Defining parameters
Level: | \( N \) | \(=\) | \( 409 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 409.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(136\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(409))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 104 | 102 | 2 |
Cusp forms | 102 | 102 | 0 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(409\) | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||
\(+\) | \(56\) | \(55\) | \(1\) | \(55\) | \(55\) | \(0\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(48\) | \(47\) | \(1\) | \(47\) | \(47\) | \(0\) | \(1\) | \(0\) | \(1\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(409))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 409 | |||||||
409.4.a.a | $47$ | $24.132$ | None | \(-15\) | \(-14\) | \(-60\) | \(-82\) | $-$ | |||
409.4.a.b | $55$ | $24.132$ | None | \(13\) | \(10\) | \(60\) | \(72\) | $+$ |