Properties

Label 2-409-1.1-c1-0-21
Degree $2$
Conductor $409$
Sign $1$
Analytic cond. $3.26588$
Root an. cond. $1.80717$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.49·2-s − 0.710·3-s + 4.24·4-s + 2.06·5-s − 1.77·6-s + 2.11·7-s + 5.60·8-s − 2.49·9-s + 5.15·10-s − 4.92·11-s − 3.01·12-s − 2.71·13-s + 5.29·14-s − 1.46·15-s + 5.52·16-s − 2.73·17-s − 6.23·18-s + 4.78·19-s + 8.75·20-s − 1.50·21-s − 12.2·22-s + 4.00·23-s − 3.98·24-s − 0.744·25-s − 6.79·26-s + 3.90·27-s + 8.99·28-s + ⋯
L(s)  = 1  + 1.76·2-s − 0.410·3-s + 2.12·4-s + 0.922·5-s − 0.725·6-s + 0.800·7-s + 1.98·8-s − 0.831·9-s + 1.63·10-s − 1.48·11-s − 0.871·12-s − 0.754·13-s + 1.41·14-s − 0.378·15-s + 1.38·16-s − 0.662·17-s − 1.46·18-s + 1.09·19-s + 1.95·20-s − 0.328·21-s − 2.62·22-s + 0.834·23-s − 0.813·24-s − 0.148·25-s − 1.33·26-s + 0.751·27-s + 1.69·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 409 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 409 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(409\)
Sign: $1$
Analytic conductor: \(3.26588\)
Root analytic conductor: \(1.80717\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 409,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.476433456\)
\(L(\frac12)\) \(\approx\) \(3.476433456\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad409 \( 1 - T \)
good2 \( 1 - 2.49T + 2T^{2} \)
3 \( 1 + 0.710T + 3T^{2} \)
5 \( 1 - 2.06T + 5T^{2} \)
7 \( 1 - 2.11T + 7T^{2} \)
11 \( 1 + 4.92T + 11T^{2} \)
13 \( 1 + 2.71T + 13T^{2} \)
17 \( 1 + 2.73T + 17T^{2} \)
19 \( 1 - 4.78T + 19T^{2} \)
23 \( 1 - 4.00T + 23T^{2} \)
29 \( 1 - 7.23T + 29T^{2} \)
31 \( 1 + 6.84T + 31T^{2} \)
37 \( 1 - 4.49T + 37T^{2} \)
41 \( 1 - 0.680T + 41T^{2} \)
43 \( 1 + 8.59T + 43T^{2} \)
47 \( 1 + 2.83T + 47T^{2} \)
53 \( 1 + 1.94T + 53T^{2} \)
59 \( 1 - 5.99T + 59T^{2} \)
61 \( 1 + 12.1T + 61T^{2} \)
67 \( 1 - 15.7T + 67T^{2} \)
71 \( 1 - 9.92T + 71T^{2} \)
73 \( 1 + 0.526T + 73T^{2} \)
79 \( 1 - 3.94T + 79T^{2} \)
83 \( 1 + 2.75T + 83T^{2} \)
89 \( 1 + 2.59T + 89T^{2} \)
97 \( 1 + 5.67T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.35487842020961701715859348024, −10.85471252278600700590406998658, −9.720622389741546809432848611747, −8.216296035665493255879957761980, −7.10703296482604848383909433428, −6.02987388187290186957485423300, −5.13582884244668015378821420144, −4.92884972784152255387519235130, −3.06959594826474349291854239106, −2.18269197262669707663212277654, 2.18269197262669707663212277654, 3.06959594826474349291854239106, 4.92884972784152255387519235130, 5.13582884244668015378821420144, 6.02987388187290186957485423300, 7.10703296482604848383909433428, 8.216296035665493255879957761980, 9.720622389741546809432848611747, 10.85471252278600700590406998658, 11.35487842020961701715859348024

Graph of the $Z$-function along the critical line