0.149770
\(844\) −2115.85 −0.0862920
\(845\) −15919.0 −0.648085
\(846\) 30663.8 1.24615
\(847\) 56166.1 2.27850
\(848\) −7171.38 −0.290408
\(849\) 7321.68 0.295971
\(850\) −150064. −6.05546
\(851\) 5677.17 0.228685
\(852\) 12346.7 0.496469
\(853\) 44576.2 1.78929 0.894643 0.446782i \(-0.147430\pi\)
0.894643 + 0.446782i \(0.147430\pi\)
\(854\) 97671.7 3.91365
\(855\) −51160.1 −2.04636
\(856\) −28838.4 −1.15149
\(857\) 189.774 0.00756424 0.00378212 0.999993i \(-0.498796\pi\)
0.00378212 + 0.999993i \(0.498796\pi\)
\(858\) −22939.7 −0.912761
\(859\) 39891.5 1.58449 0.792247 0.610201i \(-0.208911\pi\)
0.792247 + 0.610201i \(0.208911\pi\)
\(860\) −98846.8 −3.91936
\(861\) −15933.5 −0.630676
\(862\) 11775.8 0.465297
\(863\) −32233.8 −1.27144 −0.635719 0.771920i \(-0.719296\pi\)
−0.635719 + 0.771920i \(0.719296\pi\)
\(864\) 20454.3 0.805404
\(865\) 60294.7 2.37004
\(866\) 72803.7 2.85678
\(867\) 22389.7 0.877039
\(868\) −49310.0 −1.92822
\(869\) −21311.6 −0.831929
\(870\) 1078.91 0.0420440
\(871\) −28802.0 −1.12046
\(872\) −69975.8 −2.71752
\(873\) 8993.96 0.348682
\(874\) 87854.1 3.40012
\(875\) 42288.3 1.63383
\(876\) −25653.4 −0.989438
\(877\) −41072.1 −1.58142 −0.790711 0.612189i \(-0.790289\pi\)
−0.790711 + 0.612189i \(0.790289\pi\)
\(878\) −43158.6 −1.65892
\(879\) −585.231 −0.0224566
\(880\) 144552. 5.53734
\(881\) −16834.3 −0.643772 −0.321886 0.946778i \(-0.604317\pi\)
−0.321886 + 0.946778i \(0.604317\pi\)
\(882\) 15188.9 0.579862
\(883\) −34548.0 −1.31669 −0.658343 0.752718i \(-0.728743\pi\)
−0.658343 + 0.752718i \(0.728743\pi\)
\(884\) 85882.3 3.26757
\(885\) 965.070 0.0366559
\(886\) −41352.0 −1.56800
\(887\) −23722.1 −0.897981 −0.448990 0.893537i \(-0.648216\pi\)
−0.448990 + 0.893537i \(0.648216\pi\)
\(888\) 3961.06 0.149690
\(889\) −52229.4 −1.97044
\(890\) 66768.0 2.51468
\(891\) 27327.1 1.02749
\(892\) −39926.3 −1.49869
\(893\) 30226.4 1.13268
\(894\) 4626.86 0.173093
\(895\) 74693.9 2.78966
\(896\) 26338.7 0.982048
\(897\) −10466.8 −0.389607
\(898\) 23534.0 0.874545
\(899\) 716.972 0.0265989
\(900\) −96802.5 −3.58528
\(901\) −7483.78 −0.276716
\(902\) 121002. 4.46665
\(903\) −12169.8 −0.448488
\(904\) 11772.1 0.433112
\(905\) 16267.3 0.597508
\(906\) 19002.6 0.696821
\(907\) 12450.3 0.455793 0.227896 0.973685i \(-0.426815\pi\)
0.227896 + 0.973685i \(0.426815\pi\)
\(908\) −2246.00 −0.0820882
\(909\) −21848.2 −0.797203
\(910\) −76807.3 −2.79795
\(911\) 9668.40 0.351623 0.175811 0.984424i \(-0.443745\pi\)
0.175811 + 0.984424i \(0.443745\pi\)
\(912\) 28008.9 1.01696
\(913\) −31355.3 −1.13659
\(914\) 26651.8 0.964512
\(915\) −32167.1 −1.16220
\(916\) 41444.2 1.49493
\(917\) −11442.0 −0.412050
\(918\) 64143.6 2.30616
\(919\) −24179.1 −0.867894 −0.433947 0.900938i \(-0.642879\pi\)
−0.433947 + 0.900938i \(0.642879\pi\)
\(920\) 144344. 5.17269
\(921\) 18386.6 0.657828
\(922\) 57494.7 2.05367
\(923\) 12780.2 0.455759
\(924\) 48225.6 1.71700
\(925\) −8870.67 −0.315314
\(926\) 4288.86 0.152204
\(927\) 12803.3 0.453631
\(928\) 1204.29 0.0425999
\(929\) 13587.5 0.479862 0.239931 0.970790i \(-0.422875\pi\)
0.239931 + 0.970790i \(0.422875\pi\)
\(930\) 23362.4 0.823746
\(931\) 14972.3 0.527064
\(932\) −33413.7 −1.17436
\(933\) −7110.21 −0.249494
\(934\) 86050.4 3.01462
\(935\) 150849. 5.27626
\(936\) 44743.3 1.56248
\(937\) 12034.9 0.419596 0.209798 0.977745i \(-0.432719\pi\)
0.209798 + 0.977745i \(0.432719\pi\)
\(938\) 87106.7 3.03213
\(939\) 2423.67 0.0842316
\(940\) 88460.3 3.06942
\(941\) −48732.0 −1.68822 −0.844112 0.536167i \(-0.819872\pi\)
−0.844112 + 0.536167i \(0.819872\pi\)
\(942\) 871.520 0.0301440
\(943\) 55210.2 1.90656
\(944\) 3237.10 0.111609
\(945\) −39876.2 −1.37267
\(946\) 92419.5 3.17634
\(947\) 37740.5 1.29504 0.647519 0.762049i \(-0.275807\pi\)
0.647519 + 0.762049i \(0.275807\pi\)
\(948\) −12085.0 −0.414034
\(949\) −26554.1 −0.908305
\(950\) −137273. −4.68815
\(951\) −19626.6 −0.669227
\(952\) −145817. −4.96423
\(953\) 11053.3 0.375709 0.187855 0.982197i \(-0.439847\pi\)
0.187855 + 0.982197i \(0.439847\pi\)
\(954\) −6944.99 −0.235694
\(955\) 77282.4 2.61864
\(956\) −48274.4 −1.63316
\(957\) −701.205 −0.0236852
\(958\) −35019.5 −1.18103
\(959\) 42430.0 1.42871
\(960\) 3289.53 0.110593
\(961\) −14265.8 −0.478863
\(962\) 7303.37 0.244771
\(963\) −12761.3 −0.427026
\(964\) 44909.1 1.50044
\(965\) −68649.5 −2.29006
\(966\) 31655.1 1.05433
\(967\) 29535.2 0.982202 0.491101 0.871103i \(-0.336595\pi\)
0.491101 + 0.871103i \(0.336595\pi\)
\(968\) −135788. −4.50867
\(969\) 29229.0 0.969010
\(970\) 37326.1 1.23554
\(971\) 39995.9 1.32186 0.660931 0.750446i \(-0.270161\pi\)
0.660931 + 0.750446i \(0.270161\pi\)
\(972\) 63627.3 2.09964
\(973\) 1675.35 0.0551997
\(974\) −6916.81 −0.227545
\(975\) 16354.6 0.537196
\(976\) −107897. −3.53863
\(977\) 40534.8 1.32735 0.663676 0.748020i \(-0.268995\pi\)
0.663676 + 0.748020i \(0.268995\pi\)
\(978\) −12465.3 −0.407562
\(979\) −43394.0 −1.41663
\(980\) 43817.7 1.42827
\(981\) −30965.0 −1.00778
\(982\) −91550.6 −2.97505
\(983\) −17308.3 −0.561595 −0.280798 0.959767i \(-0.590599\pi\)
−0.280798 + 0.959767i \(0.590599\pi\)
\(984\) 38521.1 1.24797
\(985\) −65125.8 −2.10668
\(986\) 3776.59 0.121979
\(987\) 10891.0 0.351231
\(988\) 78562.3 2.52976
\(989\) 42168.7 1.35580
\(990\) 139989. 4.49409
\(991\) 2565.18 0.0822257 0.0411129 0.999155i \(-0.486910\pi\)
0.0411129 + 0.999155i \(0.486910\pi\)
\(992\) 26077.5 0.834637
\(993\) −4963.61 −0.158626
\(994\) −38651.6 −1.23335
\(995\) −15736.3 −0.501382
\(996\) −17780.4 −0.565658
\(997\) −27164.9 −0.862911 −0.431455 0.902134i \(-0.642000\pi\)
−0.431455 + 0.902134i \(0.642000\pi\)
\(998\) −110919. −3.51811
\(999\) 3791.70 0.120084
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 409.4.a.b.1.3 55
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
409.4.a.b.1.3 55 1.1 even 1 trivial