Properties

Label 409.4.a
Level $409$
Weight $4$
Character orbit 409.a
Rep. character $\chi_{409}(1,\cdot)$
Character field $\Q$
Dimension $102$
Newform subspaces $2$
Sturm bound $136$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 409 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 409.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(136\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(409))\).

Total New Old
Modular forms 104 102 2
Cusp forms 102 102 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(409\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(56\)\(55\)\(1\)\(55\)\(55\)\(0\)\(1\)\(0\)\(1\)
\(-\)\(48\)\(47\)\(1\)\(47\)\(47\)\(0\)\(1\)\(0\)\(1\)

Trace form

\( 102 q - 2 q^{2} - 4 q^{3} + 418 q^{4} - 10 q^{7} - 24 q^{8} + 918 q^{9} - 78 q^{10} - 24 q^{11} - 198 q^{12} - 34 q^{13} - 114 q^{14} - 56 q^{15} + 1578 q^{16} - 4 q^{17} - 36 q^{18} - 96 q^{19} + 24 q^{20}+ \cdots - 1112 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(409))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 409
409.4.a.a 409.a 1.a $47$ $24.132$ None 409.4.a.a \(-15\) \(-14\) \(-60\) \(-82\) $-$ $\mathrm{SU}(2)$
409.4.a.b 409.a 1.a $55$ $24.132$ None 409.4.a.b \(13\) \(10\) \(60\) \(72\) $+$ $\mathrm{SU}(2)$