Properties

Label 2-409-1.1-c1-0-6
Degree $2$
Conductor $409$
Sign $1$
Analytic cond. $3.26588$
Root an. cond. $1.80717$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.31·2-s + 1.87·3-s − 0.268·4-s − 1.28·5-s − 2.46·6-s − 2.16·7-s + 2.98·8-s + 0.512·9-s + 1.69·10-s + 1.34·11-s − 0.502·12-s + 5.76·13-s + 2.84·14-s − 2.40·15-s − 3.39·16-s + 3.88·17-s − 0.674·18-s + 8.19·19-s + 0.344·20-s − 4.05·21-s − 1.77·22-s + 5.98·23-s + 5.59·24-s − 3.35·25-s − 7.59·26-s − 4.66·27-s + 0.580·28-s + ⋯
L(s)  = 1  − 0.930·2-s + 1.08·3-s − 0.134·4-s − 0.574·5-s − 1.00·6-s − 0.817·7-s + 1.05·8-s + 0.170·9-s + 0.534·10-s + 0.407·11-s − 0.145·12-s + 1.59·13-s + 0.761·14-s − 0.621·15-s − 0.847·16-s + 0.942·17-s − 0.158·18-s + 1.88·19-s + 0.0770·20-s − 0.885·21-s − 0.378·22-s + 1.24·23-s + 1.14·24-s − 0.670·25-s − 1.48·26-s − 0.897·27-s + 0.109·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 409 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 409 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(409\)
Sign: $1$
Analytic conductor: \(3.26588\)
Root analytic conductor: \(1.80717\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 409,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.015043951\)
\(L(\frac12)\) \(\approx\) \(1.015043951\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad409 \( 1 - T \)
good2 \( 1 + 1.31T + 2T^{2} \)
3 \( 1 - 1.87T + 3T^{2} \)
5 \( 1 + 1.28T + 5T^{2} \)
7 \( 1 + 2.16T + 7T^{2} \)
11 \( 1 - 1.34T + 11T^{2} \)
13 \( 1 - 5.76T + 13T^{2} \)
17 \( 1 - 3.88T + 17T^{2} \)
19 \( 1 - 8.19T + 19T^{2} \)
23 \( 1 - 5.98T + 23T^{2} \)
29 \( 1 - 4.67T + 29T^{2} \)
31 \( 1 + 4.78T + 31T^{2} \)
37 \( 1 - 1.37T + 37T^{2} \)
41 \( 1 + 6.84T + 41T^{2} \)
43 \( 1 + 2.99T + 43T^{2} \)
47 \( 1 - 11.2T + 47T^{2} \)
53 \( 1 - 3.69T + 53T^{2} \)
59 \( 1 + 2.10T + 59T^{2} \)
61 \( 1 - 9.36T + 61T^{2} \)
67 \( 1 + 4.89T + 67T^{2} \)
71 \( 1 - 8.93T + 71T^{2} \)
73 \( 1 + 2.75T + 73T^{2} \)
79 \( 1 + 16.4T + 79T^{2} \)
83 \( 1 - 15.1T + 83T^{2} \)
89 \( 1 + 6.38T + 89T^{2} \)
97 \( 1 + 1.98T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.05040910796081948391078192809, −9.935212303050378380853105787149, −9.267378560690608868639632288385, −8.606568859660852374623602128930, −7.85869835174669895241756467497, −7.00763048236790694359369427962, −5.52061922678777277893232850090, −3.82346990727214686351441567333, −3.19355407316583390992572537534, −1.15559528276882229191020674156, 1.15559528276882229191020674156, 3.19355407316583390992572537534, 3.82346990727214686351441567333, 5.52061922678777277893232850090, 7.00763048236790694359369427962, 7.85869835174669895241756467497, 8.606568859660852374623602128930, 9.267378560690608868639632288385, 9.935212303050378380853105787149, 11.05040910796081948391078192809

Graph of the $Z$-function along the critical line