Properties

Label 409.2.a.b.1.6
Level $409$
Weight $2$
Character 409.1
Self dual yes
Analytic conductor $3.266$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [409,2,Mod(1,409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("409.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 409 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.26588144267\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 5 x^{19} - 19 x^{18} + 126 x^{17} + 100 x^{16} - 1283 x^{15} + 247 x^{14} + 6767 x^{13} + \cdots - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.31596\) of defining polynomial
Character \(\chi\) \(=\) 409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.31596 q^{2} +1.87410 q^{3} -0.268240 q^{4} -1.28432 q^{5} -2.46624 q^{6} -2.16419 q^{7} +2.98492 q^{8} +0.512236 q^{9} +1.69012 q^{10} +1.34988 q^{11} -0.502707 q^{12} +5.76832 q^{13} +2.84799 q^{14} -2.40695 q^{15} -3.39157 q^{16} +3.88611 q^{17} -0.674084 q^{18} +8.19658 q^{19} +0.344507 q^{20} -4.05589 q^{21} -1.77640 q^{22} +5.98263 q^{23} +5.59403 q^{24} -3.35051 q^{25} -7.59090 q^{26} -4.66231 q^{27} +0.580520 q^{28} +4.67769 q^{29} +3.16745 q^{30} -4.78270 q^{31} -1.50666 q^{32} +2.52981 q^{33} -5.11398 q^{34} +2.77952 q^{35} -0.137402 q^{36} +1.37721 q^{37} -10.7864 q^{38} +10.8104 q^{39} -3.83361 q^{40} -6.84895 q^{41} +5.33741 q^{42} -2.99849 q^{43} -0.362092 q^{44} -0.657877 q^{45} -7.87292 q^{46} +11.2068 q^{47} -6.35612 q^{48} -2.31630 q^{49} +4.40915 q^{50} +7.28294 q^{51} -1.54729 q^{52} +3.69504 q^{53} +6.13543 q^{54} -1.73369 q^{55} -6.45993 q^{56} +15.3612 q^{57} -6.15567 q^{58} -2.10575 q^{59} +0.645638 q^{60} +9.36043 q^{61} +6.29385 q^{62} -1.10857 q^{63} +8.76585 q^{64} -7.40840 q^{65} -3.32914 q^{66} -4.89108 q^{67} -1.04241 q^{68} +11.2120 q^{69} -3.65774 q^{70} +8.93427 q^{71} +1.52898 q^{72} -2.75468 q^{73} -1.81236 q^{74} -6.27918 q^{75} -2.19865 q^{76} -2.92140 q^{77} -14.2261 q^{78} -16.4012 q^{79} +4.35587 q^{80} -10.2743 q^{81} +9.01298 q^{82} +15.1179 q^{83} +1.08795 q^{84} -4.99102 q^{85} +3.94590 q^{86} +8.76644 q^{87} +4.02929 q^{88} -6.38372 q^{89} +0.865742 q^{90} -12.4837 q^{91} -1.60478 q^{92} -8.96323 q^{93} -14.7478 q^{94} -10.5271 q^{95} -2.82363 q^{96} -1.98117 q^{97} +3.04816 q^{98} +0.691458 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 5 q^{2} + q^{3} + 23 q^{4} + 8 q^{5} - 4 q^{6} + 5 q^{7} + 12 q^{8} + 27 q^{9} - 5 q^{10} + 30 q^{11} - 5 q^{12} - 7 q^{13} + 17 q^{14} + 26 q^{15} + 29 q^{16} + 6 q^{17} - 4 q^{18} + q^{19} + 14 q^{20}+ \cdots + 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.31596 −0.930527 −0.465263 0.885172i \(-0.654040\pi\)
−0.465263 + 0.885172i \(0.654040\pi\)
\(3\) 1.87410 1.08201 0.541005 0.841019i \(-0.318044\pi\)
0.541005 + 0.841019i \(0.318044\pi\)
\(4\) −0.268240 −0.134120
\(5\) −1.28432 −0.574367 −0.287184 0.957876i \(-0.592719\pi\)
−0.287184 + 0.957876i \(0.592719\pi\)
\(6\) −2.46624 −1.00684
\(7\) −2.16419 −0.817986 −0.408993 0.912538i \(-0.634120\pi\)
−0.408993 + 0.912538i \(0.634120\pi\)
\(8\) 2.98492 1.05533
\(9\) 0.512236 0.170745
\(10\) 1.69012 0.534464
\(11\) 1.34988 0.407005 0.203503 0.979074i \(-0.434767\pi\)
0.203503 + 0.979074i \(0.434767\pi\)
\(12\) −0.502707 −0.145119
\(13\) 5.76832 1.59984 0.799922 0.600103i \(-0.204874\pi\)
0.799922 + 0.600103i \(0.204874\pi\)
\(14\) 2.84799 0.761158
\(15\) −2.40695 −0.621471
\(16\) −3.39157 −0.847892
\(17\) 3.88611 0.942519 0.471260 0.881995i \(-0.343799\pi\)
0.471260 + 0.881995i \(0.343799\pi\)
\(18\) −0.674084 −0.158883
\(19\) 8.19658 1.88042 0.940212 0.340588i \(-0.110626\pi\)
0.940212 + 0.340588i \(0.110626\pi\)
\(20\) 0.344507 0.0770340
\(21\) −4.05589 −0.885069
\(22\) −1.77640 −0.378729
\(23\) 5.98263 1.24746 0.623732 0.781638i \(-0.285616\pi\)
0.623732 + 0.781638i \(0.285616\pi\)
\(24\) 5.59403 1.14188
\(25\) −3.35051 −0.670102
\(26\) −7.59090 −1.48870
\(27\) −4.66231 −0.897262
\(28\) 0.580520 0.109708
\(29\) 4.67769 0.868625 0.434312 0.900762i \(-0.356991\pi\)
0.434312 + 0.900762i \(0.356991\pi\)
\(30\) 3.16745 0.578295
\(31\) −4.78270 −0.858997 −0.429499 0.903067i \(-0.641310\pi\)
−0.429499 + 0.903067i \(0.641310\pi\)
\(32\) −1.50666 −0.266343
\(33\) 2.52981 0.440384
\(34\) −5.11398 −0.877040
\(35\) 2.77952 0.469824
\(36\) −0.137402 −0.0229003
\(37\) 1.37721 0.226413 0.113206 0.993572i \(-0.463888\pi\)
0.113206 + 0.993572i \(0.463888\pi\)
\(38\) −10.7864 −1.74979
\(39\) 10.8104 1.73105
\(40\) −3.83361 −0.606146
\(41\) −6.84895 −1.06963 −0.534813 0.844970i \(-0.679618\pi\)
−0.534813 + 0.844970i \(0.679618\pi\)
\(42\) 5.33741 0.823580
\(43\) −2.99849 −0.457265 −0.228632 0.973513i \(-0.573425\pi\)
−0.228632 + 0.973513i \(0.573425\pi\)
\(44\) −0.362092 −0.0545874
\(45\) −0.657877 −0.0980705
\(46\) −7.87292 −1.16080
\(47\) 11.2068 1.63468 0.817342 0.576153i \(-0.195447\pi\)
0.817342 + 0.576153i \(0.195447\pi\)
\(48\) −6.35612 −0.917428
\(49\) −2.31630 −0.330899
\(50\) 4.40915 0.623548
\(51\) 7.28294 1.01982
\(52\) −1.54729 −0.214571
\(53\) 3.69504 0.507552 0.253776 0.967263i \(-0.418327\pi\)
0.253776 + 0.967263i \(0.418327\pi\)
\(54\) 6.13543 0.834926
\(55\) −1.73369 −0.233770
\(56\) −6.45993 −0.863244
\(57\) 15.3612 2.03464
\(58\) −6.15567 −0.808279
\(59\) −2.10575 −0.274146 −0.137073 0.990561i \(-0.543769\pi\)
−0.137073 + 0.990561i \(0.543769\pi\)
\(60\) 0.645638 0.0833515
\(61\) 9.36043 1.19848 0.599240 0.800569i \(-0.295470\pi\)
0.599240 + 0.800569i \(0.295470\pi\)
\(62\) 6.29385 0.799320
\(63\) −1.10857 −0.139667
\(64\) 8.76585 1.09573
\(65\) −7.40840 −0.918898
\(66\) −3.32914 −0.409789
\(67\) −4.89108 −0.597540 −0.298770 0.954325i \(-0.596576\pi\)
−0.298770 + 0.954325i \(0.596576\pi\)
\(68\) −1.04241 −0.126410
\(69\) 11.2120 1.34977
\(70\) −3.65774 −0.437184
\(71\) 8.93427 1.06030 0.530152 0.847903i \(-0.322135\pi\)
0.530152 + 0.847903i \(0.322135\pi\)
\(72\) 1.52898 0.180192
\(73\) −2.75468 −0.322410 −0.161205 0.986921i \(-0.551538\pi\)
−0.161205 + 0.986921i \(0.551538\pi\)
\(74\) −1.81236 −0.210683
\(75\) −6.27918 −0.725057
\(76\) −2.19865 −0.252202
\(77\) −2.92140 −0.332924
\(78\) −14.2261 −1.61079
\(79\) −16.4012 −1.84528 −0.922640 0.385662i \(-0.873973\pi\)
−0.922640 + 0.385662i \(0.873973\pi\)
\(80\) 4.35587 0.487001
\(81\) −10.2743 −1.14159
\(82\) 9.01298 0.995317
\(83\) 15.1179 1.65941 0.829703 0.558204i \(-0.188510\pi\)
0.829703 + 0.558204i \(0.188510\pi\)
\(84\) 1.08795 0.118705
\(85\) −4.99102 −0.541352
\(86\) 3.94590 0.425497
\(87\) 8.76644 0.939861
\(88\) 4.02929 0.429524
\(89\) −6.38372 −0.676673 −0.338337 0.941025i \(-0.609864\pi\)
−0.338337 + 0.941025i \(0.609864\pi\)
\(90\) 0.865742 0.0912572
\(91\) −12.4837 −1.30865
\(92\) −1.60478 −0.167310
\(93\) −8.96323 −0.929444
\(94\) −14.7478 −1.52112
\(95\) −10.5271 −1.08005
\(96\) −2.82363 −0.288185
\(97\) −1.98117 −0.201157 −0.100579 0.994929i \(-0.532069\pi\)
−0.100579 + 0.994929i \(0.532069\pi\)
\(98\) 3.04816 0.307911
\(99\) 0.691458 0.0694942
\(100\) 0.898740 0.0898740
\(101\) 14.7149 1.46419 0.732094 0.681204i \(-0.238543\pi\)
0.732094 + 0.681204i \(0.238543\pi\)
\(102\) −9.58408 −0.948965
\(103\) −15.5971 −1.53683 −0.768415 0.639952i \(-0.778954\pi\)
−0.768415 + 0.639952i \(0.778954\pi\)
\(104\) 17.2180 1.68836
\(105\) 5.20908 0.508354
\(106\) −4.86253 −0.472291
\(107\) −17.4886 −1.69068 −0.845342 0.534226i \(-0.820603\pi\)
−0.845342 + 0.534226i \(0.820603\pi\)
\(108\) 1.25062 0.120341
\(109\) 0.420552 0.0402816 0.0201408 0.999797i \(-0.493589\pi\)
0.0201408 + 0.999797i \(0.493589\pi\)
\(110\) 2.28147 0.217530
\(111\) 2.58103 0.244981
\(112\) 7.33999 0.693564
\(113\) −13.5198 −1.27183 −0.635916 0.771758i \(-0.719377\pi\)
−0.635916 + 0.771758i \(0.719377\pi\)
\(114\) −20.2148 −1.89329
\(115\) −7.68364 −0.716503
\(116\) −1.25474 −0.116500
\(117\) 2.95474 0.273166
\(118\) 2.77109 0.255100
\(119\) −8.41026 −0.770967
\(120\) −7.18455 −0.655856
\(121\) −9.17782 −0.834347
\(122\) −12.3180 −1.11522
\(123\) −12.8356 −1.15735
\(124\) 1.28291 0.115209
\(125\) 10.7248 0.959252
\(126\) 1.45884 0.129964
\(127\) 19.9804 1.77297 0.886486 0.462756i \(-0.153139\pi\)
0.886486 + 0.462756i \(0.153139\pi\)
\(128\) −8.52222 −0.753265
\(129\) −5.61945 −0.494765
\(130\) 9.74918 0.855060
\(131\) 9.82761 0.858643 0.429321 0.903152i \(-0.358753\pi\)
0.429321 + 0.903152i \(0.358753\pi\)
\(132\) −0.678595 −0.0590641
\(133\) −17.7389 −1.53816
\(134\) 6.43648 0.556027
\(135\) 5.98792 0.515358
\(136\) 11.5997 0.994668
\(137\) −1.20878 −0.103273 −0.0516367 0.998666i \(-0.516444\pi\)
−0.0516367 + 0.998666i \(0.516444\pi\)
\(138\) −14.7546 −1.25600
\(139\) −5.41003 −0.458873 −0.229436 0.973324i \(-0.573688\pi\)
−0.229436 + 0.973324i \(0.573688\pi\)
\(140\) −0.745576 −0.0630127
\(141\) 21.0027 1.76874
\(142\) −11.7572 −0.986641
\(143\) 7.78656 0.651145
\(144\) −1.73728 −0.144774
\(145\) −6.00767 −0.498910
\(146\) 3.62505 0.300012
\(147\) −4.34096 −0.358036
\(148\) −0.369423 −0.0303664
\(149\) 19.5581 1.60226 0.801131 0.598489i \(-0.204232\pi\)
0.801131 + 0.598489i \(0.204232\pi\)
\(150\) 8.26317 0.674685
\(151\) −18.5723 −1.51139 −0.755696 0.654922i \(-0.772701\pi\)
−0.755696 + 0.654922i \(0.772701\pi\)
\(152\) 24.4661 1.98447
\(153\) 1.99060 0.160931
\(154\) 3.84446 0.309795
\(155\) 6.14253 0.493380
\(156\) −2.89977 −0.232168
\(157\) −6.01569 −0.480105 −0.240052 0.970760i \(-0.577165\pi\)
−0.240052 + 0.970760i \(0.577165\pi\)
\(158\) 21.5834 1.71708
\(159\) 6.92485 0.549177
\(160\) 1.93504 0.152978
\(161\) −12.9475 −1.02041
\(162\) 13.5206 1.06228
\(163\) 16.2591 1.27351 0.636756 0.771065i \(-0.280276\pi\)
0.636756 + 0.771065i \(0.280276\pi\)
\(164\) 1.83716 0.143458
\(165\) −3.24910 −0.252942
\(166\) −19.8946 −1.54412
\(167\) −3.01050 −0.232960 −0.116480 0.993193i \(-0.537161\pi\)
−0.116480 + 0.993193i \(0.537161\pi\)
\(168\) −12.1065 −0.934038
\(169\) 20.2736 1.55950
\(170\) 6.56800 0.503743
\(171\) 4.19858 0.321074
\(172\) 0.804313 0.0613283
\(173\) −1.41746 −0.107767 −0.0538836 0.998547i \(-0.517160\pi\)
−0.0538836 + 0.998547i \(0.517160\pi\)
\(174\) −11.5363 −0.874566
\(175\) 7.25113 0.548134
\(176\) −4.57822 −0.345096
\(177\) −3.94638 −0.296628
\(178\) 8.40075 0.629663
\(179\) −2.97671 −0.222490 −0.111245 0.993793i \(-0.535484\pi\)
−0.111245 + 0.993793i \(0.535484\pi\)
\(180\) 0.176469 0.0131532
\(181\) −7.53706 −0.560225 −0.280113 0.959967i \(-0.590372\pi\)
−0.280113 + 0.959967i \(0.590372\pi\)
\(182\) 16.4281 1.21773
\(183\) 17.5423 1.29677
\(184\) 17.8577 1.31649
\(185\) −1.76879 −0.130044
\(186\) 11.7953 0.864872
\(187\) 5.24579 0.383610
\(188\) −3.00611 −0.219243
\(189\) 10.0901 0.733947
\(190\) 13.8532 1.00502
\(191\) −13.3784 −0.968026 −0.484013 0.875061i \(-0.660821\pi\)
−0.484013 + 0.875061i \(0.660821\pi\)
\(192\) 16.4280 1.18559
\(193\) −20.3104 −1.46197 −0.730986 0.682393i \(-0.760939\pi\)
−0.730986 + 0.682393i \(0.760939\pi\)
\(194\) 2.60715 0.187182
\(195\) −13.8840 −0.994257
\(196\) 0.621322 0.0443801
\(197\) −4.47740 −0.319002 −0.159501 0.987198i \(-0.550988\pi\)
−0.159501 + 0.987198i \(0.550988\pi\)
\(198\) −0.909934 −0.0646662
\(199\) 2.12654 0.150747 0.0753733 0.997155i \(-0.475985\pi\)
0.0753733 + 0.997155i \(0.475985\pi\)
\(200\) −10.0010 −0.707178
\(201\) −9.16635 −0.646545
\(202\) −19.3643 −1.36247
\(203\) −10.1234 −0.710523
\(204\) −1.95357 −0.136777
\(205\) 8.79628 0.614359
\(206\) 20.5252 1.43006
\(207\) 3.06452 0.212999
\(208\) −19.5637 −1.35650
\(209\) 11.0644 0.765343
\(210\) −6.85496 −0.473037
\(211\) 18.7398 1.29010 0.645051 0.764140i \(-0.276836\pi\)
0.645051 + 0.764140i \(0.276836\pi\)
\(212\) −0.991155 −0.0680728
\(213\) 16.7437 1.14726
\(214\) 23.0143 1.57323
\(215\) 3.85103 0.262638
\(216\) −13.9166 −0.946906
\(217\) 10.3506 0.702648
\(218\) −0.553432 −0.0374831
\(219\) −5.16253 −0.348851
\(220\) 0.465044 0.0313532
\(221\) 22.4163 1.50788
\(222\) −3.39654 −0.227961
\(223\) 11.1622 0.747474 0.373737 0.927535i \(-0.378076\pi\)
0.373737 + 0.927535i \(0.378076\pi\)
\(224\) 3.26070 0.217864
\(225\) −1.71625 −0.114417
\(226\) 17.7915 1.18347
\(227\) 1.67851 0.111407 0.0557033 0.998447i \(-0.482260\pi\)
0.0557033 + 0.998447i \(0.482260\pi\)
\(228\) −4.12048 −0.272885
\(229\) 14.2489 0.941593 0.470797 0.882242i \(-0.343967\pi\)
0.470797 + 0.882242i \(0.343967\pi\)
\(230\) 10.1114 0.666725
\(231\) −5.47498 −0.360227
\(232\) 13.9625 0.916685
\(233\) 0.364166 0.0238573 0.0119287 0.999929i \(-0.496203\pi\)
0.0119287 + 0.999929i \(0.496203\pi\)
\(234\) −3.88833 −0.254188
\(235\) −14.3932 −0.938909
\(236\) 0.564846 0.0367683
\(237\) −30.7374 −1.99661
\(238\) 11.0676 0.717406
\(239\) 12.1754 0.787562 0.393781 0.919204i \(-0.371167\pi\)
0.393781 + 0.919204i \(0.371167\pi\)
\(240\) 8.16332 0.526940
\(241\) −3.54661 −0.228457 −0.114229 0.993454i \(-0.536440\pi\)
−0.114229 + 0.993454i \(0.536440\pi\)
\(242\) 12.0777 0.776382
\(243\) −5.26814 −0.337951
\(244\) −2.51084 −0.160740
\(245\) 2.97487 0.190058
\(246\) 16.8912 1.07694
\(247\) 47.2805 3.00839
\(248\) −14.2760 −0.906525
\(249\) 28.3324 1.79549
\(250\) −14.1134 −0.892610
\(251\) 20.7483 1.30962 0.654810 0.755793i \(-0.272749\pi\)
0.654810 + 0.755793i \(0.272749\pi\)
\(252\) 0.297363 0.0187321
\(253\) 8.07585 0.507724
\(254\) −26.2934 −1.64980
\(255\) −9.35365 −0.585748
\(256\) −6.31677 −0.394798
\(257\) −20.8786 −1.30237 −0.651186 0.758918i \(-0.725728\pi\)
−0.651186 + 0.758918i \(0.725728\pi\)
\(258\) 7.39499 0.460392
\(259\) −2.98055 −0.185202
\(260\) 1.98722 0.123242
\(261\) 2.39608 0.148314
\(262\) −12.9328 −0.798990
\(263\) −26.9177 −1.65982 −0.829908 0.557901i \(-0.811607\pi\)
−0.829908 + 0.557901i \(0.811607\pi\)
\(264\) 7.55128 0.464749
\(265\) −4.74562 −0.291521
\(266\) 23.3438 1.43130
\(267\) −11.9637 −0.732167
\(268\) 1.31198 0.0801420
\(269\) −21.5860 −1.31612 −0.658062 0.752964i \(-0.728623\pi\)
−0.658062 + 0.752964i \(0.728623\pi\)
\(270\) −7.87988 −0.479554
\(271\) −15.1588 −0.920831 −0.460415 0.887704i \(-0.652299\pi\)
−0.460415 + 0.887704i \(0.652299\pi\)
\(272\) −13.1800 −0.799155
\(273\) −23.3957 −1.41597
\(274\) 1.59072 0.0960987
\(275\) −4.52280 −0.272735
\(276\) −3.00751 −0.181031
\(277\) −27.5176 −1.65337 −0.826687 0.562663i \(-0.809777\pi\)
−0.826687 + 0.562663i \(0.809777\pi\)
\(278\) 7.11940 0.426993
\(279\) −2.44987 −0.146670
\(280\) 8.29664 0.495819
\(281\) −18.2568 −1.08911 −0.544555 0.838725i \(-0.683301\pi\)
−0.544555 + 0.838725i \(0.683301\pi\)
\(282\) −27.6388 −1.64586
\(283\) 2.83505 0.168526 0.0842632 0.996444i \(-0.473146\pi\)
0.0842632 + 0.996444i \(0.473146\pi\)
\(284\) −2.39653 −0.142208
\(285\) −19.7287 −1.16863
\(286\) −10.2468 −0.605908
\(287\) 14.8224 0.874940
\(288\) −0.771765 −0.0454767
\(289\) −1.89818 −0.111657
\(290\) 7.90587 0.464249
\(291\) −3.71290 −0.217654
\(292\) 0.738913 0.0432416
\(293\) −9.74209 −0.569139 −0.284570 0.958655i \(-0.591851\pi\)
−0.284570 + 0.958655i \(0.591851\pi\)
\(294\) 5.71255 0.333162
\(295\) 2.70447 0.157460
\(296\) 4.11087 0.238940
\(297\) −6.29357 −0.365190
\(298\) −25.7378 −1.49095
\(299\) 34.5097 1.99575
\(300\) 1.68432 0.0972445
\(301\) 6.48928 0.374036
\(302\) 24.4405 1.40639
\(303\) 27.5771 1.58427
\(304\) −27.7993 −1.59440
\(305\) −12.0218 −0.688368
\(306\) −2.61956 −0.149750
\(307\) 10.6309 0.606740 0.303370 0.952873i \(-0.401888\pi\)
0.303370 + 0.952873i \(0.401888\pi\)
\(308\) 0.783635 0.0446517
\(309\) −29.2305 −1.66286
\(310\) −8.08335 −0.459103
\(311\) 23.1040 1.31011 0.655054 0.755582i \(-0.272646\pi\)
0.655054 + 0.755582i \(0.272646\pi\)
\(312\) 32.2682 1.82682
\(313\) 22.3419 1.26284 0.631420 0.775441i \(-0.282472\pi\)
0.631420 + 0.775441i \(0.282472\pi\)
\(314\) 7.91643 0.446750
\(315\) 1.42377 0.0802202
\(316\) 4.39945 0.247489
\(317\) −34.0695 −1.91353 −0.956766 0.290858i \(-0.906059\pi\)
−0.956766 + 0.290858i \(0.906059\pi\)
\(318\) −9.11286 −0.511024
\(319\) 6.31433 0.353535
\(320\) −11.2582 −0.629352
\(321\) −32.7753 −1.82934
\(322\) 17.0385 0.949517
\(323\) 31.8528 1.77234
\(324\) 2.75598 0.153110
\(325\) −19.3268 −1.07206
\(326\) −21.3964 −1.18504
\(327\) 0.788155 0.0435851
\(328\) −20.4436 −1.12881
\(329\) −24.2537 −1.33715
\(330\) 4.27569 0.235369
\(331\) 17.2304 0.947067 0.473534 0.880776i \(-0.342978\pi\)
0.473534 + 0.880776i \(0.342978\pi\)
\(332\) −4.05522 −0.222559
\(333\) 0.705458 0.0386589
\(334\) 3.96171 0.216775
\(335\) 6.28173 0.343208
\(336\) 13.7558 0.750443
\(337\) −0.449575 −0.0244899 −0.0122450 0.999925i \(-0.503898\pi\)
−0.0122450 + 0.999925i \(0.503898\pi\)
\(338\) −26.6793 −1.45116
\(339\) −25.3373 −1.37613
\(340\) 1.33879 0.0726060
\(341\) −6.45608 −0.349616
\(342\) −5.52518 −0.298768
\(343\) 20.1622 1.08866
\(344\) −8.95024 −0.482565
\(345\) −14.3999 −0.775263
\(346\) 1.86532 0.100280
\(347\) −14.6995 −0.789111 −0.394556 0.918872i \(-0.629101\pi\)
−0.394556 + 0.918872i \(0.629101\pi\)
\(348\) −2.35150 −0.126054
\(349\) −8.34547 −0.446723 −0.223361 0.974736i \(-0.571703\pi\)
−0.223361 + 0.974736i \(0.571703\pi\)
\(350\) −9.54223 −0.510054
\(351\) −26.8937 −1.43548
\(352\) −2.03382 −0.108403
\(353\) −16.7434 −0.891162 −0.445581 0.895242i \(-0.647003\pi\)
−0.445581 + 0.895242i \(0.647003\pi\)
\(354\) 5.19329 0.276021
\(355\) −11.4745 −0.609003
\(356\) 1.71237 0.0907553
\(357\) −15.7616 −0.834194
\(358\) 3.91725 0.207033
\(359\) 7.36108 0.388503 0.194251 0.980952i \(-0.437772\pi\)
0.194251 + 0.980952i \(0.437772\pi\)
\(360\) −1.96371 −0.103497
\(361\) 48.1840 2.53600
\(362\) 9.91850 0.521305
\(363\) −17.2001 −0.902771
\(364\) 3.34863 0.175516
\(365\) 3.53790 0.185182
\(366\) −23.0851 −1.20668
\(367\) −9.58293 −0.500225 −0.250112 0.968217i \(-0.580468\pi\)
−0.250112 + 0.968217i \(0.580468\pi\)
\(368\) −20.2905 −1.05772
\(369\) −3.50828 −0.182634
\(370\) 2.32766 0.121009
\(371\) −7.99675 −0.415171
\(372\) 2.40429 0.124657
\(373\) −20.9025 −1.08229 −0.541146 0.840929i \(-0.682009\pi\)
−0.541146 + 0.840929i \(0.682009\pi\)
\(374\) −6.90327 −0.356960
\(375\) 20.0992 1.03792
\(376\) 33.4515 1.72513
\(377\) 26.9824 1.38967
\(378\) −13.2782 −0.682958
\(379\) 0.709146 0.0364264 0.0182132 0.999834i \(-0.494202\pi\)
0.0182132 + 0.999834i \(0.494202\pi\)
\(380\) 2.82378 0.144857
\(381\) 37.4451 1.91837
\(382\) 17.6055 0.900774
\(383\) −7.16079 −0.365899 −0.182950 0.983122i \(-0.558564\pi\)
−0.182950 + 0.983122i \(0.558564\pi\)
\(384\) −15.9715 −0.815040
\(385\) 3.75202 0.191221
\(386\) 26.7277 1.36040
\(387\) −1.53593 −0.0780758
\(388\) 0.531428 0.0269792
\(389\) 9.67348 0.490465 0.245233 0.969464i \(-0.421136\pi\)
0.245233 + 0.969464i \(0.421136\pi\)
\(390\) 18.2709 0.925183
\(391\) 23.2491 1.17576
\(392\) −6.91396 −0.349208
\(393\) 18.4179 0.929060
\(394\) 5.89210 0.296840
\(395\) 21.0645 1.05987
\(396\) −0.185476 −0.00932054
\(397\) −0.0784589 −0.00393774 −0.00196887 0.999998i \(-0.500627\pi\)
−0.00196887 + 0.999998i \(0.500627\pi\)
\(398\) −2.79845 −0.140274
\(399\) −33.2445 −1.66430
\(400\) 11.3635 0.568174
\(401\) 6.22825 0.311024 0.155512 0.987834i \(-0.450297\pi\)
0.155512 + 0.987834i \(0.450297\pi\)
\(402\) 12.0626 0.601627
\(403\) −27.5881 −1.37426
\(404\) −3.94712 −0.196376
\(405\) 13.1956 0.655693
\(406\) 13.3220 0.661160
\(407\) 1.85908 0.0921510
\(408\) 21.7390 1.07624
\(409\) 1.00000 0.0494468
\(410\) −11.5756 −0.571677
\(411\) −2.26538 −0.111743
\(412\) 4.18376 0.206119
\(413\) 4.55724 0.224247
\(414\) −4.03279 −0.198201
\(415\) −19.4163 −0.953109
\(416\) −8.69091 −0.426107
\(417\) −10.1389 −0.496505
\(418\) −14.5604 −0.712172
\(419\) 29.5594 1.44407 0.722035 0.691856i \(-0.243207\pi\)
0.722035 + 0.691856i \(0.243207\pi\)
\(420\) −1.39728 −0.0681804
\(421\) 1.75282 0.0854270 0.0427135 0.999087i \(-0.486400\pi\)
0.0427135 + 0.999087i \(0.486400\pi\)
\(422\) −24.6609 −1.20047
\(423\) 5.74054 0.279115
\(424\) 11.0294 0.535635
\(425\) −13.0204 −0.631584
\(426\) −22.0341 −1.06755
\(427\) −20.2577 −0.980340
\(428\) 4.69113 0.226754
\(429\) 14.5928 0.704545
\(430\) −5.06781 −0.244392
\(431\) 3.20558 0.154408 0.0772038 0.997015i \(-0.475401\pi\)
0.0772038 + 0.997015i \(0.475401\pi\)
\(432\) 15.8125 0.760781
\(433\) −23.6552 −1.13680 −0.568398 0.822753i \(-0.692437\pi\)
−0.568398 + 0.822753i \(0.692437\pi\)
\(434\) −13.6211 −0.653832
\(435\) −11.2589 −0.539825
\(436\) −0.112809 −0.00540256
\(437\) 49.0371 2.34576
\(438\) 6.79370 0.324615
\(439\) 0.923939 0.0440972 0.0220486 0.999757i \(-0.492981\pi\)
0.0220486 + 0.999757i \(0.492981\pi\)
\(440\) −5.17492 −0.246705
\(441\) −1.18649 −0.0564995
\(442\) −29.4991 −1.40313
\(443\) 11.4658 0.544756 0.272378 0.962190i \(-0.412190\pi\)
0.272378 + 0.962190i \(0.412190\pi\)
\(444\) −0.692334 −0.0328567
\(445\) 8.19877 0.388659
\(446\) −14.6890 −0.695545
\(447\) 36.6538 1.73366
\(448\) −18.9709 −0.896292
\(449\) 12.3343 0.582091 0.291045 0.956709i \(-0.405997\pi\)
0.291045 + 0.956709i \(0.405997\pi\)
\(450\) 2.25852 0.106468
\(451\) −9.24529 −0.435344
\(452\) 3.62653 0.170578
\(453\) −34.8063 −1.63534
\(454\) −2.20886 −0.103667
\(455\) 16.0332 0.751646
\(456\) 45.8519 2.14721
\(457\) −9.31360 −0.435672 −0.217836 0.975985i \(-0.569900\pi\)
−0.217836 + 0.975985i \(0.569900\pi\)
\(458\) −18.7510 −0.876178
\(459\) −18.1182 −0.845687
\(460\) 2.06105 0.0960972
\(461\) −14.3508 −0.668385 −0.334192 0.942505i \(-0.608464\pi\)
−0.334192 + 0.942505i \(0.608464\pi\)
\(462\) 7.20488 0.335201
\(463\) 21.3247 0.991042 0.495521 0.868596i \(-0.334977\pi\)
0.495521 + 0.868596i \(0.334977\pi\)
\(464\) −15.8647 −0.736500
\(465\) 11.5117 0.533842
\(466\) −0.479229 −0.0221999
\(467\) 1.87580 0.0868017 0.0434009 0.999058i \(-0.486181\pi\)
0.0434009 + 0.999058i \(0.486181\pi\)
\(468\) −0.792578 −0.0366369
\(469\) 10.5852 0.488780
\(470\) 18.9409 0.873680
\(471\) −11.2740 −0.519478
\(472\) −6.28550 −0.289314
\(473\) −4.04761 −0.186109
\(474\) 40.4494 1.85790
\(475\) −27.4627 −1.26008
\(476\) 2.25596 0.103402
\(477\) 1.89273 0.0866621
\(478\) −16.0224 −0.732847
\(479\) 32.8340 1.50022 0.750111 0.661312i \(-0.230000\pi\)
0.750111 + 0.661312i \(0.230000\pi\)
\(480\) 3.62645 0.165524
\(481\) 7.94421 0.362225
\(482\) 4.66721 0.212586
\(483\) −24.2649 −1.10409
\(484\) 2.46185 0.111902
\(485\) 2.54446 0.115538
\(486\) 6.93268 0.314473
\(487\) −32.8387 −1.48806 −0.744032 0.668144i \(-0.767089\pi\)
−0.744032 + 0.668144i \(0.767089\pi\)
\(488\) 27.9401 1.26479
\(489\) 30.4711 1.37795
\(490\) −3.91483 −0.176854
\(491\) −14.9471 −0.674553 −0.337276 0.941406i \(-0.609506\pi\)
−0.337276 + 0.941406i \(0.609506\pi\)
\(492\) 3.44301 0.155223
\(493\) 18.1780 0.818696
\(494\) −62.2195 −2.79939
\(495\) −0.888057 −0.0399152
\(496\) 16.2208 0.728337
\(497\) −19.3354 −0.867313
\(498\) −37.2844 −1.67076
\(499\) 15.6763 0.701767 0.350883 0.936419i \(-0.385881\pi\)
0.350883 + 0.936419i \(0.385881\pi\)
\(500\) −2.87681 −0.128655
\(501\) −5.64197 −0.252065
\(502\) −27.3040 −1.21864
\(503\) −21.6618 −0.965850 −0.482925 0.875662i \(-0.660426\pi\)
−0.482925 + 0.875662i \(0.660426\pi\)
\(504\) −3.30900 −0.147395
\(505\) −18.8987 −0.840981
\(506\) −10.6275 −0.472451
\(507\) 37.9946 1.68740
\(508\) −5.35953 −0.237791
\(509\) 20.1682 0.893938 0.446969 0.894549i \(-0.352503\pi\)
0.446969 + 0.894549i \(0.352503\pi\)
\(510\) 12.3091 0.545055
\(511\) 5.96163 0.263727
\(512\) 25.3571 1.12063
\(513\) −38.2150 −1.68723
\(514\) 27.4755 1.21189
\(515\) 20.0318 0.882705
\(516\) 1.50736 0.0663578
\(517\) 15.1279 0.665325
\(518\) 3.92229 0.172336
\(519\) −2.65645 −0.116605
\(520\) −22.1135 −0.969740
\(521\) −31.8810 −1.39673 −0.698365 0.715742i \(-0.746089\pi\)
−0.698365 + 0.715742i \(0.746089\pi\)
\(522\) −3.15315 −0.138010
\(523\) −25.0861 −1.09694 −0.548468 0.836171i \(-0.684789\pi\)
−0.548468 + 0.836171i \(0.684789\pi\)
\(524\) −2.63615 −0.115161
\(525\) 13.5893 0.593086
\(526\) 35.4227 1.54450
\(527\) −18.5861 −0.809622
\(528\) −8.58003 −0.373398
\(529\) 12.7919 0.556168
\(530\) 6.24507 0.271269
\(531\) −1.07864 −0.0468090
\(532\) 4.75828 0.206298
\(533\) −39.5070 −1.71124
\(534\) 15.7438 0.681301
\(535\) 22.4610 0.971073
\(536\) −14.5995 −0.630602
\(537\) −5.57865 −0.240736
\(538\) 28.4064 1.22469
\(539\) −3.12673 −0.134678
\(540\) −1.60620 −0.0691197
\(541\) −25.0444 −1.07674 −0.538372 0.842707i \(-0.680960\pi\)
−0.538372 + 0.842707i \(0.680960\pi\)
\(542\) 19.9484 0.856858
\(543\) −14.1252 −0.606169
\(544\) −5.85504 −0.251033
\(545\) −0.540125 −0.0231364
\(546\) 30.7879 1.31760
\(547\) −41.0332 −1.75445 −0.877227 0.480077i \(-0.840609\pi\)
−0.877227 + 0.480077i \(0.840609\pi\)
\(548\) 0.324244 0.0138510
\(549\) 4.79475 0.204635
\(550\) 5.95184 0.253787
\(551\) 38.3411 1.63338
\(552\) 33.4670 1.42445
\(553\) 35.4953 1.50941
\(554\) 36.2122 1.53851
\(555\) −3.31488 −0.140709
\(556\) 1.45118 0.0615439
\(557\) −16.7903 −0.711427 −0.355713 0.934595i \(-0.615762\pi\)
−0.355713 + 0.934595i \(0.615762\pi\)
\(558\) 3.22394 0.136480
\(559\) −17.2962 −0.731553
\(560\) −9.42692 −0.398360
\(561\) 9.83111 0.415070
\(562\) 24.0253 1.01345
\(563\) −1.17601 −0.0495628 −0.0247814 0.999693i \(-0.507889\pi\)
−0.0247814 + 0.999693i \(0.507889\pi\)
\(564\) −5.63375 −0.237224
\(565\) 17.3638 0.730498
\(566\) −3.73083 −0.156818
\(567\) 22.2356 0.933805
\(568\) 26.6681 1.11897
\(569\) −23.8619 −1.00034 −0.500171 0.865927i \(-0.666729\pi\)
−0.500171 + 0.865927i \(0.666729\pi\)
\(570\) 25.9623 1.08744
\(571\) 5.19234 0.217293 0.108646 0.994080i \(-0.465348\pi\)
0.108646 + 0.994080i \(0.465348\pi\)
\(572\) −2.08866 −0.0873314
\(573\) −25.0724 −1.04741
\(574\) −19.5058 −0.814155
\(575\) −20.0449 −0.835929
\(576\) 4.49018 0.187091
\(577\) 37.5371 1.56269 0.781345 0.624099i \(-0.214534\pi\)
0.781345 + 0.624099i \(0.214534\pi\)
\(578\) 2.49793 0.103900
\(579\) −38.0636 −1.58187
\(580\) 1.61149 0.0669136
\(581\) −32.7180 −1.35737
\(582\) 4.88604 0.202533
\(583\) 4.98787 0.206576
\(584\) −8.22249 −0.340249
\(585\) −3.79485 −0.156898
\(586\) 12.8202 0.529599
\(587\) 32.7244 1.35068 0.675341 0.737506i \(-0.263996\pi\)
0.675341 + 0.737506i \(0.263996\pi\)
\(588\) 1.16442 0.0480198
\(589\) −39.2018 −1.61528
\(590\) −3.55898 −0.146521
\(591\) −8.39108 −0.345163
\(592\) −4.67091 −0.191973
\(593\) −14.1286 −0.580194 −0.290097 0.956997i \(-0.593687\pi\)
−0.290097 + 0.956997i \(0.593687\pi\)
\(594\) 8.28211 0.339819
\(595\) 10.8015 0.442818
\(596\) −5.24626 −0.214895
\(597\) 3.98535 0.163109
\(598\) −45.4136 −1.85710
\(599\) 0.927088 0.0378798 0.0189399 0.999821i \(-0.493971\pi\)
0.0189399 + 0.999821i \(0.493971\pi\)
\(600\) −18.7429 −0.765174
\(601\) −27.5669 −1.12448 −0.562238 0.826975i \(-0.690060\pi\)
−0.562238 + 0.826975i \(0.690060\pi\)
\(602\) −8.53966 −0.348051
\(603\) −2.50539 −0.102027
\(604\) 4.98182 0.202708
\(605\) 11.7873 0.479221
\(606\) −36.2905 −1.47420
\(607\) 21.9170 0.889583 0.444791 0.895634i \(-0.353278\pi\)
0.444791 + 0.895634i \(0.353278\pi\)
\(608\) −12.3495 −0.500837
\(609\) −18.9722 −0.768793
\(610\) 15.8203 0.640545
\(611\) 64.6446 2.61524
\(612\) −0.533958 −0.0215840
\(613\) 21.8913 0.884183 0.442091 0.896970i \(-0.354237\pi\)
0.442091 + 0.896970i \(0.354237\pi\)
\(614\) −13.9899 −0.564588
\(615\) 16.4851 0.664742
\(616\) −8.72015 −0.351345
\(617\) −31.8798 −1.28343 −0.641717 0.766941i \(-0.721778\pi\)
−0.641717 + 0.766941i \(0.721778\pi\)
\(618\) 38.4663 1.54734
\(619\) −0.651683 −0.0261933 −0.0130967 0.999914i \(-0.504169\pi\)
−0.0130967 + 0.999914i \(0.504169\pi\)
\(620\) −1.64767 −0.0661720
\(621\) −27.8929 −1.11930
\(622\) −30.4040 −1.21909
\(623\) 13.8156 0.553509
\(624\) −36.6642 −1.46774
\(625\) 2.97849 0.119139
\(626\) −29.4012 −1.17511
\(627\) 20.7358 0.828108
\(628\) 1.61365 0.0643915
\(629\) 5.35200 0.213398
\(630\) −1.87363 −0.0746471
\(631\) 36.8625 1.46747 0.733736 0.679435i \(-0.237775\pi\)
0.733736 + 0.679435i \(0.237775\pi\)
\(632\) −48.9563 −1.94738
\(633\) 35.1202 1.39590
\(634\) 44.8342 1.78059
\(635\) −25.6613 −1.01834
\(636\) −1.85752 −0.0736554
\(637\) −13.3611 −0.529388
\(638\) −8.30943 −0.328974
\(639\) 4.57645 0.181042
\(640\) 10.9453 0.432650
\(641\) −1.50475 −0.0594341 −0.0297170 0.999558i \(-0.509461\pi\)
−0.0297170 + 0.999558i \(0.509461\pi\)
\(642\) 43.1310 1.70225
\(643\) −9.03610 −0.356349 −0.178175 0.983999i \(-0.557019\pi\)
−0.178175 + 0.983999i \(0.557019\pi\)
\(644\) 3.47304 0.136857
\(645\) 7.21720 0.284177
\(646\) −41.9171 −1.64921
\(647\) −23.5467 −0.925717 −0.462858 0.886432i \(-0.653176\pi\)
−0.462858 + 0.886432i \(0.653176\pi\)
\(648\) −30.6680 −1.20475
\(649\) −2.84252 −0.111579
\(650\) 25.4334 0.997580
\(651\) 19.3981 0.760272
\(652\) −4.36134 −0.170803
\(653\) −10.3739 −0.405961 −0.202980 0.979183i \(-0.565063\pi\)
−0.202980 + 0.979183i \(0.565063\pi\)
\(654\) −1.03718 −0.0405571
\(655\) −12.6218 −0.493176
\(656\) 23.2287 0.906928
\(657\) −1.41104 −0.0550500
\(658\) 31.9170 1.24425
\(659\) 7.72597 0.300961 0.150481 0.988613i \(-0.451918\pi\)
0.150481 + 0.988613i \(0.451918\pi\)
\(660\) 0.871536 0.0339245
\(661\) −11.5379 −0.448774 −0.224387 0.974500i \(-0.572038\pi\)
−0.224387 + 0.974500i \(0.572038\pi\)
\(662\) −22.6746 −0.881272
\(663\) 42.0103 1.63155
\(664\) 45.1258 1.75122
\(665\) 22.7825 0.883469
\(666\) −0.928357 −0.0359731
\(667\) 27.9849 1.08358
\(668\) 0.807535 0.0312445
\(669\) 20.9190 0.808774
\(670\) −8.26653 −0.319364
\(671\) 12.6355 0.487788
\(672\) 6.11086 0.235731
\(673\) −11.7815 −0.454142 −0.227071 0.973878i \(-0.572915\pi\)
−0.227071 + 0.973878i \(0.572915\pi\)
\(674\) 0.591625 0.0227885
\(675\) 15.6211 0.601257
\(676\) −5.43817 −0.209160
\(677\) 6.08020 0.233681 0.116841 0.993151i \(-0.462723\pi\)
0.116841 + 0.993151i \(0.462723\pi\)
\(678\) 33.3430 1.28053
\(679\) 4.28762 0.164544
\(680\) −14.8978 −0.571305
\(681\) 3.14569 0.120543
\(682\) 8.49597 0.325327
\(683\) −18.0981 −0.692504 −0.346252 0.938141i \(-0.612546\pi\)
−0.346252 + 0.938141i \(0.612546\pi\)
\(684\) −1.12623 −0.0430623
\(685\) 1.55247 0.0593169
\(686\) −26.5327 −1.01302
\(687\) 26.7038 1.01881
\(688\) 10.1696 0.387711
\(689\) 21.3142 0.812005
\(690\) 18.9497 0.721403
\(691\) 9.80210 0.372890 0.186445 0.982465i \(-0.440303\pi\)
0.186445 + 0.982465i \(0.440303\pi\)
\(692\) 0.380218 0.0144537
\(693\) −1.49645 −0.0568452
\(694\) 19.3440 0.734289
\(695\) 6.94823 0.263562
\(696\) 26.1671 0.991862
\(697\) −26.6158 −1.00814
\(698\) 10.9823 0.415688
\(699\) 0.682482 0.0258138
\(700\) −1.94504 −0.0735156
\(701\) 10.9662 0.414186 0.207093 0.978321i \(-0.433600\pi\)
0.207093 + 0.978321i \(0.433600\pi\)
\(702\) 35.3911 1.33575
\(703\) 11.2884 0.425752
\(704\) 11.8329 0.445968
\(705\) −26.9742 −1.01591
\(706\) 22.0337 0.829250
\(707\) −31.8458 −1.19768
\(708\) 1.05858 0.0397837
\(709\) −24.8464 −0.933127 −0.466564 0.884488i \(-0.654508\pi\)
−0.466564 + 0.884488i \(0.654508\pi\)
\(710\) 15.1000 0.566694
\(711\) −8.40128 −0.315073
\(712\) −19.0549 −0.714113
\(713\) −28.6131 −1.07157
\(714\) 20.7417 0.776240
\(715\) −10.0005 −0.373996
\(716\) 0.798472 0.0298403
\(717\) 22.8179 0.852150
\(718\) −9.68691 −0.361512
\(719\) 11.9979 0.447444 0.223722 0.974653i \(-0.428179\pi\)
0.223722 + 0.974653i \(0.428179\pi\)
\(720\) 2.23123 0.0831532
\(721\) 33.7551 1.25710
\(722\) −63.4083 −2.35981
\(723\) −6.64669 −0.247193
\(724\) 2.02174 0.0751373
\(725\) −15.6726 −0.582068
\(726\) 22.6347 0.840053
\(727\) −29.9238 −1.10981 −0.554906 0.831913i \(-0.687246\pi\)
−0.554906 + 0.831913i \(0.687246\pi\)
\(728\) −37.2629 −1.38106
\(729\) 20.9500 0.775925
\(730\) −4.65574 −0.172317
\(731\) −11.6524 −0.430981
\(732\) −4.70555 −0.173922
\(733\) 11.7907 0.435499 0.217750 0.976005i \(-0.430128\pi\)
0.217750 + 0.976005i \(0.430128\pi\)
\(734\) 12.6108 0.465473
\(735\) 5.57520 0.205644
\(736\) −9.01379 −0.332253
\(737\) −6.60239 −0.243202
\(738\) 4.61677 0.169946
\(739\) −45.1729 −1.66171 −0.830856 0.556488i \(-0.812149\pi\)
−0.830856 + 0.556488i \(0.812149\pi\)
\(740\) 0.474459 0.0174415
\(741\) 88.6083 3.25511
\(742\) 10.5234 0.386327
\(743\) 9.18420 0.336936 0.168468 0.985707i \(-0.446118\pi\)
0.168468 + 0.985707i \(0.446118\pi\)
\(744\) −26.7545 −0.980869
\(745\) −25.1189 −0.920287
\(746\) 27.5070 1.00710
\(747\) 7.74394 0.283336
\(748\) −1.40713 −0.0514497
\(749\) 37.8485 1.38296
\(750\) −26.4499 −0.965813
\(751\) 50.4640 1.84146 0.920728 0.390204i \(-0.127596\pi\)
0.920728 + 0.390204i \(0.127596\pi\)
\(752\) −38.0087 −1.38604
\(753\) 38.8843 1.41702
\(754\) −35.5079 −1.29312
\(755\) 23.8529 0.868094
\(756\) −2.70657 −0.0984368
\(757\) 8.18656 0.297546 0.148773 0.988871i \(-0.452468\pi\)
0.148773 + 0.988871i \(0.452468\pi\)
\(758\) −0.933211 −0.0338957
\(759\) 15.1349 0.549363
\(760\) −31.4225 −1.13981
\(761\) −24.8915 −0.902317 −0.451158 0.892444i \(-0.648989\pi\)
−0.451158 + 0.892444i \(0.648989\pi\)
\(762\) −49.2764 −1.78510
\(763\) −0.910154 −0.0329498
\(764\) 3.58861 0.129831
\(765\) −2.55658 −0.0924333
\(766\) 9.42333 0.340479
\(767\) −12.1467 −0.438590
\(768\) −11.8382 −0.427175
\(769\) 32.8369 1.18413 0.592064 0.805891i \(-0.298313\pi\)
0.592064 + 0.805891i \(0.298313\pi\)
\(770\) −4.93753 −0.177936
\(771\) −39.1285 −1.40918
\(772\) 5.44804 0.196079
\(773\) −21.3470 −0.767796 −0.383898 0.923375i \(-0.625419\pi\)
−0.383898 + 0.923375i \(0.625419\pi\)
\(774\) 2.02123 0.0726516
\(775\) 16.0245 0.575616
\(776\) −5.91363 −0.212287
\(777\) −5.58583 −0.200391
\(778\) −12.7300 −0.456391
\(779\) −56.1380 −2.01135
\(780\) 3.72425 0.133350
\(781\) 12.0602 0.431549
\(782\) −30.5950 −1.09408
\(783\) −21.8088 −0.779384
\(784\) 7.85588 0.280567
\(785\) 7.72610 0.275756
\(786\) −24.2373 −0.864515
\(787\) 14.5081 0.517158 0.258579 0.965990i \(-0.416746\pi\)
0.258579 + 0.965990i \(0.416746\pi\)
\(788\) 1.20102 0.0427844
\(789\) −50.4463 −1.79594
\(790\) −27.7201 −0.986236
\(791\) 29.2593 1.04034
\(792\) 2.06395 0.0733392
\(793\) 53.9940 1.91738
\(794\) 0.103249 0.00366417
\(795\) −8.89376 −0.315429
\(796\) −0.570423 −0.0202181
\(797\) −3.77526 −0.133727 −0.0668633 0.997762i \(-0.521299\pi\)
−0.0668633 + 0.997762i \(0.521299\pi\)
\(798\) 43.7485 1.54868
\(799\) 43.5509 1.54072
\(800\) 5.04808 0.178477
\(801\) −3.26997 −0.115539
\(802\) −8.19616 −0.289416
\(803\) −3.71849 −0.131223
\(804\) 2.45878 0.0867144
\(805\) 16.6288 0.586089
\(806\) 36.3050 1.27879
\(807\) −40.4543 −1.42406
\(808\) 43.9228 1.54520
\(809\) 7.44684 0.261817 0.130909 0.991394i \(-0.458211\pi\)
0.130909 + 0.991394i \(0.458211\pi\)
\(810\) −17.3649 −0.610140
\(811\) 41.5744 1.45988 0.729938 0.683514i \(-0.239549\pi\)
0.729938 + 0.683514i \(0.239549\pi\)
\(812\) 2.71549 0.0952951
\(813\) −28.4090 −0.996348
\(814\) −2.44648 −0.0857490
\(815\) −20.8820 −0.731464
\(816\) −24.7006 −0.864693
\(817\) −24.5773 −0.859852
\(818\) −1.31596 −0.0460116
\(819\) −6.39461 −0.223446
\(820\) −2.35951 −0.0823976
\(821\) 11.3450 0.395942 0.197971 0.980208i \(-0.436565\pi\)
0.197971 + 0.980208i \(0.436565\pi\)
\(822\) 2.98116 0.103980
\(823\) −7.27405 −0.253557 −0.126779 0.991931i \(-0.540464\pi\)
−0.126779 + 0.991931i \(0.540464\pi\)
\(824\) −46.5562 −1.62186
\(825\) −8.47616 −0.295102
\(826\) −5.99716 −0.208668
\(827\) −19.6791 −0.684309 −0.342155 0.939644i \(-0.611157\pi\)
−0.342155 + 0.939644i \(0.611157\pi\)
\(828\) −0.822024 −0.0285673
\(829\) 14.3752 0.499271 0.249636 0.968340i \(-0.419689\pi\)
0.249636 + 0.968340i \(0.419689\pi\)
\(830\) 25.5512 0.886893
\(831\) −51.5707 −1.78897
\(832\) 50.5642 1.75300
\(833\) −9.00137 −0.311879
\(834\) 13.3424 0.462011
\(835\) 3.86646 0.133804
\(836\) −2.96792 −0.102648
\(837\) 22.2984 0.770746
\(838\) −38.8991 −1.34375
\(839\) −11.7440 −0.405448 −0.202724 0.979236i \(-0.564979\pi\)
−0.202724 + 0.979236i \(0.564979\pi\)
\(840\) 15.5487 0.536481
\(841\) −7.11924 −0.245491
\(842\) −2.30664 −0.0794921
\(843\) −34.2150 −1.17843
\(844\) −5.02676 −0.173028
\(845\) −26.0378 −0.895728
\(846\) −7.55434 −0.259724
\(847\) 19.8625 0.682484
\(848\) −12.5320 −0.430350
\(849\) 5.31316 0.182347
\(850\) 17.1344 0.587706
\(851\) 8.23936 0.282442
\(852\) −4.49132 −0.153870
\(853\) 22.8005 0.780673 0.390336 0.920672i \(-0.372359\pi\)
0.390336 + 0.920672i \(0.372359\pi\)
\(854\) 26.6584 0.912232
\(855\) −5.39234 −0.184414
\(856\) −52.2020 −1.78423
\(857\) −4.10100 −0.140088 −0.0700438 0.997544i \(-0.522314\pi\)
−0.0700438 + 0.997544i \(0.522314\pi\)
\(858\) −19.2036 −0.655598
\(859\) −45.1593 −1.54081 −0.770407 0.637552i \(-0.779947\pi\)
−0.770407 + 0.637552i \(0.779947\pi\)
\(860\) −1.03300 −0.0352249
\(861\) 27.7786 0.946693
\(862\) −4.21843 −0.143680
\(863\) 54.0362 1.83941 0.919706 0.392607i \(-0.128427\pi\)
0.919706 + 0.392607i \(0.128427\pi\)
\(864\) 7.02452 0.238979
\(865\) 1.82047 0.0618979
\(866\) 31.1294 1.05782
\(867\) −3.55736 −0.120814
\(868\) −2.77645 −0.0942389
\(869\) −22.1397 −0.751038
\(870\) 14.8164 0.502322
\(871\) −28.2133 −0.955972
\(872\) 1.25532 0.0425103
\(873\) −1.01483 −0.0343466
\(874\) −64.5311 −2.18280
\(875\) −23.2104 −0.784654
\(876\) 1.38479 0.0467878
\(877\) 14.0802 0.475456 0.237728 0.971332i \(-0.423597\pi\)
0.237728 + 0.971332i \(0.423597\pi\)
\(878\) −1.21587 −0.0410336
\(879\) −18.2576 −0.615814
\(880\) 5.87992 0.198212
\(881\) 3.78281 0.127446 0.0637231 0.997968i \(-0.479703\pi\)
0.0637231 + 0.997968i \(0.479703\pi\)
\(882\) 1.56138 0.0525743
\(883\) −8.33617 −0.280534 −0.140267 0.990114i \(-0.544796\pi\)
−0.140267 + 0.990114i \(0.544796\pi\)
\(884\) −6.01294 −0.202237
\(885\) 5.06843 0.170374
\(886\) −15.0886 −0.506910
\(887\) −39.7938 −1.33614 −0.668072 0.744096i \(-0.732880\pi\)
−0.668072 + 0.744096i \(0.732880\pi\)
\(888\) 7.70417 0.258535
\(889\) −43.2413 −1.45027
\(890\) −10.7893 −0.361658
\(891\) −13.8691 −0.464633
\(892\) −2.99414 −0.100251
\(893\) 91.8577 3.07390
\(894\) −48.2350 −1.61322
\(895\) 3.82306 0.127791
\(896\) 18.4437 0.616160
\(897\) 64.6746 2.15942
\(898\) −16.2315 −0.541651
\(899\) −22.3720 −0.746146
\(900\) 0.460367 0.0153456
\(901\) 14.3593 0.478378
\(902\) 12.1665 0.405099
\(903\) 12.1615 0.404711
\(904\) −40.3554 −1.34220
\(905\) 9.68003 0.321775
\(906\) 45.8038 1.52173
\(907\) 10.0289 0.333005 0.166502 0.986041i \(-0.446753\pi\)
0.166502 + 0.986041i \(0.446753\pi\)
\(908\) −0.450243 −0.0149418
\(909\) 7.53750 0.250003
\(910\) −21.0990 −0.699427
\(911\) −7.98810 −0.264658 −0.132329 0.991206i \(-0.542245\pi\)
−0.132329 + 0.991206i \(0.542245\pi\)
\(912\) −52.0985 −1.72515
\(913\) 20.4074 0.675387
\(914\) 12.2564 0.405404
\(915\) −22.5301 −0.744821
\(916\) −3.82212 −0.126286
\(917\) −21.2688 −0.702357
\(918\) 23.8429 0.786934
\(919\) −3.92914 −0.129610 −0.0648052 0.997898i \(-0.520643\pi\)
−0.0648052 + 0.997898i \(0.520643\pi\)
\(920\) −22.9350 −0.756146
\(921\) 19.9234 0.656499
\(922\) 18.8852 0.621950
\(923\) 51.5358 1.69632
\(924\) 1.46861 0.0483136
\(925\) −4.61437 −0.151720
\(926\) −28.0625 −0.922191
\(927\) −7.98940 −0.262406
\(928\) −7.04769 −0.231352
\(929\) −41.7813 −1.37080 −0.685400 0.728167i \(-0.740373\pi\)
−0.685400 + 0.728167i \(0.740373\pi\)
\(930\) −15.1490 −0.496754
\(931\) −18.9857 −0.622231
\(932\) −0.0976837 −0.00319974
\(933\) 43.2991 1.41755
\(934\) −2.46849 −0.0807713
\(935\) −6.73729 −0.220333
\(936\) 8.81967 0.288280
\(937\) −5.51739 −0.180245 −0.0901227 0.995931i \(-0.528726\pi\)
−0.0901227 + 0.995931i \(0.528726\pi\)
\(938\) −13.9297 −0.454822
\(939\) 41.8709 1.36641
\(940\) 3.86083 0.125926
\(941\) 6.40287 0.208728 0.104364 0.994539i \(-0.466719\pi\)
0.104364 + 0.994539i \(0.466719\pi\)
\(942\) 14.8362 0.483388
\(943\) −40.9748 −1.33432
\(944\) 7.14180 0.232446
\(945\) −12.9590 −0.421555
\(946\) 5.32650 0.173180
\(947\) 10.7582 0.349596 0.174798 0.984604i \(-0.444073\pi\)
0.174798 + 0.984604i \(0.444073\pi\)
\(948\) 8.24500 0.267785
\(949\) −15.8899 −0.515807
\(950\) 36.1400 1.17254
\(951\) −63.8495 −2.07046
\(952\) −25.1040 −0.813624
\(953\) 15.5384 0.503338 0.251669 0.967813i \(-0.419021\pi\)
0.251669 + 0.967813i \(0.419021\pi\)
\(954\) −2.49076 −0.0806415
\(955\) 17.1822 0.556002
\(956\) −3.26593 −0.105628
\(957\) 11.8337 0.382528
\(958\) −43.2083 −1.39600
\(959\) 2.61604 0.0844762
\(960\) −21.0989 −0.680965
\(961\) −8.12583 −0.262123
\(962\) −10.4543 −0.337060
\(963\) −8.95827 −0.288676
\(964\) 0.951341 0.0306406
\(965\) 26.0851 0.839709
\(966\) 31.9317 1.02739
\(967\) 50.8279 1.63451 0.817257 0.576274i \(-0.195494\pi\)
0.817257 + 0.576274i \(0.195494\pi\)
\(968\) −27.3951 −0.880510
\(969\) 59.6952 1.91769
\(970\) −3.34842 −0.107511
\(971\) 26.4505 0.848837 0.424418 0.905466i \(-0.360479\pi\)
0.424418 + 0.905466i \(0.360479\pi\)
\(972\) 1.41312 0.0453259
\(973\) 11.7083 0.375351
\(974\) 43.2145 1.38468
\(975\) −36.2203 −1.15998
\(976\) −31.7465 −1.01618
\(977\) 38.0875 1.21853 0.609263 0.792968i \(-0.291465\pi\)
0.609263 + 0.792968i \(0.291465\pi\)
\(978\) −40.0989 −1.28222
\(979\) −8.61728 −0.275410
\(980\) −0.797979 −0.0254905
\(981\) 0.215422 0.00687789
\(982\) 19.6698 0.627690
\(983\) 37.9226 1.20954 0.604771 0.796399i \(-0.293264\pi\)
0.604771 + 0.796399i \(0.293264\pi\)
\(984\) −38.3132 −1.22138
\(985\) 5.75043 0.183224
\(986\) −23.9216 −0.761818
\(987\) −45.4537 −1.44681
\(988\) −12.6825 −0.403484
\(989\) −17.9388 −0.570422
\(990\) 1.16865 0.0371421
\(991\) −30.2061 −0.959530 −0.479765 0.877397i \(-0.659278\pi\)
−0.479765 + 0.877397i \(0.659278\pi\)
\(992\) 7.20590 0.228788
\(993\) 32.2914 1.02474
\(994\) 25.4447 0.807058
\(995\) −2.73117 −0.0865839
\(996\) −7.59988 −0.240811
\(997\) −57.2175 −1.81210 −0.906048 0.423175i \(-0.860916\pi\)
−0.906048 + 0.423175i \(0.860916\pi\)
\(998\) −20.6294 −0.653013
\(999\) −6.42100 −0.203151
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 409.2.a.b.1.6 20
3.2 odd 2 3681.2.a.i.1.15 20
4.3 odd 2 6544.2.a.i.1.6 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
409.2.a.b.1.6 20 1.1 even 1 trivial
3681.2.a.i.1.15 20 3.2 odd 2
6544.2.a.i.1.6 20 4.3 odd 2