Properties

Label 409.2.a.b.1.18
Level $409$
Weight $2$
Character 409.1
Self dual yes
Analytic conductor $3.266$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [409,2,Mod(1,409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("409.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 409 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.26588144267\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 5 x^{19} - 19 x^{18} + 126 x^{17} + 100 x^{16} - 1283 x^{15} + 247 x^{14} + 6767 x^{13} + \cdots - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Root \(2.49897\) of defining polynomial
Character \(\chi\) \(=\) 409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.49897 q^{2} -0.710812 q^{3} +4.24487 q^{4} +2.06301 q^{5} -1.77630 q^{6} +2.11869 q^{7} +5.60986 q^{8} -2.49475 q^{9} +5.15540 q^{10} -4.92148 q^{11} -3.01730 q^{12} -2.71950 q^{13} +5.29456 q^{14} -1.46641 q^{15} +5.52916 q^{16} -2.73270 q^{17} -6.23430 q^{18} +4.78990 q^{19} +8.75718 q^{20} -1.50599 q^{21} -12.2987 q^{22} +4.00349 q^{23} -3.98756 q^{24} -0.744008 q^{25} -6.79595 q^{26} +3.90573 q^{27} +8.99358 q^{28} +7.23994 q^{29} -3.66452 q^{30} -6.84951 q^{31} +2.59750 q^{32} +3.49825 q^{33} -6.82895 q^{34} +4.37088 q^{35} -10.5899 q^{36} +4.49991 q^{37} +11.9698 q^{38} +1.93305 q^{39} +11.5732 q^{40} +0.680218 q^{41} -3.76344 q^{42} -8.59956 q^{43} -20.8910 q^{44} -5.14668 q^{45} +10.0046 q^{46} -2.83227 q^{47} -3.93019 q^{48} -2.51113 q^{49} -1.85926 q^{50} +1.94244 q^{51} -11.5439 q^{52} -1.94045 q^{53} +9.76032 q^{54} -10.1530 q^{55} +11.8856 q^{56} -3.40472 q^{57} +18.0924 q^{58} +5.99606 q^{59} -6.22471 q^{60} -12.1551 q^{61} -17.1167 q^{62} -5.28561 q^{63} -4.56724 q^{64} -5.61034 q^{65} +8.74203 q^{66} +15.7509 q^{67} -11.6000 q^{68} -2.84573 q^{69} +10.9227 q^{70} +9.92348 q^{71} -13.9952 q^{72} -0.526315 q^{73} +11.2451 q^{74} +0.528850 q^{75} +20.3325 q^{76} -10.4271 q^{77} +4.83064 q^{78} +3.94118 q^{79} +11.4067 q^{80} +4.70800 q^{81} +1.69985 q^{82} -2.75033 q^{83} -6.39274 q^{84} -5.63758 q^{85} -21.4901 q^{86} -5.14624 q^{87} -27.6088 q^{88} -2.59517 q^{89} -12.8614 q^{90} -5.76179 q^{91} +16.9943 q^{92} +4.86871 q^{93} -7.07776 q^{94} +9.88159 q^{95} -1.84633 q^{96} -5.67590 q^{97} -6.27526 q^{98} +12.2779 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 5 q^{2} + q^{3} + 23 q^{4} + 8 q^{5} - 4 q^{6} + 5 q^{7} + 12 q^{8} + 27 q^{9} - 5 q^{10} + 30 q^{11} - 5 q^{12} - 7 q^{13} + 17 q^{14} + 26 q^{15} + 29 q^{16} + 6 q^{17} - 4 q^{18} + q^{19} + 14 q^{20}+ \cdots + 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.49897 1.76704 0.883520 0.468393i \(-0.155167\pi\)
0.883520 + 0.468393i \(0.155167\pi\)
\(3\) −0.710812 −0.410387 −0.205194 0.978721i \(-0.565782\pi\)
−0.205194 + 0.978721i \(0.565782\pi\)
\(4\) 4.24487 2.12243
\(5\) 2.06301 0.922604 0.461302 0.887243i \(-0.347382\pi\)
0.461302 + 0.887243i \(0.347382\pi\)
\(6\) −1.77630 −0.725171
\(7\) 2.11869 0.800791 0.400396 0.916342i \(-0.368873\pi\)
0.400396 + 0.916342i \(0.368873\pi\)
\(8\) 5.60986 1.98339
\(9\) −2.49475 −0.831582
\(10\) 5.15540 1.63028
\(11\) −4.92148 −1.48388 −0.741942 0.670465i \(-0.766095\pi\)
−0.741942 + 0.670465i \(0.766095\pi\)
\(12\) −3.01730 −0.871020
\(13\) −2.71950 −0.754253 −0.377127 0.926162i \(-0.623088\pi\)
−0.377127 + 0.926162i \(0.623088\pi\)
\(14\) 5.29456 1.41503
\(15\) −1.46641 −0.378625
\(16\) 5.52916 1.38229
\(17\) −2.73270 −0.662778 −0.331389 0.943494i \(-0.607517\pi\)
−0.331389 + 0.943494i \(0.607517\pi\)
\(18\) −6.23430 −1.46944
\(19\) 4.78990 1.09888 0.549439 0.835534i \(-0.314841\pi\)
0.549439 + 0.835534i \(0.314841\pi\)
\(20\) 8.75718 1.95817
\(21\) −1.50599 −0.328635
\(22\) −12.2987 −2.62208
\(23\) 4.00349 0.834785 0.417392 0.908726i \(-0.362944\pi\)
0.417392 + 0.908726i \(0.362944\pi\)
\(24\) −3.98756 −0.813957
\(25\) −0.744008 −0.148802
\(26\) −6.79595 −1.33280
\(27\) 3.90573 0.751658
\(28\) 8.99358 1.69963
\(29\) 7.23994 1.34442 0.672212 0.740359i \(-0.265344\pi\)
0.672212 + 0.740359i \(0.265344\pi\)
\(30\) −3.66452 −0.669046
\(31\) −6.84951 −1.23021 −0.615104 0.788446i \(-0.710886\pi\)
−0.615104 + 0.788446i \(0.710886\pi\)
\(32\) 2.59750 0.459178
\(33\) 3.49825 0.608967
\(34\) −6.82895 −1.17116
\(35\) 4.37088 0.738813
\(36\) −10.5899 −1.76498
\(37\) 4.49991 0.739780 0.369890 0.929076i \(-0.379395\pi\)
0.369890 + 0.929076i \(0.379395\pi\)
\(38\) 11.9698 1.94176
\(39\) 1.93305 0.309536
\(40\) 11.5732 1.82988
\(41\) 0.680218 0.106232 0.0531161 0.998588i \(-0.483085\pi\)
0.0531161 + 0.998588i \(0.483085\pi\)
\(42\) −3.76344 −0.580711
\(43\) −8.59956 −1.31142 −0.655711 0.755012i \(-0.727631\pi\)
−0.655711 + 0.755012i \(0.727631\pi\)
\(44\) −20.8910 −3.14944
\(45\) −5.14668 −0.767221
\(46\) 10.0046 1.47510
\(47\) −2.83227 −0.413129 −0.206564 0.978433i \(-0.566228\pi\)
−0.206564 + 0.978433i \(0.566228\pi\)
\(48\) −3.93019 −0.567275
\(49\) −2.51113 −0.358733
\(50\) −1.85926 −0.262938
\(51\) 1.94244 0.271996
\(52\) −11.5439 −1.60085
\(53\) −1.94045 −0.266542 −0.133271 0.991080i \(-0.542548\pi\)
−0.133271 + 0.991080i \(0.542548\pi\)
\(54\) 9.76032 1.32821
\(55\) −10.1530 −1.36904
\(56\) 11.8856 1.58828
\(57\) −3.40472 −0.450966
\(58\) 18.0924 2.37565
\(59\) 5.99606 0.780620 0.390310 0.920683i \(-0.372368\pi\)
0.390310 + 0.920683i \(0.372368\pi\)
\(60\) −6.22471 −0.803607
\(61\) −12.1551 −1.55630 −0.778152 0.628076i \(-0.783843\pi\)
−0.778152 + 0.628076i \(0.783843\pi\)
\(62\) −17.1167 −2.17383
\(63\) −5.28561 −0.665924
\(64\) −4.56724 −0.570905
\(65\) −5.61034 −0.695877
\(66\) 8.74203 1.07607
\(67\) 15.7509 1.92428 0.962139 0.272559i \(-0.0878699\pi\)
0.962139 + 0.272559i \(0.0878699\pi\)
\(68\) −11.6000 −1.40670
\(69\) −2.84573 −0.342585
\(70\) 10.9227 1.30551
\(71\) 9.92348 1.17770 0.588850 0.808242i \(-0.299581\pi\)
0.588850 + 0.808242i \(0.299581\pi\)
\(72\) −13.9952 −1.64935
\(73\) −0.526315 −0.0616005 −0.0308002 0.999526i \(-0.509806\pi\)
−0.0308002 + 0.999526i \(0.509806\pi\)
\(74\) 11.2451 1.30722
\(75\) 0.528850 0.0610663
\(76\) 20.3325 2.33230
\(77\) −10.4271 −1.18828
\(78\) 4.83064 0.546963
\(79\) 3.94118 0.443418 0.221709 0.975113i \(-0.428837\pi\)
0.221709 + 0.975113i \(0.428837\pi\)
\(80\) 11.4067 1.27531
\(81\) 4.70800 0.523111
\(82\) 1.69985 0.187717
\(83\) −2.75033 −0.301888 −0.150944 0.988542i \(-0.548231\pi\)
−0.150944 + 0.988542i \(0.548231\pi\)
\(84\) −6.39274 −0.697505
\(85\) −5.63758 −0.611481
\(86\) −21.4901 −2.31733
\(87\) −5.14624 −0.551735
\(88\) −27.6088 −2.94311
\(89\) −2.59517 −0.275087 −0.137544 0.990496i \(-0.543921\pi\)
−0.137544 + 0.990496i \(0.543921\pi\)
\(90\) −12.8614 −1.35571
\(91\) −5.76179 −0.603999
\(92\) 16.9943 1.77177
\(93\) 4.86871 0.504862
\(94\) −7.07776 −0.730015
\(95\) 9.88159 1.01383
\(96\) −1.84633 −0.188441
\(97\) −5.67590 −0.576300 −0.288150 0.957585i \(-0.593040\pi\)
−0.288150 + 0.957585i \(0.593040\pi\)
\(98\) −6.27526 −0.633897
\(99\) 12.2779 1.23397
\(100\) −3.15821 −0.315821
\(101\) −5.23407 −0.520810 −0.260405 0.965500i \(-0.583856\pi\)
−0.260405 + 0.965500i \(0.583856\pi\)
\(102\) 4.85410 0.480627
\(103\) 14.3813 1.41703 0.708513 0.705697i \(-0.249366\pi\)
0.708513 + 0.705697i \(0.249366\pi\)
\(104\) −15.2560 −1.49597
\(105\) −3.10687 −0.303200
\(106\) −4.84914 −0.470990
\(107\) 3.27840 0.316935 0.158467 0.987364i \(-0.449345\pi\)
0.158467 + 0.987364i \(0.449345\pi\)
\(108\) 16.5793 1.59534
\(109\) −13.5773 −1.30047 −0.650235 0.759733i \(-0.725330\pi\)
−0.650235 + 0.759733i \(0.725330\pi\)
\(110\) −25.3722 −2.41914
\(111\) −3.19859 −0.303596
\(112\) 11.7146 1.10693
\(113\) 17.3173 1.62908 0.814539 0.580109i \(-0.196990\pi\)
0.814539 + 0.580109i \(0.196990\pi\)
\(114\) −8.50830 −0.796876
\(115\) 8.25922 0.770176
\(116\) 30.7326 2.85345
\(117\) 6.78446 0.627223
\(118\) 14.9840 1.37939
\(119\) −5.78976 −0.530747
\(120\) −8.22635 −0.750960
\(121\) 13.2210 1.20191
\(122\) −30.3753 −2.75005
\(123\) −0.483507 −0.0435963
\(124\) −29.0753 −2.61104
\(125\) −11.8499 −1.05989
\(126\) −13.2086 −1.17671
\(127\) 18.4811 1.63993 0.819964 0.572415i \(-0.193993\pi\)
0.819964 + 0.572415i \(0.193993\pi\)
\(128\) −16.6084 −1.46799
\(129\) 6.11267 0.538191
\(130\) −14.0201 −1.22964
\(131\) 19.2072 1.67814 0.839072 0.544020i \(-0.183099\pi\)
0.839072 + 0.544020i \(0.183099\pi\)
\(132\) 14.8496 1.29249
\(133\) 10.1483 0.879973
\(134\) 39.3611 3.40028
\(135\) 8.05755 0.693483
\(136\) −15.3301 −1.31454
\(137\) 11.5802 0.989367 0.494684 0.869073i \(-0.335284\pi\)
0.494684 + 0.869073i \(0.335284\pi\)
\(138\) −7.11139 −0.605362
\(139\) −8.60393 −0.729776 −0.364888 0.931051i \(-0.618893\pi\)
−0.364888 + 0.931051i \(0.618893\pi\)
\(140\) 18.5538 1.56808
\(141\) 2.01321 0.169543
\(142\) 24.7985 2.08105
\(143\) 13.3840 1.11922
\(144\) −13.7939 −1.14949
\(145\) 14.9360 1.24037
\(146\) −1.31525 −0.108851
\(147\) 1.78494 0.147220
\(148\) 19.1015 1.57013
\(149\) 3.49380 0.286223 0.143112 0.989707i \(-0.454289\pi\)
0.143112 + 0.989707i \(0.454289\pi\)
\(150\) 1.32158 0.107907
\(151\) 0.161151 0.0131142 0.00655712 0.999979i \(-0.497913\pi\)
0.00655712 + 0.999979i \(0.497913\pi\)
\(152\) 26.8707 2.17950
\(153\) 6.81740 0.551154
\(154\) −26.0571 −2.09974
\(155\) −14.1306 −1.13500
\(156\) 8.20555 0.656970
\(157\) −14.8623 −1.18614 −0.593072 0.805149i \(-0.702085\pi\)
−0.593072 + 0.805149i \(0.702085\pi\)
\(158\) 9.84891 0.783537
\(159\) 1.37930 0.109385
\(160\) 5.35866 0.423639
\(161\) 8.48217 0.668488
\(162\) 11.7652 0.924358
\(163\) 15.7403 1.23287 0.616437 0.787404i \(-0.288575\pi\)
0.616437 + 0.787404i \(0.288575\pi\)
\(164\) 2.88743 0.225471
\(165\) 7.21691 0.561836
\(166\) −6.87299 −0.533448
\(167\) −18.3107 −1.41692 −0.708461 0.705750i \(-0.750610\pi\)
−0.708461 + 0.705750i \(0.750610\pi\)
\(168\) −8.44842 −0.651809
\(169\) −5.60433 −0.431102
\(170\) −14.0882 −1.08051
\(171\) −11.9496 −0.913808
\(172\) −36.5040 −2.78340
\(173\) 18.5721 1.41201 0.706005 0.708207i \(-0.250496\pi\)
0.706005 + 0.708207i \(0.250496\pi\)
\(174\) −12.8603 −0.974938
\(175\) −1.57633 −0.119159
\(176\) −27.2117 −2.05116
\(177\) −4.26207 −0.320357
\(178\) −6.48525 −0.486090
\(179\) −17.9310 −1.34023 −0.670114 0.742258i \(-0.733755\pi\)
−0.670114 + 0.742258i \(0.733755\pi\)
\(180\) −21.8470 −1.62838
\(181\) −13.5683 −1.00853 −0.504264 0.863550i \(-0.668236\pi\)
−0.504264 + 0.863550i \(0.668236\pi\)
\(182\) −14.3985 −1.06729
\(183\) 8.64001 0.638688
\(184\) 22.4590 1.65570
\(185\) 9.28333 0.682524
\(186\) 12.1668 0.892112
\(187\) 13.4489 0.983484
\(188\) −12.0226 −0.876838
\(189\) 8.27505 0.601921
\(190\) 24.6938 1.79148
\(191\) −6.91490 −0.500344 −0.250172 0.968201i \(-0.580487\pi\)
−0.250172 + 0.968201i \(0.580487\pi\)
\(192\) 3.24645 0.234292
\(193\) −7.74170 −0.557260 −0.278630 0.960399i \(-0.589880\pi\)
−0.278630 + 0.960399i \(0.589880\pi\)
\(194\) −14.1839 −1.01835
\(195\) 3.98790 0.285579
\(196\) −10.6594 −0.761388
\(197\) −21.5203 −1.53326 −0.766630 0.642089i \(-0.778068\pi\)
−0.766630 + 0.642089i \(0.778068\pi\)
\(198\) 30.6820 2.18048
\(199\) 4.48559 0.317975 0.158988 0.987281i \(-0.449177\pi\)
0.158988 + 0.987281i \(0.449177\pi\)
\(200\) −4.17378 −0.295131
\(201\) −11.1959 −0.789700
\(202\) −13.0798 −0.920292
\(203\) 15.3392 1.07660
\(204\) 8.24539 0.577293
\(205\) 1.40329 0.0980102
\(206\) 35.9384 2.50394
\(207\) −9.98768 −0.694192
\(208\) −15.0365 −1.04260
\(209\) −23.5734 −1.63061
\(210\) −7.76399 −0.535766
\(211\) 14.3883 0.990532 0.495266 0.868741i \(-0.335071\pi\)
0.495266 + 0.868741i \(0.335071\pi\)
\(212\) −8.23696 −0.565717
\(213\) −7.05373 −0.483314
\(214\) 8.19263 0.560037
\(215\) −17.7409 −1.20992
\(216\) 21.9106 1.49083
\(217\) −14.5120 −0.985140
\(218\) −33.9293 −2.29798
\(219\) 0.374111 0.0252801
\(220\) −43.0983 −2.90569
\(221\) 7.43158 0.499902
\(222\) −7.99318 −0.536467
\(223\) −1.02481 −0.0686266 −0.0343133 0.999411i \(-0.510924\pi\)
−0.0343133 + 0.999411i \(0.510924\pi\)
\(224\) 5.50331 0.367705
\(225\) 1.85611 0.123741
\(226\) 43.2755 2.87865
\(227\) −17.3253 −1.14992 −0.574960 0.818182i \(-0.694982\pi\)
−0.574960 + 0.818182i \(0.694982\pi\)
\(228\) −14.4526 −0.957146
\(229\) −5.72855 −0.378553 −0.189277 0.981924i \(-0.560614\pi\)
−0.189277 + 0.981924i \(0.560614\pi\)
\(230\) 20.6396 1.36093
\(231\) 7.41172 0.487656
\(232\) 40.6151 2.66651
\(233\) 10.2748 0.673122 0.336561 0.941662i \(-0.390736\pi\)
0.336561 + 0.941662i \(0.390736\pi\)
\(234\) 16.9542 1.10833
\(235\) −5.84298 −0.381154
\(236\) 25.4525 1.65681
\(237\) −2.80144 −0.181973
\(238\) −14.4685 −0.937851
\(239\) 23.8763 1.54443 0.772215 0.635362i \(-0.219149\pi\)
0.772215 + 0.635362i \(0.219149\pi\)
\(240\) −8.10801 −0.523370
\(241\) 7.85890 0.506236 0.253118 0.967435i \(-0.418544\pi\)
0.253118 + 0.967435i \(0.418544\pi\)
\(242\) 33.0389 2.12382
\(243\) −15.0637 −0.966337
\(244\) −51.5969 −3.30315
\(245\) −5.18048 −0.330969
\(246\) −1.20827 −0.0770365
\(247\) −13.0261 −0.828833
\(248\) −38.4248 −2.43998
\(249\) 1.95497 0.123891
\(250\) −29.6126 −1.87287
\(251\) 13.5071 0.852561 0.426281 0.904591i \(-0.359824\pi\)
0.426281 + 0.904591i \(0.359824\pi\)
\(252\) −22.4367 −1.41338
\(253\) −19.7031 −1.23872
\(254\) 46.1836 2.89782
\(255\) 4.00726 0.250944
\(256\) −32.3695 −2.02309
\(257\) −5.91517 −0.368978 −0.184489 0.982835i \(-0.559063\pi\)
−0.184489 + 0.982835i \(0.559063\pi\)
\(258\) 15.2754 0.951005
\(259\) 9.53392 0.592409
\(260\) −23.8151 −1.47695
\(261\) −18.0618 −1.11800
\(262\) 47.9984 2.96535
\(263\) −8.37072 −0.516161 −0.258080 0.966123i \(-0.583090\pi\)
−0.258080 + 0.966123i \(0.583090\pi\)
\(264\) 19.6247 1.20782
\(265\) −4.00316 −0.245912
\(266\) 25.3604 1.55495
\(267\) 1.84468 0.112892
\(268\) 66.8605 4.08415
\(269\) 6.51391 0.397160 0.198580 0.980085i \(-0.436367\pi\)
0.198580 + 0.980085i \(0.436367\pi\)
\(270\) 20.1356 1.22541
\(271\) 22.0590 1.33999 0.669993 0.742367i \(-0.266297\pi\)
0.669993 + 0.742367i \(0.266297\pi\)
\(272\) −15.1095 −0.916151
\(273\) 4.09555 0.247874
\(274\) 28.9387 1.74825
\(275\) 3.66162 0.220804
\(276\) −12.0797 −0.727114
\(277\) −5.88264 −0.353454 −0.176727 0.984260i \(-0.556551\pi\)
−0.176727 + 0.984260i \(0.556551\pi\)
\(278\) −21.5010 −1.28954
\(279\) 17.0878 1.02302
\(280\) 24.5200 1.46535
\(281\) 24.4698 1.45975 0.729874 0.683582i \(-0.239579\pi\)
0.729874 + 0.683582i \(0.239579\pi\)
\(282\) 5.03096 0.299589
\(283\) −30.5409 −1.81547 −0.907734 0.419547i \(-0.862189\pi\)
−0.907734 + 0.419547i \(0.862189\pi\)
\(284\) 42.1239 2.49959
\(285\) −7.02396 −0.416063
\(286\) 33.4462 1.97771
\(287\) 1.44117 0.0850698
\(288\) −6.48010 −0.381844
\(289\) −9.53234 −0.560726
\(290\) 37.3248 2.19179
\(291\) 4.03450 0.236506
\(292\) −2.23414 −0.130743
\(293\) 13.3748 0.781366 0.390683 0.920525i \(-0.372239\pi\)
0.390683 + 0.920525i \(0.372239\pi\)
\(294\) 4.46053 0.260143
\(295\) 12.3699 0.720204
\(296\) 25.2438 1.46727
\(297\) −19.2220 −1.11537
\(298\) 8.73091 0.505768
\(299\) −10.8875 −0.629639
\(300\) 2.24490 0.129609
\(301\) −18.2198 −1.05017
\(302\) 0.402711 0.0231734
\(303\) 3.72044 0.213734
\(304\) 26.4841 1.51897
\(305\) −25.0761 −1.43585
\(306\) 17.0365 0.973912
\(307\) 17.8977 1.02148 0.510739 0.859736i \(-0.329372\pi\)
0.510739 + 0.859736i \(0.329372\pi\)
\(308\) −44.2617 −2.52205
\(309\) −10.2224 −0.581530
\(310\) −35.3119 −2.00558
\(311\) −5.74437 −0.325733 −0.162867 0.986648i \(-0.552074\pi\)
−0.162867 + 0.986648i \(0.552074\pi\)
\(312\) 10.8442 0.613929
\(313\) 26.2773 1.48528 0.742639 0.669692i \(-0.233574\pi\)
0.742639 + 0.669692i \(0.233574\pi\)
\(314\) −37.1406 −2.09596
\(315\) −10.9042 −0.614384
\(316\) 16.7298 0.941125
\(317\) 0.763861 0.0429027 0.0214514 0.999770i \(-0.493171\pi\)
0.0214514 + 0.999770i \(0.493171\pi\)
\(318\) 3.44682 0.193288
\(319\) −35.6313 −1.99497
\(320\) −9.42224 −0.526719
\(321\) −2.33033 −0.130066
\(322\) 21.1967 1.18125
\(323\) −13.0894 −0.728312
\(324\) 19.9848 1.11027
\(325\) 2.02333 0.112234
\(326\) 39.3346 2.17854
\(327\) 9.65092 0.533697
\(328\) 3.81593 0.210699
\(329\) −6.00071 −0.330830
\(330\) 18.0349 0.992786
\(331\) 15.6234 0.858738 0.429369 0.903129i \(-0.358736\pi\)
0.429369 + 0.903129i \(0.358736\pi\)
\(332\) −11.6748 −0.640736
\(333\) −11.2261 −0.615188
\(334\) −45.7578 −2.50376
\(335\) 32.4942 1.77535
\(336\) −8.32688 −0.454269
\(337\) 7.07528 0.385415 0.192708 0.981256i \(-0.438273\pi\)
0.192708 + 0.981256i \(0.438273\pi\)
\(338\) −14.0051 −0.761775
\(339\) −12.3094 −0.668553
\(340\) −23.9308 −1.29783
\(341\) 33.7098 1.82549
\(342\) −29.8617 −1.61474
\(343\) −20.1512 −1.08806
\(344\) −48.2424 −2.60105
\(345\) −5.87075 −0.316071
\(346\) 46.4111 2.49508
\(347\) 0.0161358 0.000866217 0 0.000433109 1.00000i \(-0.499862\pi\)
0.000433109 1.00000i \(0.499862\pi\)
\(348\) −21.8451 −1.17102
\(349\) −9.51072 −0.509097 −0.254549 0.967060i \(-0.581927\pi\)
−0.254549 + 0.967060i \(0.581927\pi\)
\(350\) −3.93919 −0.210559
\(351\) −10.6216 −0.566941
\(352\) −12.7836 −0.681366
\(353\) 7.61742 0.405434 0.202717 0.979237i \(-0.435023\pi\)
0.202717 + 0.979237i \(0.435023\pi\)
\(354\) −10.6508 −0.566084
\(355\) 20.4722 1.08655
\(356\) −11.0161 −0.583854
\(357\) 4.11543 0.217812
\(358\) −44.8092 −2.36824
\(359\) 28.6776 1.51354 0.756772 0.653679i \(-0.226775\pi\)
0.756772 + 0.653679i \(0.226775\pi\)
\(360\) −28.8721 −1.52170
\(361\) 3.94316 0.207535
\(362\) −33.9069 −1.78211
\(363\) −9.39765 −0.493248
\(364\) −24.4580 −1.28195
\(365\) −1.08579 −0.0568329
\(366\) 21.5911 1.12859
\(367\) −28.8671 −1.50685 −0.753426 0.657533i \(-0.771600\pi\)
−0.753426 + 0.657533i \(0.771600\pi\)
\(368\) 22.1359 1.15391
\(369\) −1.69697 −0.0883407
\(370\) 23.1988 1.20605
\(371\) −4.11122 −0.213444
\(372\) 20.6670 1.07154
\(373\) −32.9576 −1.70648 −0.853241 0.521518i \(-0.825366\pi\)
−0.853241 + 0.521518i \(0.825366\pi\)
\(374\) 33.6086 1.73786
\(375\) 8.42307 0.434965
\(376\) −15.8886 −0.819393
\(377\) −19.6890 −1.01404
\(378\) 20.6791 1.06362
\(379\) 3.02041 0.155148 0.0775741 0.996987i \(-0.475283\pi\)
0.0775741 + 0.996987i \(0.475283\pi\)
\(380\) 41.9461 2.15179
\(381\) −13.1366 −0.673006
\(382\) −17.2801 −0.884129
\(383\) −4.77435 −0.243958 −0.121979 0.992533i \(-0.538924\pi\)
−0.121979 + 0.992533i \(0.538924\pi\)
\(384\) 11.8055 0.602445
\(385\) −21.5112 −1.09631
\(386\) −19.3463 −0.984701
\(387\) 21.4537 1.09055
\(388\) −24.0934 −1.22316
\(389\) 32.9920 1.67276 0.836381 0.548149i \(-0.184667\pi\)
0.836381 + 0.548149i \(0.184667\pi\)
\(390\) 9.96565 0.504630
\(391\) −10.9403 −0.553277
\(392\) −14.0871 −0.711507
\(393\) −13.6527 −0.688689
\(394\) −53.7788 −2.70933
\(395\) 8.13069 0.409099
\(396\) 52.1178 2.61902
\(397\) −14.5793 −0.731716 −0.365858 0.930671i \(-0.619224\pi\)
−0.365858 + 0.930671i \(0.619224\pi\)
\(398\) 11.2094 0.561875
\(399\) −7.21356 −0.361130
\(400\) −4.11374 −0.205687
\(401\) −11.2575 −0.562173 −0.281086 0.959682i \(-0.590695\pi\)
−0.281086 + 0.959682i \(0.590695\pi\)
\(402\) −27.9783 −1.39543
\(403\) 18.6272 0.927888
\(404\) −22.2179 −1.10538
\(405\) 9.71263 0.482624
\(406\) 38.3323 1.90240
\(407\) −22.1462 −1.09775
\(408\) 10.8968 0.539472
\(409\) 1.00000 0.0494468
\(410\) 3.50679 0.173188
\(411\) −8.23138 −0.406024
\(412\) 61.0465 3.00754
\(413\) 12.7038 0.625114
\(414\) −24.9590 −1.22667
\(415\) −5.67394 −0.278523
\(416\) −7.06390 −0.346336
\(417\) 6.11578 0.299491
\(418\) −58.9094 −2.88135
\(419\) −16.5481 −0.808426 −0.404213 0.914665i \(-0.632455\pi\)
−0.404213 + 0.914665i \(0.632455\pi\)
\(420\) −13.1883 −0.643521
\(421\) −29.1207 −1.41925 −0.709627 0.704578i \(-0.751136\pi\)
−0.709627 + 0.704578i \(0.751136\pi\)
\(422\) 35.9560 1.75031
\(423\) 7.06579 0.343550
\(424\) −10.8857 −0.528655
\(425\) 2.03315 0.0986223
\(426\) −17.6271 −0.854035
\(427\) −25.7530 −1.24627
\(428\) 13.9164 0.672673
\(429\) −9.51348 −0.459315
\(430\) −44.3342 −2.13798
\(431\) 17.7069 0.852913 0.426456 0.904508i \(-0.359762\pi\)
0.426456 + 0.904508i \(0.359762\pi\)
\(432\) 21.5954 1.03901
\(433\) 2.62036 0.125927 0.0629633 0.998016i \(-0.479945\pi\)
0.0629633 + 0.998016i \(0.479945\pi\)
\(434\) −36.2651 −1.74078
\(435\) −10.6167 −0.509033
\(436\) −57.6339 −2.76016
\(437\) 19.1763 0.917327
\(438\) 0.934893 0.0446709
\(439\) 2.62470 0.125270 0.0626351 0.998036i \(-0.480050\pi\)
0.0626351 + 0.998036i \(0.480050\pi\)
\(440\) −56.9572 −2.71533
\(441\) 6.26464 0.298316
\(442\) 18.5713 0.883347
\(443\) −10.0144 −0.475797 −0.237899 0.971290i \(-0.576459\pi\)
−0.237899 + 0.971290i \(0.576459\pi\)
\(444\) −13.5776 −0.644363
\(445\) −5.35384 −0.253797
\(446\) −2.56098 −0.121266
\(447\) −2.48343 −0.117462
\(448\) −9.67658 −0.457176
\(449\) 39.6980 1.87346 0.936732 0.350048i \(-0.113835\pi\)
0.936732 + 0.350048i \(0.113835\pi\)
\(450\) 4.63837 0.218655
\(451\) −3.34768 −0.157636
\(452\) 73.5098 3.45761
\(453\) −0.114548 −0.00538192
\(454\) −43.2954 −2.03195
\(455\) −11.8866 −0.557252
\(456\) −19.1000 −0.894440
\(457\) −25.4737 −1.19161 −0.595806 0.803129i \(-0.703167\pi\)
−0.595806 + 0.803129i \(0.703167\pi\)
\(458\) −14.3155 −0.668919
\(459\) −10.6732 −0.498182
\(460\) 35.0593 1.63465
\(461\) 9.00933 0.419606 0.209803 0.977744i \(-0.432718\pi\)
0.209803 + 0.977744i \(0.432718\pi\)
\(462\) 18.5217 0.861707
\(463\) −39.9032 −1.85446 −0.927230 0.374492i \(-0.877817\pi\)
−0.927230 + 0.374492i \(0.877817\pi\)
\(464\) 40.0308 1.85838
\(465\) 10.0442 0.465788
\(466\) 25.6764 1.18943
\(467\) −9.22161 −0.426725 −0.213363 0.976973i \(-0.568442\pi\)
−0.213363 + 0.976973i \(0.568442\pi\)
\(468\) 28.7991 1.33124
\(469\) 33.3713 1.54095
\(470\) −14.6015 −0.673515
\(471\) 10.5643 0.486779
\(472\) 33.6371 1.54827
\(473\) 42.3226 1.94600
\(474\) −7.00073 −0.321554
\(475\) −3.56372 −0.163515
\(476\) −24.5768 −1.12647
\(477\) 4.84093 0.221651
\(478\) 59.6662 2.72907
\(479\) −24.8144 −1.13380 −0.566900 0.823786i \(-0.691858\pi\)
−0.566900 + 0.823786i \(0.691858\pi\)
\(480\) −3.80900 −0.173856
\(481\) −12.2375 −0.557981
\(482\) 19.6392 0.894541
\(483\) −6.02922 −0.274339
\(484\) 56.1214 2.55097
\(485\) −11.7094 −0.531697
\(486\) −37.6438 −1.70756
\(487\) −24.7309 −1.12066 −0.560331 0.828269i \(-0.689326\pi\)
−0.560331 + 0.828269i \(0.689326\pi\)
\(488\) −68.1886 −3.08675
\(489\) −11.1884 −0.505956
\(490\) −12.9459 −0.584836
\(491\) −14.8359 −0.669536 −0.334768 0.942301i \(-0.608658\pi\)
−0.334768 + 0.942301i \(0.608658\pi\)
\(492\) −2.05242 −0.0925303
\(493\) −19.7846 −0.891054
\(494\) −32.5519 −1.46458
\(495\) 25.3293 1.13847
\(496\) −37.8720 −1.70050
\(497\) 21.0248 0.943093
\(498\) 4.88541 0.218920
\(499\) −11.7754 −0.527137 −0.263569 0.964641i \(-0.584900\pi\)
−0.263569 + 0.964641i \(0.584900\pi\)
\(500\) −50.3013 −2.24954
\(501\) 13.0154 0.581487
\(502\) 33.7539 1.50651
\(503\) 1.95767 0.0872880 0.0436440 0.999047i \(-0.486103\pi\)
0.0436440 + 0.999047i \(0.486103\pi\)
\(504\) −29.6515 −1.32078
\(505\) −10.7979 −0.480501
\(506\) −49.2375 −2.18887
\(507\) 3.98363 0.176919
\(508\) 78.4496 3.48064
\(509\) −20.6369 −0.914715 −0.457357 0.889283i \(-0.651204\pi\)
−0.457357 + 0.889283i \(0.651204\pi\)
\(510\) 10.0140 0.443429
\(511\) −1.11510 −0.0493291
\(512\) −47.6737 −2.10690
\(513\) 18.7081 0.825982
\(514\) −14.7818 −0.651999
\(515\) 29.6686 1.30735
\(516\) 25.9475 1.14227
\(517\) 13.9390 0.613035
\(518\) 23.8250 1.04681
\(519\) −13.2013 −0.579471
\(520\) −31.4732 −1.38019
\(521\) −42.7343 −1.87222 −0.936111 0.351705i \(-0.885602\pi\)
−0.936111 + 0.351705i \(0.885602\pi\)
\(522\) −45.1360 −1.97555
\(523\) −27.9890 −1.22387 −0.611936 0.790907i \(-0.709609\pi\)
−0.611936 + 0.790907i \(0.709609\pi\)
\(524\) 81.5322 3.56175
\(525\) 1.12047 0.0489014
\(526\) −20.9182 −0.912077
\(527\) 18.7177 0.815355
\(528\) 19.3424 0.841769
\(529\) −6.97209 −0.303135
\(530\) −10.0038 −0.434537
\(531\) −14.9586 −0.649150
\(532\) 43.0783 1.86768
\(533\) −1.84985 −0.0801259
\(534\) 4.60980 0.199485
\(535\) 6.76336 0.292405
\(536\) 88.3604 3.81659
\(537\) 12.7456 0.550013
\(538\) 16.2781 0.701798
\(539\) 12.3585 0.532318
\(540\) 34.2032 1.47187
\(541\) −10.9422 −0.470440 −0.235220 0.971942i \(-0.575581\pi\)
−0.235220 + 0.971942i \(0.575581\pi\)
\(542\) 55.1248 2.36781
\(543\) 9.64454 0.413887
\(544\) −7.09819 −0.304333
\(545\) −28.0101 −1.19982
\(546\) 10.2347 0.438003
\(547\) −25.8979 −1.10731 −0.553657 0.832745i \(-0.686768\pi\)
−0.553657 + 0.832745i \(0.686768\pi\)
\(548\) 49.1566 2.09987
\(549\) 30.3239 1.29419
\(550\) 9.15029 0.390170
\(551\) 34.6786 1.47736
\(552\) −15.9641 −0.679479
\(553\) 8.35017 0.355085
\(554\) −14.7006 −0.624567
\(555\) −6.59870 −0.280099
\(556\) −36.5225 −1.54890
\(557\) 24.3755 1.03282 0.516412 0.856340i \(-0.327267\pi\)
0.516412 + 0.856340i \(0.327267\pi\)
\(558\) 42.7019 1.80772
\(559\) 23.3865 0.989143
\(560\) 24.1673 1.02125
\(561\) −9.55967 −0.403610
\(562\) 61.1494 2.57943
\(563\) 16.1815 0.681969 0.340985 0.940069i \(-0.389240\pi\)
0.340985 + 0.940069i \(0.389240\pi\)
\(564\) 8.54581 0.359843
\(565\) 35.7258 1.50299
\(566\) −76.3209 −3.20801
\(567\) 9.97481 0.418903
\(568\) 55.6694 2.33584
\(569\) −7.77787 −0.326065 −0.163033 0.986621i \(-0.552128\pi\)
−0.163033 + 0.986621i \(0.552128\pi\)
\(570\) −17.5527 −0.735201
\(571\) 29.6872 1.24237 0.621185 0.783664i \(-0.286652\pi\)
0.621185 + 0.783664i \(0.286652\pi\)
\(572\) 56.8131 2.37548
\(573\) 4.91519 0.205335
\(574\) 3.60145 0.150322
\(575\) −2.97863 −0.124217
\(576\) 11.3941 0.474754
\(577\) −11.4841 −0.478089 −0.239044 0.971009i \(-0.576834\pi\)
−0.239044 + 0.971009i \(0.576834\pi\)
\(578\) −23.8211 −0.990825
\(579\) 5.50289 0.228692
\(580\) 63.4015 2.63260
\(581\) −5.82710 −0.241749
\(582\) 10.0821 0.417916
\(583\) 9.54990 0.395516
\(584\) −2.95255 −0.122178
\(585\) 13.9964 0.578679
\(586\) 33.4233 1.38071
\(587\) −35.1932 −1.45258 −0.726289 0.687390i \(-0.758756\pi\)
−0.726289 + 0.687390i \(0.758756\pi\)
\(588\) 7.57685 0.312464
\(589\) −32.8085 −1.35185
\(590\) 30.9121 1.27263
\(591\) 15.2969 0.629231
\(592\) 24.8807 1.02259
\(593\) 2.69312 0.110593 0.0552967 0.998470i \(-0.482390\pi\)
0.0552967 + 0.998470i \(0.482390\pi\)
\(594\) −48.0352 −1.97091
\(595\) −11.9443 −0.489669
\(596\) 14.8307 0.607489
\(597\) −3.18841 −0.130493
\(598\) −27.2075 −1.11260
\(599\) 41.2094 1.68377 0.841884 0.539658i \(-0.181446\pi\)
0.841884 + 0.539658i \(0.181446\pi\)
\(600\) 2.96677 0.121118
\(601\) −36.8677 −1.50386 −0.751932 0.659241i \(-0.770878\pi\)
−0.751932 + 0.659241i \(0.770878\pi\)
\(602\) −45.5309 −1.85570
\(603\) −39.2945 −1.60020
\(604\) 0.684063 0.0278341
\(605\) 27.2750 1.10889
\(606\) 9.29728 0.377676
\(607\) −29.8278 −1.21067 −0.605337 0.795970i \(-0.706961\pi\)
−0.605337 + 0.795970i \(0.706961\pi\)
\(608\) 12.4418 0.504580
\(609\) −10.9033 −0.441824
\(610\) −62.6645 −2.53721
\(611\) 7.70235 0.311604
\(612\) 28.9389 1.16979
\(613\) −33.4737 −1.35199 −0.675994 0.736907i \(-0.736286\pi\)
−0.675994 + 0.736907i \(0.736286\pi\)
\(614\) 44.7260 1.80499
\(615\) −0.997477 −0.0402222
\(616\) −58.4947 −2.35682
\(617\) 3.29905 0.132815 0.0664074 0.997793i \(-0.478846\pi\)
0.0664074 + 0.997793i \(0.478846\pi\)
\(618\) −25.5454 −1.02759
\(619\) 42.2688 1.69893 0.849464 0.527647i \(-0.176926\pi\)
0.849464 + 0.527647i \(0.176926\pi\)
\(620\) −59.9824 −2.40895
\(621\) 15.6365 0.627473
\(622\) −14.3550 −0.575584
\(623\) −5.49837 −0.220287
\(624\) 10.6882 0.427869
\(625\) −20.7264 −0.829057
\(626\) 65.6662 2.62455
\(627\) 16.7563 0.669181
\(628\) −63.0887 −2.51751
\(629\) −12.2969 −0.490310
\(630\) −27.2494 −1.08564
\(631\) −6.04440 −0.240624 −0.120312 0.992736i \(-0.538389\pi\)
−0.120312 + 0.992736i \(0.538389\pi\)
\(632\) 22.1095 0.879469
\(633\) −10.2274 −0.406502
\(634\) 1.90887 0.0758109
\(635\) 38.1265 1.51300
\(636\) 5.85493 0.232163
\(637\) 6.82902 0.270576
\(638\) −89.0416 −3.52519
\(639\) −24.7566 −0.979355
\(640\) −34.2632 −1.35437
\(641\) −41.6202 −1.64390 −0.821950 0.569560i \(-0.807114\pi\)
−0.821950 + 0.569560i \(0.807114\pi\)
\(642\) −5.82342 −0.229832
\(643\) −41.8895 −1.65196 −0.825980 0.563699i \(-0.809378\pi\)
−0.825980 + 0.563699i \(0.809378\pi\)
\(644\) 36.0057 1.41882
\(645\) 12.6105 0.496537
\(646\) −32.7100 −1.28696
\(647\) 35.6764 1.40258 0.701292 0.712874i \(-0.252607\pi\)
0.701292 + 0.712874i \(0.252607\pi\)
\(648\) 26.4112 1.03753
\(649\) −29.5095 −1.15835
\(650\) 5.05624 0.198322
\(651\) 10.3153 0.404289
\(652\) 66.8154 2.61669
\(653\) −4.72277 −0.184816 −0.0924082 0.995721i \(-0.529456\pi\)
−0.0924082 + 0.995721i \(0.529456\pi\)
\(654\) 24.1174 0.943064
\(655\) 39.6246 1.54826
\(656\) 3.76103 0.146844
\(657\) 1.31302 0.0512259
\(658\) −14.9956 −0.584590
\(659\) 6.02891 0.234853 0.117427 0.993082i \(-0.462536\pi\)
0.117427 + 0.993082i \(0.462536\pi\)
\(660\) 30.6348 1.19246
\(661\) 46.0816 1.79237 0.896183 0.443684i \(-0.146329\pi\)
0.896183 + 0.443684i \(0.146329\pi\)
\(662\) 39.0424 1.51742
\(663\) −5.28245 −0.205154
\(664\) −15.4290 −0.598760
\(665\) 20.9361 0.811866
\(666\) −28.0538 −1.08706
\(667\) 28.9850 1.12230
\(668\) −77.7263 −3.00732
\(669\) 0.728450 0.0281635
\(670\) 81.2021 3.13711
\(671\) 59.8212 2.30937
\(672\) −3.91182 −0.150902
\(673\) 40.0552 1.54402 0.772008 0.635613i \(-0.219253\pi\)
0.772008 + 0.635613i \(0.219253\pi\)
\(674\) 17.6809 0.681044
\(675\) −2.90589 −0.111848
\(676\) −23.7896 −0.914986
\(677\) 17.2019 0.661121 0.330561 0.943785i \(-0.392762\pi\)
0.330561 + 0.943785i \(0.392762\pi\)
\(678\) −30.7608 −1.18136
\(679\) −12.0255 −0.461496
\(680\) −31.6260 −1.21280
\(681\) 12.3150 0.471913
\(682\) 84.2398 3.22571
\(683\) −32.3563 −1.23808 −0.619040 0.785360i \(-0.712478\pi\)
−0.619040 + 0.785360i \(0.712478\pi\)
\(684\) −50.7244 −1.93950
\(685\) 23.8901 0.912794
\(686\) −50.3573 −1.92265
\(687\) 4.07192 0.155354
\(688\) −47.5484 −1.81276
\(689\) 5.27705 0.201040
\(690\) −14.6708 −0.558510
\(691\) −29.0938 −1.10678 −0.553390 0.832922i \(-0.686666\pi\)
−0.553390 + 0.832922i \(0.686666\pi\)
\(692\) 78.8360 2.99690
\(693\) 26.0130 0.988153
\(694\) 0.0403230 0.00153064
\(695\) −17.7500 −0.673294
\(696\) −28.8697 −1.09430
\(697\) −1.85883 −0.0704083
\(698\) −23.7670 −0.899596
\(699\) −7.30343 −0.276241
\(700\) −6.69129 −0.252907
\(701\) 3.52492 0.133134 0.0665672 0.997782i \(-0.478795\pi\)
0.0665672 + 0.997782i \(0.478795\pi\)
\(702\) −26.5432 −1.00181
\(703\) 21.5541 0.812928
\(704\) 22.4776 0.847156
\(705\) 4.15326 0.156421
\(706\) 19.0357 0.716419
\(707\) −11.0894 −0.417060
\(708\) −18.0919 −0.679936
\(709\) 0.241988 0.00908807 0.00454403 0.999990i \(-0.498554\pi\)
0.00454403 + 0.999990i \(0.498554\pi\)
\(710\) 51.1595 1.91998
\(711\) −9.83225 −0.368738
\(712\) −14.5585 −0.545604
\(713\) −27.4219 −1.02696
\(714\) 10.2844 0.384882
\(715\) 27.6112 1.03260
\(716\) −76.1149 −2.84455
\(717\) −16.9716 −0.633815
\(718\) 71.6644 2.67449
\(719\) −3.07731 −0.114764 −0.0573821 0.998352i \(-0.518275\pi\)
−0.0573821 + 0.998352i \(0.518275\pi\)
\(720\) −28.4568 −1.06052
\(721\) 30.4695 1.13474
\(722\) 9.85385 0.366722
\(723\) −5.58620 −0.207753
\(724\) −57.5958 −2.14053
\(725\) −5.38657 −0.200052
\(726\) −23.4845 −0.871590
\(727\) 51.0793 1.89443 0.947214 0.320602i \(-0.103885\pi\)
0.947214 + 0.320602i \(0.103885\pi\)
\(728\) −32.3228 −1.19796
\(729\) −3.41654 −0.126538
\(730\) −2.71336 −0.100426
\(731\) 23.5000 0.869181
\(732\) 36.6757 1.35557
\(733\) 32.9294 1.21628 0.608138 0.793831i \(-0.291917\pi\)
0.608138 + 0.793831i \(0.291917\pi\)
\(734\) −72.1382 −2.66267
\(735\) 3.68235 0.135826
\(736\) 10.3991 0.383314
\(737\) −77.5178 −2.85540
\(738\) −4.24068 −0.156102
\(739\) 9.28037 0.341384 0.170692 0.985324i \(-0.445400\pi\)
0.170692 + 0.985324i \(0.445400\pi\)
\(740\) 39.4065 1.44861
\(741\) 9.25913 0.340143
\(742\) −10.2738 −0.377164
\(743\) −23.4136 −0.858962 −0.429481 0.903076i \(-0.641303\pi\)
−0.429481 + 0.903076i \(0.641303\pi\)
\(744\) 27.3128 1.00134
\(745\) 7.20772 0.264071
\(746\) −82.3602 −3.01542
\(747\) 6.86137 0.251044
\(748\) 57.0890 2.08738
\(749\) 6.94593 0.253799
\(750\) 21.0490 0.768601
\(751\) 28.3115 1.03310 0.516551 0.856257i \(-0.327216\pi\)
0.516551 + 0.856257i \(0.327216\pi\)
\(752\) −15.6601 −0.571064
\(753\) −9.60102 −0.349881
\(754\) −49.2023 −1.79184
\(755\) 0.332455 0.0120993
\(756\) 35.1265 1.27754
\(757\) −1.49938 −0.0544959 −0.0272480 0.999629i \(-0.508674\pi\)
−0.0272480 + 0.999629i \(0.508674\pi\)
\(758\) 7.54793 0.274153
\(759\) 14.0052 0.508356
\(760\) 55.4344 2.01082
\(761\) 44.9404 1.62909 0.814543 0.580103i \(-0.196988\pi\)
0.814543 + 0.580103i \(0.196988\pi\)
\(762\) −32.8279 −1.18923
\(763\) −28.7662 −1.04141
\(764\) −29.3528 −1.06195
\(765\) 14.0643 0.508497
\(766\) −11.9310 −0.431083
\(767\) −16.3063 −0.588785
\(768\) 23.0086 0.830252
\(769\) 21.4226 0.772518 0.386259 0.922390i \(-0.373767\pi\)
0.386259 + 0.922390i \(0.373767\pi\)
\(770\) −53.7559 −1.93723
\(771\) 4.20457 0.151424
\(772\) −32.8625 −1.18275
\(773\) −27.9492 −1.00526 −0.502632 0.864500i \(-0.667635\pi\)
−0.502632 + 0.864500i \(0.667635\pi\)
\(774\) 53.6123 1.92705
\(775\) 5.09609 0.183057
\(776\) −31.8410 −1.14303
\(777\) −6.77683 −0.243117
\(778\) 82.4461 2.95584
\(779\) 3.25818 0.116736
\(780\) 16.9281 0.606123
\(781\) −48.8383 −1.74757
\(782\) −27.3396 −0.977662
\(783\) 28.2773 1.01055
\(784\) −13.8845 −0.495874
\(785\) −30.6611 −1.09434
\(786\) −34.1178 −1.21694
\(787\) −14.3627 −0.511976 −0.255988 0.966680i \(-0.582401\pi\)
−0.255988 + 0.966680i \(0.582401\pi\)
\(788\) −91.3510 −3.25424
\(789\) 5.95001 0.211826
\(790\) 20.3184 0.722895
\(791\) 36.6901 1.30455
\(792\) 68.8771 2.44744
\(793\) 33.0558 1.17385
\(794\) −36.4334 −1.29297
\(795\) 2.84550 0.100919
\(796\) 19.0407 0.674881
\(797\) −44.7540 −1.58527 −0.792635 0.609697i \(-0.791291\pi\)
−0.792635 + 0.609697i \(0.791291\pi\)
\(798\) −18.0265 −0.638131
\(799\) 7.73974 0.273812
\(800\) −1.93256 −0.0683263
\(801\) 6.47428 0.228758
\(802\) −28.1322 −0.993382
\(803\) 2.59025 0.0914079
\(804\) −47.5252 −1.67609
\(805\) 17.4988 0.616750
\(806\) 46.5489 1.63962
\(807\) −4.63016 −0.162990
\(808\) −29.3624 −1.03297
\(809\) −37.1363 −1.30564 −0.652821 0.757512i \(-0.726414\pi\)
−0.652821 + 0.757512i \(0.726414\pi\)
\(810\) 24.2716 0.852817
\(811\) −23.0157 −0.808190 −0.404095 0.914717i \(-0.632413\pi\)
−0.404095 + 0.914717i \(0.632413\pi\)
\(812\) 65.1130 2.28502
\(813\) −15.6798 −0.549914
\(814\) −55.3428 −1.93976
\(815\) 32.4723 1.13746
\(816\) 10.7400 0.375977
\(817\) −41.1911 −1.44109
\(818\) 2.49897 0.0873745
\(819\) 14.3742 0.502275
\(820\) 5.95679 0.208020
\(821\) −39.9835 −1.39543 −0.697716 0.716374i \(-0.745800\pi\)
−0.697716 + 0.716374i \(0.745800\pi\)
\(822\) −20.5700 −0.717461
\(823\) 17.9450 0.625525 0.312762 0.949831i \(-0.398746\pi\)
0.312762 + 0.949831i \(0.398746\pi\)
\(824\) 80.6768 2.81051
\(825\) −2.60272 −0.0906152
\(826\) 31.7465 1.10460
\(827\) −22.3948 −0.778745 −0.389372 0.921080i \(-0.627308\pi\)
−0.389372 + 0.921080i \(0.627308\pi\)
\(828\) −42.3964 −1.47338
\(829\) 46.7725 1.62448 0.812238 0.583326i \(-0.198249\pi\)
0.812238 + 0.583326i \(0.198249\pi\)
\(830\) −14.1790 −0.492161
\(831\) 4.18145 0.145053
\(832\) 12.4206 0.430607
\(833\) 6.86218 0.237760
\(834\) 15.2832 0.529213
\(835\) −37.7750 −1.30726
\(836\) −100.066 −3.46086
\(837\) −26.7523 −0.924696
\(838\) −41.3532 −1.42852
\(839\) −24.1605 −0.834112 −0.417056 0.908881i \(-0.636938\pi\)
−0.417056 + 0.908881i \(0.636938\pi\)
\(840\) −17.4291 −0.601362
\(841\) 23.4168 0.807475
\(842\) −72.7717 −2.50788
\(843\) −17.3934 −0.599062
\(844\) 61.0765 2.10234
\(845\) −11.5618 −0.397737
\(846\) 17.6572 0.607068
\(847\) 28.0113 0.962478
\(848\) −10.7291 −0.368438
\(849\) 21.7088 0.745045
\(850\) 5.08079 0.174270
\(851\) 18.0153 0.617557
\(852\) −29.9422 −1.02580
\(853\) 49.3895 1.69106 0.845532 0.533925i \(-0.179284\pi\)
0.845532 + 0.533925i \(0.179284\pi\)
\(854\) −64.3560 −2.20222
\(855\) −24.6521 −0.843083
\(856\) 18.3914 0.628604
\(857\) 36.0098 1.23007 0.615036 0.788499i \(-0.289141\pi\)
0.615036 + 0.788499i \(0.289141\pi\)
\(858\) −23.7739 −0.811629
\(859\) 48.1611 1.64324 0.821618 0.570039i \(-0.193072\pi\)
0.821618 + 0.570039i \(0.193072\pi\)
\(860\) −75.3080 −2.56798
\(861\) −1.02440 −0.0349116
\(862\) 44.2491 1.50713
\(863\) 28.9005 0.983783 0.491892 0.870656i \(-0.336306\pi\)
0.491892 + 0.870656i \(0.336306\pi\)
\(864\) 10.1451 0.345145
\(865\) 38.3143 1.30273
\(866\) 6.54822 0.222518
\(867\) 6.77570 0.230115
\(868\) −61.6016 −2.09089
\(869\) −19.3965 −0.657980
\(870\) −26.5309 −0.899482
\(871\) −42.8345 −1.45139
\(872\) −76.1668 −2.57933
\(873\) 14.1599 0.479241
\(874\) 47.9211 1.62095
\(875\) −25.1064 −0.848750
\(876\) 1.58805 0.0536553
\(877\) −47.0058 −1.58727 −0.793636 0.608393i \(-0.791815\pi\)
−0.793636 + 0.608393i \(0.791815\pi\)
\(878\) 6.55906 0.221358
\(879\) −9.50699 −0.320663
\(880\) −56.1378 −1.89241
\(881\) 36.0302 1.21389 0.606944 0.794745i \(-0.292395\pi\)
0.606944 + 0.794745i \(0.292395\pi\)
\(882\) 15.6552 0.527137
\(883\) 14.4723 0.487033 0.243516 0.969897i \(-0.421699\pi\)
0.243516 + 0.969897i \(0.421699\pi\)
\(884\) 31.5461 1.06101
\(885\) −8.79267 −0.295563
\(886\) −25.0257 −0.840753
\(887\) 0.133140 0.00447039 0.00223520 0.999998i \(-0.499289\pi\)
0.00223520 + 0.999998i \(0.499289\pi\)
\(888\) −17.9436 −0.602149
\(889\) 39.1557 1.31324
\(890\) −13.3791 −0.448469
\(891\) −23.1703 −0.776235
\(892\) −4.35020 −0.145655
\(893\) −13.5663 −0.453978
\(894\) −6.20603 −0.207561
\(895\) −36.9918 −1.23650
\(896\) −35.1881 −1.17555
\(897\) 7.73895 0.258396
\(898\) 99.2042 3.31049
\(899\) −49.5901 −1.65392
\(900\) 7.87894 0.262631
\(901\) 5.30268 0.176658
\(902\) −8.36576 −0.278549
\(903\) 12.9509 0.430978
\(904\) 97.1478 3.23109
\(905\) −27.9916 −0.930471
\(906\) −0.286252 −0.00951008
\(907\) 58.4083 1.93942 0.969708 0.244266i \(-0.0785469\pi\)
0.969708 + 0.244266i \(0.0785469\pi\)
\(908\) −73.5435 −2.44063
\(909\) 13.0577 0.433096
\(910\) −29.7043 −0.984687
\(911\) 35.0365 1.16081 0.580406 0.814327i \(-0.302894\pi\)
0.580406 + 0.814327i \(0.302894\pi\)
\(912\) −18.8252 −0.623366
\(913\) 13.5357 0.447966
\(914\) −63.6582 −2.10563
\(915\) 17.8244 0.589256
\(916\) −24.3169 −0.803454
\(917\) 40.6943 1.34384
\(918\) −26.6720 −0.880309
\(919\) 3.17828 0.104842 0.0524209 0.998625i \(-0.483306\pi\)
0.0524209 + 0.998625i \(0.483306\pi\)
\(920\) 46.3331 1.52756
\(921\) −12.7219 −0.419202
\(922\) 22.5141 0.741461
\(923\) −26.9869 −0.888284
\(924\) 31.4618 1.03502
\(925\) −3.34796 −0.110080
\(926\) −99.7171 −3.27691
\(927\) −35.8776 −1.17837
\(928\) 18.8058 0.617329
\(929\) −4.34275 −0.142481 −0.0712405 0.997459i \(-0.522696\pi\)
−0.0712405 + 0.997459i \(0.522696\pi\)
\(930\) 25.1001 0.823066
\(931\) −12.0281 −0.394205
\(932\) 43.6150 1.42866
\(933\) 4.08317 0.133677
\(934\) −23.0445 −0.754041
\(935\) 27.7453 0.907367
\(936\) 38.0599 1.24403
\(937\) −40.8706 −1.33518 −0.667592 0.744527i \(-0.732675\pi\)
−0.667592 + 0.744527i \(0.732675\pi\)
\(938\) 83.3941 2.72291
\(939\) −18.6782 −0.609540
\(940\) −24.8027 −0.808974
\(941\) 17.2424 0.562087 0.281043 0.959695i \(-0.409320\pi\)
0.281043 + 0.959695i \(0.409320\pi\)
\(942\) 26.4000 0.860158
\(943\) 2.72324 0.0886810
\(944\) 33.1532 1.07904
\(945\) 17.0715 0.555335
\(946\) 105.763 3.43865
\(947\) −7.99358 −0.259757 −0.129878 0.991530i \(-0.541459\pi\)
−0.129878 + 0.991530i \(0.541459\pi\)
\(948\) −11.8917 −0.386226
\(949\) 1.43131 0.0464624
\(950\) −8.90565 −0.288937
\(951\) −0.542962 −0.0176067
\(952\) −32.4798 −1.05268
\(953\) −25.2541 −0.818059 −0.409030 0.912521i \(-0.634133\pi\)
−0.409030 + 0.912521i \(0.634133\pi\)
\(954\) 12.0974 0.391667
\(955\) −14.2655 −0.461620
\(956\) 101.352 3.27795
\(957\) 25.3271 0.818710
\(958\) −62.0106 −2.00347
\(959\) 24.5350 0.792277
\(960\) 6.69744 0.216159
\(961\) 15.9158 0.513412
\(962\) −30.5811 −0.985976
\(963\) −8.17877 −0.263557
\(964\) 33.3600 1.07445
\(965\) −15.9712 −0.514130
\(966\) −15.0669 −0.484769
\(967\) 22.8680 0.735385 0.367692 0.929947i \(-0.380148\pi\)
0.367692 + 0.929947i \(0.380148\pi\)
\(968\) 74.1680 2.38385
\(969\) 9.30408 0.298890
\(970\) −29.2615 −0.939530
\(971\) −33.4596 −1.07377 −0.536885 0.843655i \(-0.680399\pi\)
−0.536885 + 0.843655i \(0.680399\pi\)
\(972\) −63.9434 −2.05099
\(973\) −18.2291 −0.584398
\(974\) −61.8018 −1.98026
\(975\) −1.43821 −0.0460594
\(976\) −67.2076 −2.15126
\(977\) 40.1301 1.28388 0.641938 0.766756i \(-0.278130\pi\)
0.641938 + 0.766756i \(0.278130\pi\)
\(978\) −27.9595 −0.894046
\(979\) 12.7721 0.408197
\(980\) −21.9905 −0.702459
\(981\) 33.8719 1.08145
\(982\) −37.0746 −1.18310
\(983\) 36.2849 1.15731 0.578655 0.815573i \(-0.303578\pi\)
0.578655 + 0.815573i \(0.303578\pi\)
\(984\) −2.71241 −0.0864684
\(985\) −44.3966 −1.41459
\(986\) −49.4412 −1.57453
\(987\) 4.26538 0.135768
\(988\) −55.2942 −1.75914
\(989\) −34.4282 −1.09475
\(990\) 63.2972 2.01172
\(991\) −4.82195 −0.153174 −0.0765871 0.997063i \(-0.524402\pi\)
−0.0765871 + 0.997063i \(0.524402\pi\)
\(992\) −17.7916 −0.564884
\(993\) −11.1053 −0.352415
\(994\) 52.5405 1.66648
\(995\) 9.25380 0.293365
\(996\) 8.29857 0.262950
\(997\) −16.2191 −0.513664 −0.256832 0.966456i \(-0.582679\pi\)
−0.256832 + 0.966456i \(0.582679\pi\)
\(998\) −29.4263 −0.931473
\(999\) 17.5754 0.556062
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 409.2.a.b.1.18 20
3.2 odd 2 3681.2.a.i.1.3 20
4.3 odd 2 6544.2.a.i.1.12 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
409.2.a.b.1.18 20 1.1 even 1 trivial
3681.2.a.i.1.3 20 3.2 odd 2
6544.2.a.i.1.12 20 4.3 odd 2