Properties

Label 408.2.ba.b.145.4
Level $408$
Weight $2$
Character 408.145
Analytic conductor $3.258$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [408,2,Mod(25,408)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(408, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("408.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 408 = 2^{3} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 408.ba (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.25789640247\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 40 x^{14} - 112 x^{13} + 166 x^{12} - 328 x^{11} + 728 x^{10} - 368 x^{9} + \cdots + 12689 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 145.4
Root \(-1.52004 - 0.501266i\) of defining polynomial
Character \(\chi\) \(=\) 408.145
Dual form 408.2.ba.b.121.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.923880 + 0.382683i) q^{3} +(0.431802 - 1.04246i) q^{5} +(-1.16338 - 2.80866i) q^{7} +(0.707107 + 0.707107i) q^{9} +(3.84680 - 1.59340i) q^{11} +1.86212i q^{13} +(0.797866 - 0.797866i) q^{15} +(-1.96221 - 3.62626i) q^{17} +(5.77458 - 5.77458i) q^{19} -3.04007i q^{21} +(-6.03378 + 2.49927i) q^{23} +(2.63526 + 2.63526i) q^{25} +(0.382683 + 0.923880i) q^{27} +(-2.72602 + 6.58121i) q^{29} +(7.71819 + 3.19698i) q^{31} +4.16374 q^{33} -3.43027 q^{35} +(0.323617 + 0.134047i) q^{37} +(-0.712604 + 1.72038i) q^{39} +(1.40682 + 3.39636i) q^{41} +(-6.71026 - 6.71026i) q^{43} +(1.04246 - 0.431802i) q^{45} -4.96736i q^{47} +(-1.58535 + 1.58535i) q^{49} +(-0.425139 - 4.10113i) q^{51} +(-7.13683 + 7.13683i) q^{53} -4.69817i q^{55} +(7.54485 - 3.12518i) q^{57} +(0.0213015 + 0.0213015i) q^{59} +(1.66642 + 4.02310i) q^{61} +(1.16338 - 2.80866i) q^{63} +(1.94119 + 0.804069i) q^{65} +5.70338 q^{67} -6.53091 q^{69} +(-3.98661 - 1.65131i) q^{71} +(-3.25236 + 7.85188i) q^{73} +(1.42619 + 3.44313i) q^{75} +(-8.95061 - 8.95061i) q^{77} +(-8.15920 + 3.37965i) q^{79} +1.00000i q^{81} +(-10.1271 + 10.1271i) q^{83} +(-4.62752 + 0.479707i) q^{85} +(-5.03704 + 5.03704i) q^{87} -1.83702i q^{89} +(5.23007 - 2.16637i) q^{91} +(5.90725 + 5.90725i) q^{93} +(-3.52630 - 8.51325i) q^{95} +(-4.76740 + 11.5095i) q^{97} +(3.84680 + 1.59340i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{11} - 8 q^{15} - 16 q^{17} + 8 q^{19} + 8 q^{23} + 24 q^{25} + 8 q^{31} + 24 q^{33} + 16 q^{35} - 8 q^{37} + 24 q^{39} - 8 q^{41} + 8 q^{43} + 8 q^{45} - 40 q^{49} - 8 q^{51} - 24 q^{53} + 8 q^{57}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/408\mathbb{Z}\right)^\times\).

\(n\) \(103\) \(137\) \(205\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.923880 + 0.382683i 0.533402 + 0.220942i
\(4\) 0 0
\(5\) 0.431802 1.04246i 0.193108 0.466203i −0.797436 0.603404i \(-0.793811\pi\)
0.990543 + 0.137201i \(0.0438106\pi\)
\(6\) 0 0
\(7\) −1.16338 2.80866i −0.439718 1.06157i −0.976046 0.217564i \(-0.930189\pi\)
0.536328 0.844010i \(-0.319811\pi\)
\(8\) 0 0
\(9\) 0.707107 + 0.707107i 0.235702 + 0.235702i
\(10\) 0 0
\(11\) 3.84680 1.59340i 1.15985 0.480427i 0.282027 0.959406i \(-0.408993\pi\)
0.877826 + 0.478979i \(0.158993\pi\)
\(12\) 0 0
\(13\) 1.86212i 0.516460i 0.966083 + 0.258230i \(0.0831393\pi\)
−0.966083 + 0.258230i \(0.916861\pi\)
\(14\) 0 0
\(15\) 0.797866 0.797866i 0.206008 0.206008i
\(16\) 0 0
\(17\) −1.96221 3.62626i −0.475906 0.879496i
\(18\) 0 0
\(19\) 5.77458 5.77458i 1.32478 1.32478i 0.414922 0.909857i \(-0.363809\pi\)
0.909857 0.414922i \(-0.136191\pi\)
\(20\) 0 0
\(21\) 3.04007i 0.663398i
\(22\) 0 0
\(23\) −6.03378 + 2.49927i −1.25813 + 0.521134i −0.909335 0.416065i \(-0.863409\pi\)
−0.348795 + 0.937199i \(0.613409\pi\)
\(24\) 0 0
\(25\) 2.63526 + 2.63526i 0.527052 + 0.527052i
\(26\) 0 0
\(27\) 0.382683 + 0.923880i 0.0736475 + 0.177801i
\(28\) 0 0
\(29\) −2.72602 + 6.58121i −0.506210 + 1.22210i 0.439839 + 0.898077i \(0.355035\pi\)
−0.946049 + 0.324023i \(0.894965\pi\)
\(30\) 0 0
\(31\) 7.71819 + 3.19698i 1.38623 + 0.574194i 0.946139 0.323760i \(-0.104947\pi\)
0.440089 + 0.897954i \(0.354947\pi\)
\(32\) 0 0
\(33\) 4.16374 0.724815
\(34\) 0 0
\(35\) −3.43027 −0.579822
\(36\) 0 0
\(37\) 0.323617 + 0.134047i 0.0532023 + 0.0220371i 0.409126 0.912478i \(-0.365834\pi\)
−0.355924 + 0.934515i \(0.615834\pi\)
\(38\) 0 0
\(39\) −0.712604 + 1.72038i −0.114108 + 0.275481i
\(40\) 0 0
\(41\) 1.40682 + 3.39636i 0.219708 + 0.530423i 0.994849 0.101366i \(-0.0323212\pi\)
−0.775141 + 0.631788i \(0.782321\pi\)
\(42\) 0 0
\(43\) −6.71026 6.71026i −1.02330 1.02330i −0.999722 0.0235824i \(-0.992493\pi\)
−0.0235824 0.999722i \(-0.507507\pi\)
\(44\) 0 0
\(45\) 1.04246 0.431802i 0.155401 0.0643692i
\(46\) 0 0
\(47\) 4.96736i 0.724563i −0.932069 0.362282i \(-0.881998\pi\)
0.932069 0.362282i \(-0.118002\pi\)
\(48\) 0 0
\(49\) −1.58535 + 1.58535i −0.226479 + 0.226479i
\(50\) 0 0
\(51\) −0.425139 4.10113i −0.0595314 0.574273i
\(52\) 0 0
\(53\) −7.13683 + 7.13683i −0.980319 + 0.980319i −0.999810 0.0194913i \(-0.993795\pi\)
0.0194913 + 0.999810i \(0.493795\pi\)
\(54\) 0 0
\(55\) 4.69817i 0.633502i
\(56\) 0 0
\(57\) 7.54485 3.12518i 0.999340 0.413940i
\(58\) 0 0
\(59\) 0.0213015 + 0.0213015i 0.00277322 + 0.00277322i 0.708492 0.705719i \(-0.249376\pi\)
−0.705719 + 0.708492i \(0.749376\pi\)
\(60\) 0 0
\(61\) 1.66642 + 4.02310i 0.213364 + 0.515106i 0.993936 0.109960i \(-0.0350722\pi\)
−0.780572 + 0.625066i \(0.785072\pi\)
\(62\) 0 0
\(63\) 1.16338 2.80866i 0.146573 0.353858i
\(64\) 0 0
\(65\) 1.94119 + 0.804069i 0.240776 + 0.0997325i
\(66\) 0 0
\(67\) 5.70338 0.696779 0.348390 0.937350i \(-0.386729\pi\)
0.348390 + 0.937350i \(0.386729\pi\)
\(68\) 0 0
\(69\) −6.53091 −0.786230
\(70\) 0 0
\(71\) −3.98661 1.65131i −0.473123 0.195974i 0.133364 0.991067i \(-0.457422\pi\)
−0.606488 + 0.795093i \(0.707422\pi\)
\(72\) 0 0
\(73\) −3.25236 + 7.85188i −0.380659 + 0.918993i 0.611179 + 0.791492i \(0.290696\pi\)
−0.991838 + 0.127501i \(0.959304\pi\)
\(74\) 0 0
\(75\) 1.42619 + 3.44313i 0.164682 + 0.397579i
\(76\) 0 0
\(77\) −8.95061 8.95061i −1.02002 1.02002i
\(78\) 0 0
\(79\) −8.15920 + 3.37965i −0.917981 + 0.380240i −0.791106 0.611678i \(-0.790495\pi\)
−0.126875 + 0.991919i \(0.540495\pi\)
\(80\) 0 0
\(81\) 1.00000i 0.111111i
\(82\) 0 0
\(83\) −10.1271 + 10.1271i −1.11160 + 1.11160i −0.118664 + 0.992934i \(0.537861\pi\)
−0.992934 + 0.118664i \(0.962139\pi\)
\(84\) 0 0
\(85\) −4.62752 + 0.479707i −0.501925 + 0.0520316i
\(86\) 0 0
\(87\) −5.03704 + 5.03704i −0.540027 + 0.540027i
\(88\) 0 0
\(89\) 1.83702i 0.194723i −0.995249 0.0973617i \(-0.968960\pi\)
0.995249 0.0973617i \(-0.0310404\pi\)
\(90\) 0 0
\(91\) 5.23007 2.16637i 0.548261 0.227097i
\(92\) 0 0
\(93\) 5.90725 + 5.90725i 0.612553 + 0.612553i
\(94\) 0 0
\(95\) −3.52630 8.51325i −0.361791 0.873441i
\(96\) 0 0
\(97\) −4.76740 + 11.5095i −0.484057 + 1.16862i 0.473610 + 0.880735i \(0.342951\pi\)
−0.957666 + 0.287881i \(0.907049\pi\)
\(98\) 0 0
\(99\) 3.84680 + 1.59340i 0.386618 + 0.160142i
\(100\) 0 0
\(101\) −3.79369 −0.377486 −0.188743 0.982026i \(-0.560441\pi\)
−0.188743 + 0.982026i \(0.560441\pi\)
\(102\) 0 0
\(103\) 16.4743 1.62326 0.811632 0.584170i \(-0.198580\pi\)
0.811632 + 0.584170i \(0.198580\pi\)
\(104\) 0 0
\(105\) −3.16916 1.31271i −0.309278 0.128107i
\(106\) 0 0
\(107\) −3.54644 + 8.56187i −0.342847 + 0.827707i 0.654578 + 0.755995i \(0.272846\pi\)
−0.997425 + 0.0717124i \(0.977154\pi\)
\(108\) 0 0
\(109\) −3.98225 9.61399i −0.381430 0.920854i −0.991690 0.128652i \(-0.958935\pi\)
0.610260 0.792201i \(-0.291065\pi\)
\(110\) 0 0
\(111\) 0.247686 + 0.247686i 0.0235093 + 0.0235093i
\(112\) 0 0
\(113\) 6.03063 2.49797i 0.567314 0.234989i −0.0805429 0.996751i \(-0.525665\pi\)
0.647857 + 0.761762i \(0.275665\pi\)
\(114\) 0 0
\(115\) 7.36918i 0.687179i
\(116\) 0 0
\(117\) −1.31672 + 1.31672i −0.121731 + 0.121731i
\(118\) 0 0
\(119\) −7.90211 + 9.72991i −0.724385 + 0.891940i
\(120\) 0 0
\(121\) 4.48077 4.48077i 0.407343 0.407343i
\(122\) 0 0
\(123\) 3.67620i 0.331471i
\(124\) 0 0
\(125\) 9.09738 3.76826i 0.813694 0.337043i
\(126\) 0 0
\(127\) 2.55206 + 2.55206i 0.226459 + 0.226459i 0.811212 0.584753i \(-0.198808\pi\)
−0.584753 + 0.811212i \(0.698808\pi\)
\(128\) 0 0
\(129\) −3.63156 8.76737i −0.319741 0.771924i
\(130\) 0 0
\(131\) −4.79230 + 11.5696i −0.418705 + 1.01084i 0.564018 + 0.825763i \(0.309255\pi\)
−0.982723 + 0.185081i \(0.940745\pi\)
\(132\) 0 0
\(133\) −22.9369 9.50076i −1.98888 0.823821i
\(134\) 0 0
\(135\) 1.12835 0.0971132
\(136\) 0 0
\(137\) 6.95813 0.594473 0.297236 0.954804i \(-0.403935\pi\)
0.297236 + 0.954804i \(0.403935\pi\)
\(138\) 0 0
\(139\) −15.3524 6.35918i −1.30217 0.539378i −0.379584 0.925157i \(-0.623933\pi\)
−0.922591 + 0.385779i \(0.873933\pi\)
\(140\) 0 0
\(141\) 1.90092 4.58924i 0.160087 0.386484i
\(142\) 0 0
\(143\) 2.96710 + 7.16322i 0.248121 + 0.599018i
\(144\) 0 0
\(145\) 5.68356 + 5.68356i 0.471994 + 0.471994i
\(146\) 0 0
\(147\) −2.07137 + 0.857988i −0.170843 + 0.0707656i
\(148\) 0 0
\(149\) 13.2038i 1.08169i −0.841121 0.540847i \(-0.818104\pi\)
0.841121 0.540847i \(-0.181896\pi\)
\(150\) 0 0
\(151\) 2.65333 2.65333i 0.215925 0.215925i −0.590854 0.806779i \(-0.701209\pi\)
0.806779 + 0.590854i \(0.201209\pi\)
\(152\) 0 0
\(153\) 1.17666 3.95164i 0.0951270 0.319471i
\(154\) 0 0
\(155\) 6.66546 6.66546i 0.535383 0.535383i
\(156\) 0 0
\(157\) 9.68851i 0.773227i 0.922242 + 0.386614i \(0.126355\pi\)
−0.922242 + 0.386614i \(0.873645\pi\)
\(158\) 0 0
\(159\) −9.32472 + 3.86242i −0.739498 + 0.306310i
\(160\) 0 0
\(161\) 14.0392 + 14.0392i 1.10644 + 1.10644i
\(162\) 0 0
\(163\) −1.30464 3.14969i −0.102188 0.246703i 0.864514 0.502608i \(-0.167626\pi\)
−0.966702 + 0.255906i \(0.917626\pi\)
\(164\) 0 0
\(165\) 1.79791 4.34055i 0.139967 0.337911i
\(166\) 0 0
\(167\) 14.0077 + 5.80220i 1.08395 + 0.448988i 0.851894 0.523714i \(-0.175454\pi\)
0.232058 + 0.972702i \(0.425454\pi\)
\(168\) 0 0
\(169\) 9.53249 0.733269
\(170\) 0 0
\(171\) 8.16649 0.624507
\(172\) 0 0
\(173\) −13.4060 5.55293i −1.01924 0.422182i −0.190420 0.981703i \(-0.560985\pi\)
−0.828816 + 0.559521i \(0.810985\pi\)
\(174\) 0 0
\(175\) 4.33572 10.4674i 0.327750 0.791258i
\(176\) 0 0
\(177\) 0.0115283 + 0.0278318i 0.000866521 + 0.00209197i
\(178\) 0 0
\(179\) 3.61732 + 3.61732i 0.270371 + 0.270371i 0.829250 0.558878i \(-0.188768\pi\)
−0.558878 + 0.829250i \(0.688768\pi\)
\(180\) 0 0
\(181\) 3.99796 1.65601i 0.297166 0.123090i −0.229119 0.973398i \(-0.573584\pi\)
0.526285 + 0.850308i \(0.323584\pi\)
\(182\) 0 0
\(183\) 4.35458i 0.321900i
\(184\) 0 0
\(185\) 0.279477 0.279477i 0.0205476 0.0205476i
\(186\) 0 0
\(187\) −13.3263 10.8229i −0.974515 0.791448i
\(188\) 0 0
\(189\) 2.14965 2.14965i 0.156364 0.156364i
\(190\) 0 0
\(191\) 13.6906i 0.990619i −0.868716 0.495310i \(-0.835055\pi\)
0.868716 0.495310i \(-0.164945\pi\)
\(192\) 0 0
\(193\) 15.9828 6.62031i 1.15047 0.476541i 0.275779 0.961221i \(-0.411064\pi\)
0.874691 + 0.484680i \(0.161064\pi\)
\(194\) 0 0
\(195\) 1.48573 + 1.48573i 0.106395 + 0.106395i
\(196\) 0 0
\(197\) −1.97711 4.77317i −0.140863 0.340074i 0.837666 0.546183i \(-0.183920\pi\)
−0.978529 + 0.206109i \(0.933920\pi\)
\(198\) 0 0
\(199\) −9.76587 + 23.5769i −0.692284 + 1.67132i 0.0478426 + 0.998855i \(0.484765\pi\)
−0.740127 + 0.672467i \(0.765235\pi\)
\(200\) 0 0
\(201\) 5.26924 + 2.18259i 0.371663 + 0.153948i
\(202\) 0 0
\(203\) 21.6558 1.51994
\(204\) 0 0
\(205\) 4.14805 0.289712
\(206\) 0 0
\(207\) −6.03378 2.49927i −0.419377 0.173711i
\(208\) 0 0
\(209\) 13.0124 31.4148i 0.900090 2.17301i
\(210\) 0 0
\(211\) 3.78592 + 9.14001i 0.260633 + 0.629225i 0.998978 0.0451990i \(-0.0143922\pi\)
−0.738345 + 0.674424i \(0.764392\pi\)
\(212\) 0 0
\(213\) −3.05122 3.05122i −0.209066 0.209066i
\(214\) 0 0
\(215\) −9.89269 + 4.09769i −0.674676 + 0.279460i
\(216\) 0 0
\(217\) 25.3971i 1.72407i
\(218\) 0 0
\(219\) −6.00957 + 6.00957i −0.406089 + 0.406089i
\(220\) 0 0
\(221\) 6.75254 3.65388i 0.454225 0.245787i
\(222\) 0 0
\(223\) 15.0502 15.0502i 1.00783 1.00783i 0.00786422 0.999969i \(-0.497497\pi\)
0.999969 0.00786422i \(-0.00250328\pi\)
\(224\) 0 0
\(225\) 3.72682i 0.248455i
\(226\) 0 0
\(227\) 16.3314 6.76468i 1.08395 0.448988i 0.232058 0.972702i \(-0.425454\pi\)
0.851894 + 0.523714i \(0.175454\pi\)
\(228\) 0 0
\(229\) 7.16062 + 7.16062i 0.473187 + 0.473187i 0.902944 0.429757i \(-0.141401\pi\)
−0.429757 + 0.902944i \(0.641401\pi\)
\(230\) 0 0
\(231\) −4.84404 11.6945i −0.318714 0.769444i
\(232\) 0 0
\(233\) 5.73036 13.8343i 0.375408 0.906316i −0.617405 0.786645i \(-0.711816\pi\)
0.992814 0.119671i \(-0.0381839\pi\)
\(234\) 0 0
\(235\) −5.17828 2.14491i −0.337794 0.139919i
\(236\) 0 0
\(237\) −8.83145 −0.573664
\(238\) 0 0
\(239\) 9.90412 0.640644 0.320322 0.947309i \(-0.396209\pi\)
0.320322 + 0.947309i \(0.396209\pi\)
\(240\) 0 0
\(241\) −8.84148 3.66226i −0.569530 0.235907i 0.0792868 0.996852i \(-0.474736\pi\)
−0.648816 + 0.760945i \(0.724736\pi\)
\(242\) 0 0
\(243\) −0.382683 + 0.923880i −0.0245492 + 0.0592669i
\(244\) 0 0
\(245\) 0.968113 + 2.33723i 0.0618505 + 0.149320i
\(246\) 0 0
\(247\) 10.7530 + 10.7530i 0.684196 + 0.684196i
\(248\) 0 0
\(249\) −13.2317 + 5.48077i −0.838528 + 0.347330i
\(250\) 0 0
\(251\) 12.0900i 0.763116i −0.924345 0.381558i \(-0.875388\pi\)
0.924345 0.381558i \(-0.124612\pi\)
\(252\) 0 0
\(253\) −19.2284 + 19.2284i −1.20888 + 1.20888i
\(254\) 0 0
\(255\) −4.45885 1.32768i −0.279224 0.0831428i
\(256\) 0 0
\(257\) −16.4018 + 16.4018i −1.02312 + 1.02312i −0.0233904 + 0.999726i \(0.507446\pi\)
−0.999726 + 0.0233904i \(0.992554\pi\)
\(258\) 0 0
\(259\) 1.06488i 0.0661683i
\(260\) 0 0
\(261\) −6.58121 + 2.72602i −0.407366 + 0.168737i
\(262\) 0 0
\(263\) 0.538629 + 0.538629i 0.0332133 + 0.0332133i 0.723518 0.690305i \(-0.242524\pi\)
−0.690305 + 0.723518i \(0.742524\pi\)
\(264\) 0 0
\(265\) 4.35818 + 10.5216i 0.267721 + 0.646335i
\(266\) 0 0
\(267\) 0.702996 1.69718i 0.0430226 0.103866i
\(268\) 0 0
\(269\) 20.5129 + 8.49673i 1.25069 + 0.518054i 0.907041 0.421042i \(-0.138336\pi\)
0.343653 + 0.939097i \(0.388336\pi\)
\(270\) 0 0
\(271\) 11.8379 0.719098 0.359549 0.933126i \(-0.382930\pi\)
0.359549 + 0.933126i \(0.382930\pi\)
\(272\) 0 0
\(273\) 5.66099 0.342619
\(274\) 0 0
\(275\) 14.3363 + 5.93830i 0.864513 + 0.358093i
\(276\) 0 0
\(277\) 7.20492 17.3942i 0.432902 1.04512i −0.545445 0.838146i \(-0.683640\pi\)
0.978347 0.206971i \(-0.0663605\pi\)
\(278\) 0 0
\(279\) 3.19698 + 7.71819i 0.191398 + 0.462076i
\(280\) 0 0
\(281\) 16.6652 + 16.6652i 0.994164 + 0.994164i 0.999983 0.00581906i \(-0.00185228\pi\)
−0.00581906 + 0.999983i \(0.501852\pi\)
\(282\) 0 0
\(283\) 2.63035 1.08953i 0.156358 0.0647657i −0.303132 0.952949i \(-0.598032\pi\)
0.459490 + 0.888183i \(0.348032\pi\)
\(284\) 0 0
\(285\) 9.21468i 0.545830i
\(286\) 0 0
\(287\) 7.90255 7.90255i 0.466473 0.466473i
\(288\) 0 0
\(289\) −9.29945 + 14.2310i −0.547027 + 0.837115i
\(290\) 0 0
\(291\) −8.80901 + 8.80901i −0.516394 + 0.516394i
\(292\) 0 0
\(293\) 25.7688i 1.50543i −0.658347 0.752715i \(-0.728744\pi\)
0.658347 0.752715i \(-0.271256\pi\)
\(294\) 0 0
\(295\) 0.0314041 0.0130080i 0.00182842 0.000757355i
\(296\) 0 0
\(297\) 2.94421 + 2.94421i 0.170841 + 0.170841i
\(298\) 0 0
\(299\) −4.65396 11.2356i −0.269145 0.649774i
\(300\) 0 0
\(301\) −11.0402 + 26.6534i −0.636347 + 1.53628i
\(302\) 0 0
\(303\) −3.50491 1.45178i −0.201352 0.0834027i
\(304\) 0 0
\(305\) 4.91350 0.281346
\(306\) 0 0
\(307\) −34.5396 −1.97128 −0.985640 0.168859i \(-0.945992\pi\)
−0.985640 + 0.168859i \(0.945992\pi\)
\(308\) 0 0
\(309\) 15.2203 + 6.30445i 0.865852 + 0.358648i
\(310\) 0 0
\(311\) −3.72089 + 8.98301i −0.210992 + 0.509380i −0.993576 0.113165i \(-0.963901\pi\)
0.782584 + 0.622545i \(0.213901\pi\)
\(312\) 0 0
\(313\) −3.26511 7.88267i −0.184555 0.445555i 0.804340 0.594169i \(-0.202519\pi\)
−0.988895 + 0.148614i \(0.952519\pi\)
\(314\) 0 0
\(315\) −2.42557 2.42557i −0.136665 0.136665i
\(316\) 0 0
\(317\) −25.8225 + 10.6960i −1.45034 + 0.600749i −0.962280 0.272063i \(-0.912294\pi\)
−0.488057 + 0.872812i \(0.662294\pi\)
\(318\) 0 0
\(319\) 29.6602i 1.66065i
\(320\) 0 0
\(321\) −6.55297 + 6.55297i −0.365751 + 0.365751i
\(322\) 0 0
\(323\) −32.2710 9.60915i −1.79561 0.534667i
\(324\) 0 0
\(325\) −4.90718 + 4.90718i −0.272201 + 0.272201i
\(326\) 0 0
\(327\) 10.4061i 0.575459i
\(328\) 0 0
\(329\) −13.9516 + 5.77895i −0.769177 + 0.318604i
\(330\) 0 0
\(331\) −19.0787 19.0787i −1.04866 1.04866i −0.998754 0.0499053i \(-0.984108\pi\)
−0.0499053 0.998754i \(-0.515892\pi\)
\(332\) 0 0
\(333\) 0.134047 + 0.323617i 0.00734571 + 0.0177341i
\(334\) 0 0
\(335\) 2.46273 5.94556i 0.134553 0.324841i
\(336\) 0 0
\(337\) 1.14872 + 0.475815i 0.0625747 + 0.0259193i 0.413751 0.910390i \(-0.364218\pi\)
−0.351177 + 0.936309i \(0.614218\pi\)
\(338\) 0 0
\(339\) 6.52751 0.354526
\(340\) 0 0
\(341\) 34.7844 1.88368
\(342\) 0 0
\(343\) −13.3635 5.53535i −0.721562 0.298881i
\(344\) 0 0
\(345\) −2.82006 + 6.80823i −0.151827 + 0.366543i
\(346\) 0 0
\(347\) 3.21081 + 7.75158i 0.172365 + 0.416127i 0.986329 0.164789i \(-0.0526944\pi\)
−0.813963 + 0.580916i \(0.802694\pi\)
\(348\) 0 0
\(349\) −21.0987 21.0987i −1.12939 1.12939i −0.990277 0.139109i \(-0.955576\pi\)
−0.139109 0.990277i \(-0.544424\pi\)
\(350\) 0 0
\(351\) −1.72038 + 0.712604i −0.0918270 + 0.0380360i
\(352\) 0 0
\(353\) 28.4992i 1.51686i 0.651756 + 0.758429i \(0.274033\pi\)
−0.651756 + 0.758429i \(0.725967\pi\)
\(354\) 0 0
\(355\) −3.44285 + 3.44285i −0.182728 + 0.182728i
\(356\) 0 0
\(357\) −11.0241 + 5.96526i −0.583456 + 0.315715i
\(358\) 0 0
\(359\) 0.256594 0.256594i 0.0135425 0.0135425i −0.700303 0.713846i \(-0.746952\pi\)
0.713846 + 0.700303i \(0.246952\pi\)
\(360\) 0 0
\(361\) 47.6915i 2.51008i
\(362\) 0 0
\(363\) 5.85441 2.42498i 0.307277 0.127278i
\(364\) 0 0
\(365\) 6.78092 + 6.78092i 0.354929 + 0.354929i
\(366\) 0 0
\(367\) −1.52402 3.67930i −0.0795530 0.192058i 0.879099 0.476640i \(-0.158145\pi\)
−0.958652 + 0.284582i \(0.908145\pi\)
\(368\) 0 0
\(369\) −1.40682 + 3.39636i −0.0732361 + 0.176808i
\(370\) 0 0
\(371\) 28.3478 + 11.7420i 1.47174 + 0.609616i
\(372\) 0 0
\(373\) 28.5676 1.47918 0.739588 0.673060i \(-0.235020\pi\)
0.739588 + 0.673060i \(0.235020\pi\)
\(374\) 0 0
\(375\) 9.84693 0.508493
\(376\) 0 0
\(377\) −12.2550 5.07620i −0.631166 0.261437i
\(378\) 0 0
\(379\) 0.807955 1.95058i 0.0415018 0.100194i −0.901769 0.432218i \(-0.857731\pi\)
0.943271 + 0.332023i \(0.107731\pi\)
\(380\) 0 0
\(381\) 1.38117 + 3.33443i 0.0707593 + 0.170828i
\(382\) 0 0
\(383\) −18.4619 18.4619i −0.943358 0.943358i 0.0551214 0.998480i \(-0.482445\pi\)
−0.998480 + 0.0551214i \(0.982445\pi\)
\(384\) 0 0
\(385\) −13.1956 + 5.46578i −0.672508 + 0.278562i
\(386\) 0 0
\(387\) 9.48973i 0.482390i
\(388\) 0 0
\(389\) −10.8944 + 10.8944i −0.552366 + 0.552366i −0.927123 0.374757i \(-0.877726\pi\)
0.374757 + 0.927123i \(0.377726\pi\)
\(390\) 0 0
\(391\) 20.9025 + 16.9759i 1.05709 + 0.858509i
\(392\) 0 0
\(393\) −8.85502 + 8.85502i −0.446677 + 0.446677i
\(394\) 0 0
\(395\) 9.96499i 0.501393i
\(396\) 0 0
\(397\) −10.9520 + 4.53647i −0.549666 + 0.227679i −0.640192 0.768215i \(-0.721145\pi\)
0.0905259 + 0.995894i \(0.471145\pi\)
\(398\) 0 0
\(399\) −17.5551 17.5551i −0.878855 0.878855i
\(400\) 0 0
\(401\) 6.13786 + 14.8181i 0.306510 + 0.739980i 0.999813 + 0.0193343i \(0.00615469\pi\)
−0.693303 + 0.720646i \(0.743845\pi\)
\(402\) 0 0
\(403\) −5.95317 + 14.3722i −0.296549 + 0.715932i
\(404\) 0 0
\(405\) 1.04246 + 0.431802i 0.0518004 + 0.0214564i
\(406\) 0 0
\(407\) 1.45848 0.0722941
\(408\) 0 0
\(409\) 12.9679 0.641222 0.320611 0.947211i \(-0.396112\pi\)
0.320611 + 0.947211i \(0.396112\pi\)
\(410\) 0 0
\(411\) 6.42847 + 2.66276i 0.317093 + 0.131344i
\(412\) 0 0
\(413\) 0.0350469 0.0846107i 0.00172454 0.00416342i
\(414\) 0 0
\(415\) 6.18424 + 14.9301i 0.303573 + 0.732889i
\(416\) 0 0
\(417\) −11.7502 11.7502i −0.575411 0.575411i
\(418\) 0 0
\(419\) −5.31947 + 2.20340i −0.259873 + 0.107643i −0.508816 0.860875i \(-0.669917\pi\)
0.248943 + 0.968518i \(0.419917\pi\)
\(420\) 0 0
\(421\) 7.37021i 0.359202i 0.983740 + 0.179601i \(0.0574807\pi\)
−0.983740 + 0.179601i \(0.942519\pi\)
\(422\) 0 0
\(423\) 3.51245 3.51245i 0.170781 0.170781i
\(424\) 0 0
\(425\) 4.38519 14.7271i 0.212713 0.714367i
\(426\) 0 0
\(427\) 9.36084 9.36084i 0.453003 0.453003i
\(428\) 0 0
\(429\) 7.75341i 0.374338i
\(430\) 0 0
\(431\) −5.61283 + 2.32491i −0.270361 + 0.111987i −0.513745 0.857943i \(-0.671742\pi\)
0.243385 + 0.969930i \(0.421742\pi\)
\(432\) 0 0
\(433\) 24.3577 + 24.3577i 1.17056 + 1.17056i 0.982077 + 0.188478i \(0.0603554\pi\)
0.188478 + 0.982077i \(0.439645\pi\)
\(434\) 0 0
\(435\) 3.07592 + 7.42592i 0.147479 + 0.356046i
\(436\) 0 0
\(437\) −20.4103 + 49.2748i −0.976356 + 2.35713i
\(438\) 0 0
\(439\) −37.1481 15.3872i −1.77298 0.734392i −0.994256 0.107026i \(-0.965867\pi\)
−0.778724 0.627367i \(-0.784133\pi\)
\(440\) 0 0
\(441\) −2.24203 −0.106763
\(442\) 0 0
\(443\) −12.5677 −0.597111 −0.298556 0.954392i \(-0.596505\pi\)
−0.298556 + 0.954392i \(0.596505\pi\)
\(444\) 0 0
\(445\) −1.91502 0.793227i −0.0907807 0.0376026i
\(446\) 0 0
\(447\) 5.05286 12.1987i 0.238992 0.576978i
\(448\) 0 0
\(449\) −11.6152 28.0416i −0.548156 1.32337i −0.918848 0.394611i \(-0.870879\pi\)
0.370692 0.928756i \(-0.379121\pi\)
\(450\) 0 0
\(451\) 10.8235 + 10.8235i 0.509659 + 0.509659i
\(452\) 0 0
\(453\) 3.46674 1.43597i 0.162882 0.0674677i
\(454\) 0 0
\(455\) 6.38759i 0.299455i
\(456\) 0 0
\(457\) −25.4059 + 25.4059i −1.18844 + 1.18844i −0.210939 + 0.977499i \(0.567652\pi\)
−0.977499 + 0.210939i \(0.932348\pi\)
\(458\) 0 0
\(459\) 2.59932 3.20055i 0.121326 0.149389i
\(460\) 0 0
\(461\) 6.83520 6.83520i 0.318347 0.318347i −0.529785 0.848132i \(-0.677727\pi\)
0.848132 + 0.529785i \(0.177727\pi\)
\(462\) 0 0
\(463\) 19.7693i 0.918758i −0.888240 0.459379i \(-0.848072\pi\)
0.888240 0.459379i \(-0.151928\pi\)
\(464\) 0 0
\(465\) 8.70884 3.60732i 0.403863 0.167286i
\(466\) 0 0
\(467\) 7.85421 + 7.85421i 0.363450 + 0.363450i 0.865081 0.501632i \(-0.167267\pi\)
−0.501632 + 0.865081i \(0.667267\pi\)
\(468\) 0 0
\(469\) −6.63523 16.0189i −0.306386 0.739682i
\(470\) 0 0
\(471\) −3.70763 + 8.95102i −0.170839 + 0.412441i
\(472\) 0 0
\(473\) −36.5051 15.1209i −1.67851 0.695260i
\(474\) 0 0
\(475\) 30.4350 1.39645
\(476\) 0 0
\(477\) −10.0930 −0.462127
\(478\) 0 0
\(479\) −12.3588 5.11917i −0.564686 0.233901i 0.0820320 0.996630i \(-0.473859\pi\)
−0.646718 + 0.762729i \(0.723859\pi\)
\(480\) 0 0
\(481\) −0.249612 + 0.602616i −0.0113813 + 0.0274769i
\(482\) 0 0
\(483\) 7.59797 + 18.3431i 0.345719 + 0.834640i
\(484\) 0 0
\(485\) 9.93968 + 9.93968i 0.451338 + 0.451338i
\(486\) 0 0
\(487\) 7.07504 2.93058i 0.320601 0.132797i −0.216579 0.976265i \(-0.569490\pi\)
0.537179 + 0.843468i \(0.319490\pi\)
\(488\) 0 0
\(489\) 3.40920i 0.154169i
\(490\) 0 0
\(491\) 29.4129 29.4129i 1.32739 1.32739i 0.419743 0.907643i \(-0.362120\pi\)
0.907643 0.419743i \(-0.137880\pi\)
\(492\) 0 0
\(493\) 29.2142 3.02846i 1.31574 0.136395i
\(494\) 0 0
\(495\) 3.32211 3.32211i 0.149318 0.149318i
\(496\) 0 0
\(497\) 13.1181i 0.588429i
\(498\) 0 0
\(499\) −39.9562 + 16.5504i −1.78869 + 0.740898i −0.798352 + 0.602190i \(0.794295\pi\)
−0.990333 + 0.138707i \(0.955705\pi\)
\(500\) 0 0
\(501\) 10.7211 + 10.7211i 0.478982 + 0.478982i
\(502\) 0 0
\(503\) −6.36358 15.3630i −0.283738 0.685004i 0.716179 0.697917i \(-0.245890\pi\)
−0.999917 + 0.0129131i \(0.995890\pi\)
\(504\) 0 0
\(505\) −1.63812 + 3.95478i −0.0728955 + 0.175985i
\(506\) 0 0
\(507\) 8.80688 + 3.64793i 0.391127 + 0.162010i
\(508\) 0 0
\(509\) −6.81530 −0.302083 −0.151041 0.988527i \(-0.548263\pi\)
−0.151041 + 0.988527i \(0.548263\pi\)
\(510\) 0 0
\(511\) 25.8370 1.14296
\(512\) 0 0
\(513\) 7.54485 + 3.12518i 0.333113 + 0.137980i
\(514\) 0 0
\(515\) 7.11364 17.1739i 0.313465 0.756771i
\(516\) 0 0
\(517\) −7.91496 19.1084i −0.348100 0.840387i
\(518\) 0 0
\(519\) −10.2605 10.2605i −0.450385 0.450385i
\(520\) 0 0
\(521\) −28.0793 + 11.6308i −1.23017 + 0.509555i −0.900631 0.434585i \(-0.856895\pi\)
−0.329544 + 0.944140i \(0.606895\pi\)
\(522\) 0 0
\(523\) 3.84347i 0.168063i −0.996463 0.0840316i \(-0.973220\pi\)
0.996463 0.0840316i \(-0.0267797\pi\)
\(524\) 0 0
\(525\) 8.01137 8.01137i 0.349645 0.349645i
\(526\) 0 0
\(527\) −3.55166 34.2613i −0.154713 1.49244i
\(528\) 0 0
\(529\) 13.8967 13.8967i 0.604202 0.604202i
\(530\) 0 0
\(531\) 0.0301249i 0.00130731i
\(532\) 0 0
\(533\) −6.32445 + 2.61967i −0.273942 + 0.113471i
\(534\) 0 0
\(535\) 7.39406 + 7.39406i 0.319673 + 0.319673i
\(536\) 0 0
\(537\) 1.95768 + 4.72625i 0.0844801 + 0.203953i
\(538\) 0 0
\(539\) −3.57244 + 8.62464i −0.153876 + 0.371489i
\(540\) 0 0
\(541\) 11.0504 + 4.57722i 0.475093 + 0.196790i 0.607364 0.794424i \(-0.292227\pi\)
−0.132271 + 0.991214i \(0.542227\pi\)
\(542\) 0 0
\(543\) 4.32737 0.185705
\(544\) 0 0
\(545\) −11.7418 −0.502962
\(546\) 0 0
\(547\) −30.7478 12.7362i −1.31468 0.544559i −0.388435 0.921476i \(-0.626984\pi\)
−0.926247 + 0.376917i \(0.876984\pi\)
\(548\) 0 0
\(549\) −1.66642 + 4.02310i −0.0711213 + 0.171702i
\(550\) 0 0
\(551\) 22.2620 + 53.7453i 0.948395 + 2.28963i
\(552\) 0 0
\(553\) 18.9846 + 18.9846i 0.807306 + 0.807306i
\(554\) 0 0
\(555\) 0.365154 0.151252i 0.0154999 0.00642029i
\(556\) 0 0
\(557\) 13.0840i 0.554389i −0.960814 0.277194i \(-0.910595\pi\)
0.960814 0.277194i \(-0.0894046\pi\)
\(558\) 0 0
\(559\) 12.4953 12.4953i 0.528496 0.528496i
\(560\) 0 0
\(561\) −8.17015 15.0988i −0.344944 0.637472i
\(562\) 0 0
\(563\) −4.54370 + 4.54370i −0.191494 + 0.191494i −0.796341 0.604847i \(-0.793234\pi\)
0.604847 + 0.796341i \(0.293234\pi\)
\(564\) 0 0
\(565\) 7.36533i 0.309862i
\(566\) 0 0
\(567\) 2.80866 1.16338i 0.117953 0.0488576i
\(568\) 0 0
\(569\) 8.58835 + 8.58835i 0.360043 + 0.360043i 0.863828 0.503786i \(-0.168060\pi\)
−0.503786 + 0.863828i \(0.668060\pi\)
\(570\) 0 0
\(571\) −3.61810 8.73487i −0.151413 0.365543i 0.829914 0.557892i \(-0.188390\pi\)
−0.981327 + 0.192349i \(0.938390\pi\)
\(572\) 0 0
\(573\) 5.23918 12.6485i 0.218870 0.528398i
\(574\) 0 0
\(575\) −22.4868 9.31434i −0.937764 0.388435i
\(576\) 0 0
\(577\) −27.5966 −1.14886 −0.574432 0.818552i \(-0.694777\pi\)
−0.574432 + 0.818552i \(0.694777\pi\)
\(578\) 0 0
\(579\) 17.2997 0.718951
\(580\) 0 0
\(581\) 40.2255 + 16.6619i 1.66883 + 0.691253i
\(582\) 0 0
\(583\) −16.0821 + 38.8257i −0.666054 + 1.60800i
\(584\) 0 0
\(585\) 0.804069 + 1.94119i 0.0332442 + 0.0802585i
\(586\) 0 0
\(587\) −25.8311 25.8311i −1.06616 1.06616i −0.997650 0.0685130i \(-0.978175\pi\)
−0.0685130 0.997650i \(-0.521825\pi\)
\(588\) 0 0
\(589\) 63.0305 26.1081i 2.59713 1.07576i
\(590\) 0 0
\(591\) 5.16644i 0.212519i
\(592\) 0 0
\(593\) 14.0302 14.0302i 0.576153 0.576153i −0.357688 0.933841i \(-0.616435\pi\)
0.933841 + 0.357688i \(0.116435\pi\)
\(594\) 0 0
\(595\) 6.73092 + 12.4390i 0.275941 + 0.509951i
\(596\) 0 0
\(597\) −18.0450 + 18.0450i −0.738532 + 0.738532i
\(598\) 0 0
\(599\) 3.58892i 0.146639i −0.997308 0.0733197i \(-0.976641\pi\)
0.997308 0.0733197i \(-0.0233593\pi\)
\(600\) 0 0
\(601\) 16.7615 6.94283i 0.683715 0.283204i −0.0136638 0.999907i \(-0.504349\pi\)
0.697379 + 0.716703i \(0.254349\pi\)
\(602\) 0 0
\(603\) 4.03290 + 4.03290i 0.164232 + 0.164232i
\(604\) 0 0
\(605\) −2.73623 6.60584i −0.111244 0.268566i
\(606\) 0 0
\(607\) −2.35548 + 5.68663i −0.0956060 + 0.230813i −0.964446 0.264279i \(-0.914866\pi\)
0.868840 + 0.495093i \(0.164866\pi\)
\(608\) 0 0
\(609\) 20.0073 + 8.28731i 0.810738 + 0.335819i
\(610\) 0 0
\(611\) 9.24983 0.374208
\(612\) 0 0
\(613\) 29.6968 1.19944 0.599721 0.800209i \(-0.295278\pi\)
0.599721 + 0.800209i \(0.295278\pi\)
\(614\) 0 0
\(615\) 3.83229 + 1.58739i 0.154533 + 0.0640097i
\(616\) 0 0
\(617\) −2.30270 + 5.55921i −0.0927033 + 0.223806i −0.963429 0.267963i \(-0.913649\pi\)
0.870726 + 0.491769i \(0.163649\pi\)
\(618\) 0 0
\(619\) −5.36614 12.9550i −0.215683 0.520706i 0.778595 0.627527i \(-0.215933\pi\)
−0.994278 + 0.106821i \(0.965933\pi\)
\(620\) 0 0
\(621\) −4.61805 4.61805i −0.185316 0.185316i
\(622\) 0 0
\(623\) −5.15955 + 2.13716i −0.206713 + 0.0856234i
\(624\) 0 0
\(625\) 7.52328i 0.300931i
\(626\) 0 0
\(627\) 24.0439 24.0439i 0.960219 0.960219i
\(628\) 0 0
\(629\) −0.148918 1.43655i −0.00593775 0.0572789i
\(630\) 0 0
\(631\) −0.675270 + 0.675270i −0.0268821 + 0.0268821i −0.720420 0.693538i \(-0.756051\pi\)
0.693538 + 0.720420i \(0.256051\pi\)
\(632\) 0 0
\(633\) 9.89308i 0.393215i
\(634\) 0 0
\(635\) 3.76242 1.55844i 0.149307 0.0618450i
\(636\) 0 0
\(637\) −2.95213 2.95213i −0.116968 0.116968i
\(638\) 0 0
\(639\) −1.65131 3.98661i −0.0653247 0.157708i
\(640\) 0 0
\(641\) 9.44907 22.8121i 0.373216 0.901023i −0.619986 0.784613i \(-0.712862\pi\)
0.993201 0.116409i \(-0.0371384\pi\)
\(642\) 0 0
\(643\) 22.5279 + 9.33134i 0.888412 + 0.367992i 0.779753 0.626087i \(-0.215344\pi\)
0.108659 + 0.994079i \(0.465344\pi\)
\(644\) 0 0
\(645\) −10.7078 −0.421618
\(646\) 0 0
\(647\) −14.0125 −0.550889 −0.275444 0.961317i \(-0.588825\pi\)
−0.275444 + 0.961317i \(0.588825\pi\)
\(648\) 0 0
\(649\) 0.115885 + 0.0480009i 0.00454887 + 0.00188420i
\(650\) 0 0
\(651\) 9.71904 23.4638i 0.380919 0.919621i
\(652\) 0 0
\(653\) 6.66788 + 16.0977i 0.260934 + 0.629952i 0.998997 0.0447809i \(-0.0142590\pi\)
−0.738062 + 0.674733i \(0.764259\pi\)
\(654\) 0 0
\(655\) 9.99159 + 9.99159i 0.390404 + 0.390404i
\(656\) 0 0
\(657\) −7.85188 + 3.25236i −0.306331 + 0.126886i
\(658\) 0 0
\(659\) 5.78554i 0.225373i 0.993631 + 0.112686i \(0.0359455\pi\)
−0.993631 + 0.112686i \(0.964054\pi\)
\(660\) 0 0
\(661\) 1.07951 1.07951i 0.0419881 0.0419881i −0.685801 0.727789i \(-0.740548\pi\)
0.727789 + 0.685801i \(0.240548\pi\)
\(662\) 0 0
\(663\) 7.63681 0.791662i 0.296589 0.0307456i
\(664\) 0 0
\(665\) −19.8084 + 19.8084i −0.768136 + 0.768136i
\(666\) 0 0
\(667\) 46.5226i 1.80136i
\(668\) 0 0
\(669\) 19.6640 8.14509i 0.760253 0.314907i
\(670\) 0 0
\(671\) 12.8208 + 12.8208i 0.494941 + 0.494941i
\(672\) 0 0
\(673\) −15.5659 37.5795i −0.600023 1.44858i −0.873557 0.486721i \(-0.838193\pi\)
0.273535 0.961862i \(-0.411807\pi\)
\(674\) 0 0
\(675\) −1.42619 + 3.44313i −0.0548942 + 0.132526i
\(676\) 0 0
\(677\) −11.7647 4.87309i −0.452153 0.187288i 0.144973 0.989436i \(-0.453691\pi\)
−0.597126 + 0.802148i \(0.703691\pi\)
\(678\) 0 0
\(679\) 37.8727 1.45342
\(680\) 0 0
\(681\) 17.6770 0.677383
\(682\) 0 0
\(683\) −9.56229 3.96083i −0.365891 0.151557i 0.192160 0.981364i \(-0.438451\pi\)
−0.558051 + 0.829807i \(0.688451\pi\)
\(684\) 0 0
\(685\) 3.00453 7.25359i 0.114797 0.277145i
\(686\) 0 0
\(687\) 3.87530 + 9.35580i 0.147852 + 0.356946i
\(688\) 0 0
\(689\) −13.2897 13.2897i −0.506296 0.506296i
\(690\) 0 0
\(691\) 3.77755 1.56471i 0.143705 0.0595245i −0.309672 0.950843i \(-0.600219\pi\)
0.453377 + 0.891319i \(0.350219\pi\)
\(692\) 0 0
\(693\) 12.6581i 0.480841i
\(694\) 0 0
\(695\) −13.2584 + 13.2584i −0.502920 + 0.502920i
\(696\) 0 0
\(697\) 9.55560 11.7659i 0.361944 0.445664i
\(698\) 0 0
\(699\) 10.5883 10.5883i 0.400487 0.400487i
\(700\) 0 0
\(701\) 34.7020i 1.31068i −0.755336 0.655338i \(-0.772526\pi\)
0.755336 0.655338i \(-0.227474\pi\)
\(702\) 0 0
\(703\) 2.64282 1.09469i 0.0996757 0.0412870i
\(704\) 0 0
\(705\) −3.96328 3.96328i −0.149266 0.149266i
\(706\) 0 0
\(707\) 4.41352 + 10.6552i 0.165988 + 0.400729i
\(708\) 0 0
\(709\) 5.14435 12.4195i 0.193200 0.466426i −0.797360 0.603503i \(-0.793771\pi\)
0.990560 + 0.137078i \(0.0437709\pi\)
\(710\) 0 0
\(711\) −8.15920 3.37965i −0.305994 0.126747i
\(712\) 0 0
\(713\) −54.5600 −2.04329
\(714\) 0 0
\(715\) 8.74858 0.327178
\(716\) 0 0
\(717\) 9.15022 + 3.79014i 0.341721 + 0.141546i
\(718\) 0 0
\(719\) −14.8983 + 35.9677i −0.555613 + 1.34137i 0.357596 + 0.933876i \(0.383597\pi\)
−0.913209 + 0.407492i \(0.866403\pi\)
\(720\) 0 0
\(721\) −19.1660 46.2707i −0.713778 1.72321i
\(722\) 0 0
\(723\) −6.76697 6.76697i −0.251666 0.251666i
\(724\) 0 0
\(725\) −24.5270 + 10.1594i −0.910909 + 0.377311i
\(726\) 0 0
\(727\) 18.9158i 0.701549i 0.936460 + 0.350775i \(0.114082\pi\)
−0.936460 + 0.350775i \(0.885918\pi\)
\(728\) 0 0
\(729\) −0.707107 + 0.707107i −0.0261891 + 0.0261891i
\(730\) 0 0
\(731\) −11.1662 + 37.5000i −0.412995 + 1.38699i
\(732\) 0 0
\(733\) 11.8968 11.8968i 0.439419 0.439419i −0.452397 0.891817i \(-0.649431\pi\)
0.891817 + 0.452397i \(0.149431\pi\)
\(734\) 0 0
\(735\) 2.52980i 0.0933131i
\(736\) 0 0
\(737\) 21.9398 9.08775i 0.808162 0.334751i
\(738\) 0 0
\(739\) −2.89713 2.89713i −0.106573 0.106573i 0.651810 0.758382i \(-0.274010\pi\)
−0.758382 + 0.651810i \(0.774010\pi\)
\(740\) 0 0
\(741\) 5.81947 + 14.0494i 0.213784 + 0.516119i
\(742\) 0 0
\(743\) 8.78506 21.2090i 0.322292 0.778083i −0.676828 0.736142i \(-0.736646\pi\)
0.999120 0.0419412i \(-0.0133542\pi\)
\(744\) 0 0
\(745\) −13.7644 5.70141i −0.504289 0.208884i
\(746\) 0 0
\(747\) −14.3219 −0.524012
\(748\) 0 0
\(749\) 28.1732 1.02943
\(750\) 0 0
\(751\) −13.5006 5.59214i −0.492644 0.204060i 0.122509 0.992467i \(-0.460906\pi\)
−0.615153 + 0.788407i \(0.710906\pi\)
\(752\) 0 0
\(753\) 4.62665 11.1697i 0.168605 0.407047i
\(754\) 0 0
\(755\) −1.62028 3.91170i −0.0589681 0.142361i
\(756\) 0 0
\(757\) 23.6323 + 23.6323i 0.858932 + 0.858932i 0.991212 0.132281i \(-0.0422301\pi\)
−0.132281 + 0.991212i \(0.542230\pi\)
\(758\) 0 0
\(759\) −25.1231 + 10.4063i −0.911911 + 0.377726i
\(760\) 0 0
\(761\) 1.19606i 0.0433573i −0.999765 0.0216786i \(-0.993099\pi\)
0.999765 0.0216786i \(-0.00690106\pi\)
\(762\) 0 0
\(763\) −22.3695 + 22.3695i −0.809832 + 0.809832i
\(764\) 0 0
\(765\) −3.61136 2.93295i −0.130569 0.106041i
\(766\) 0 0
\(767\) −0.0396661 + 0.0396661i −0.00143226 + 0.00143226i
\(768\) 0 0
\(769\) 4.75309i 0.171401i 0.996321 + 0.0857004i \(0.0273128\pi\)
−0.996321 + 0.0857004i \(0.972687\pi\)
\(770\) 0 0
\(771\) −21.4300 + 8.87660i −0.771783 + 0.319683i
\(772\) 0 0
\(773\) −17.9671 17.9671i −0.646232 0.646232i 0.305849 0.952080i \(-0.401060\pi\)
−0.952080 + 0.305849i \(0.901060\pi\)
\(774\) 0 0
\(775\) 11.9146 + 28.7643i 0.427984 + 1.03324i
\(776\) 0 0
\(777\) 0.407511 0.983819i 0.0146194 0.0352943i
\(778\) 0 0
\(779\) 27.7363 + 11.4888i 0.993757 + 0.411628i
\(780\) 0 0
\(781\) −17.9669 −0.642905
\(782\) 0 0
\(783\) −7.12345 −0.254571
\(784\) 0 0
\(785\) 10.0999 + 4.18352i 0.360481 + 0.149316i
\(786\) 0 0
\(787\) −12.5428 + 30.2811i −0.447103 + 1.07940i 0.526299 + 0.850300i \(0.323579\pi\)
−0.973402 + 0.229103i \(0.926421\pi\)
\(788\) 0 0
\(789\) 0.291504 + 0.703753i 0.0103778 + 0.0250543i
\(790\) 0 0
\(791\) −14.0319 14.0319i −0.498917 0.498917i
\(792\) 0 0
\(793\) −7.49152 + 3.10309i −0.266032 + 0.110194i
\(794\) 0 0
\(795\) 11.3885i 0.403907i
\(796\) 0 0
\(797\) −24.6843 + 24.6843i −0.874362 + 0.874362i −0.992944 0.118583i \(-0.962165\pi\)
0.118583 + 0.992944i \(0.462165\pi\)
\(798\) 0 0
\(799\) −18.0129 + 9.74700i −0.637251 + 0.344824i
\(800\) 0 0
\(801\) 1.29897 1.29897i 0.0458967 0.0458967i
\(802\) 0 0
\(803\) 35.3869i 1.24878i
\(804\) 0 0
\(805\) 20.6975 8.57319i 0.729491 0.302165i
\(806\) 0 0
\(807\) 15.6999 + 15.6999i 0.552663 + 0.552663i
\(808\) 0 0
\(809\) 15.7969 + 38.1372i 0.555390 + 1.34083i 0.913381 + 0.407106i \(0.133462\pi\)
−0.357990 + 0.933725i \(0.616538\pi\)
\(810\) 0 0
\(811\) −6.61194 + 15.9626i −0.232176 + 0.560524i −0.996433 0.0843889i \(-0.973106\pi\)
0.764256 + 0.644913i \(0.223106\pi\)
\(812\) 0 0
\(813\) 10.9367 + 4.53015i 0.383569 + 0.158879i
\(814\) 0 0
\(815\) −3.84678 −0.134747
\(816\) 0 0
\(817\) −77.4978 −2.71130
\(818\) 0 0
\(819\) 5.23007 + 2.16637i 0.182754 + 0.0756990i
\(820\) 0 0
\(821\) 14.0626 33.9501i 0.490788 1.18487i −0.463532 0.886080i \(-0.653418\pi\)
0.954320 0.298787i \(-0.0965821\pi\)
\(822\) 0 0
\(823\) 7.79341 + 18.8150i 0.271661 + 0.655848i 0.999555 0.0298422i \(-0.00950048\pi\)
−0.727893 + 0.685690i \(0.759500\pi\)
\(824\) 0 0
\(825\) 10.9725 + 10.9725i 0.382015 + 0.382015i
\(826\) 0 0
\(827\) 29.0481 12.0321i 1.01010 0.418398i 0.184610 0.982812i \(-0.440898\pi\)
0.825492 + 0.564414i \(0.190898\pi\)
\(828\) 0 0
\(829\) 4.24281i 0.147359i −0.997282 0.0736794i \(-0.976526\pi\)
0.997282 0.0736794i \(-0.0234742\pi\)
\(830\) 0 0
\(831\) 13.3130 13.3130i 0.461821 0.461821i
\(832\) 0 0
\(833\) 8.85970 + 2.63810i 0.306970 + 0.0914047i
\(834\) 0 0
\(835\) 12.0971 12.0971i 0.418639 0.418639i
\(836\) 0 0
\(837\) 8.35411i 0.288760i
\(838\) 0 0
\(839\) 9.78940 4.05490i 0.337967 0.139991i −0.207244 0.978289i \(-0.566449\pi\)
0.545211 + 0.838299i \(0.316449\pi\)
\(840\) 0 0
\(841\) −15.3750 15.3750i −0.530171 0.530171i
\(842\) 0 0
\(843\) 9.01916 + 21.7742i 0.310636 + 0.749942i
\(844\) 0 0
\(845\) 4.11615 9.93726i 0.141600 0.341852i
\(846\) 0 0
\(847\) −17.7978 7.37210i −0.611540 0.253308i
\(848\) 0 0
\(849\) 2.84707 0.0977113
\(850\) 0 0
\(851\) −2.28765 −0.0784198
\(852\) 0 0
\(853\) −23.7180 9.82433i −0.812090 0.336379i −0.0623025 0.998057i \(-0.519844\pi\)
−0.749788 + 0.661679i \(0.769844\pi\)
\(854\) 0 0
\(855\) 3.52630 8.51325i 0.120597 0.291147i
\(856\) 0 0
\(857\) 1.45297 + 3.50777i 0.0496324 + 0.119823i 0.946751 0.321966i \(-0.104344\pi\)
−0.897119 + 0.441790i \(0.854344\pi\)
\(858\) 0 0
\(859\) 24.7280 + 24.7280i 0.843709 + 0.843709i 0.989339 0.145631i \(-0.0465211\pi\)
−0.145631 + 0.989339i \(0.546521\pi\)
\(860\) 0 0
\(861\) 10.3252 4.27683i 0.351881 0.145754i
\(862\) 0 0
\(863\) 13.1041i 0.446069i −0.974811 0.223035i \(-0.928404\pi\)
0.974811 0.223035i \(-0.0715963\pi\)
\(864\) 0 0
\(865\) −11.5774 + 11.5774i −0.393645 + 0.393645i
\(866\) 0 0
\(867\) −14.0375 + 9.58895i −0.476739 + 0.325658i
\(868\) 0 0
\(869\) −26.0017 + 26.0017i −0.882046 + 0.882046i
\(870\) 0 0
\(871\) 10.6204i 0.359859i
\(872\) 0 0
\(873\) −11.5095 + 4.76740i −0.389539 + 0.161352i
\(874\) 0 0
\(875\) −21.1675 21.1675i −0.715592 0.715592i
\(876\) 0 0
\(877\) 17.9543 + 43.3456i 0.606275 + 1.46368i 0.867022 + 0.498270i \(0.166031\pi\)
−0.260747 + 0.965407i \(0.583969\pi\)
\(878\) 0 0
\(879\) 9.86129 23.8073i 0.332613 0.802999i
\(880\) 0 0
\(881\) −5.25764 2.17779i −0.177134 0.0733715i 0.292354 0.956310i \(-0.405562\pi\)
−0.469488 + 0.882939i \(0.655562\pi\)
\(882\) 0 0
\(883\) −22.1929 −0.746851 −0.373426 0.927660i \(-0.621817\pi\)
−0.373426 + 0.927660i \(0.621817\pi\)
\(884\) 0 0
\(885\) 0.0339916 0.00114261
\(886\) 0 0
\(887\) −29.9326 12.3985i −1.00504 0.416301i −0.181397 0.983410i \(-0.558062\pi\)
−0.823643 + 0.567109i \(0.808062\pi\)
\(888\) 0 0
\(889\) 4.19885 10.1369i 0.140825 0.339981i
\(890\) 0 0
\(891\) 1.59340 + 3.84680i 0.0533808 + 0.128873i
\(892\) 0 0
\(893\) −28.6844 28.6844i −0.959886 0.959886i
\(894\) 0 0
\(895\) 5.33288 2.20895i 0.178259 0.0738371i
\(896\) 0 0
\(897\) 12.1614i 0.406056i
\(898\) 0 0
\(899\) −42.0800 + 42.0800i −1.40345 + 1.40345i
\(900\) 0 0
\(901\) 39.8839 + 11.8760i 1.32873 + 0.395647i
\(902\) 0 0
\(903\) −20.3996 + 20.3996i −0.678858 + 0.678858i
\(904\) 0 0
\(905\) 4.88280i 0.162310i
\(906\) 0 0
\(907\) −6.98093 + 2.89160i −0.231798 + 0.0960139i −0.495559 0.868574i \(-0.665037\pi\)
0.263761 + 0.964588i \(0.415037\pi\)
\(908\) 0 0
\(909\) −2.68254 2.68254i −0.0889744 0.0889744i
\(910\) 0 0
\(911\) −1.92896 4.65692i −0.0639093 0.154291i 0.888698 0.458492i \(-0.151610\pi\)
−0.952608 + 0.304202i \(0.901610\pi\)
\(912\) 0 0
\(913\) −22.8205 + 55.0936i −0.755249 + 1.82333i
\(914\) 0 0
\(915\) 4.53948 + 1.88031i 0.150071 + 0.0621613i
\(916\) 0 0
\(917\) 38.0705 1.25720
\(918\) 0 0
\(919\) −38.3451 −1.26489 −0.632444 0.774606i \(-0.717948\pi\)
−0.632444 + 0.774606i \(0.717948\pi\)
\(920\) 0 0
\(921\) −31.9105 13.2177i −1.05149 0.435539i
\(922\) 0 0
\(923\) 3.07494 7.42356i 0.101213 0.244350i
\(924\) 0 0
\(925\) 0.499568 + 1.20606i 0.0164257 + 0.0396551i
\(926\) 0 0
\(927\) 11.6491 + 11.6491i 0.382607 + 0.382607i
\(928\) 0 0
\(929\) −33.7519 + 13.9805i −1.10736 + 0.458685i −0.860029 0.510245i \(-0.829555\pi\)
−0.247335 + 0.968930i \(0.579555\pi\)
\(930\) 0 0
\(931\) 18.3095i 0.600070i
\(932\) 0 0
\(933\) −6.87530 + 6.87530i −0.225087 + 0.225087i
\(934\) 0 0
\(935\) −17.0368 + 9.21881i −0.557162 + 0.301487i
\(936\) 0 0
\(937\) 33.2508 33.2508i 1.08626 1.08626i 0.0903462 0.995910i \(-0.471203\pi\)
0.995910 0.0903462i \(-0.0287974\pi\)
\(938\) 0 0
\(939\) 8.53214i 0.278436i
\(940\) 0 0
\(941\) −9.34074 + 3.86906i −0.304500 + 0.126128i −0.529701 0.848184i \(-0.677696\pi\)
0.225202 + 0.974312i \(0.427696\pi\)
\(942\) 0 0
\(943\) −16.9769 16.9769i −0.552843 0.552843i
\(944\) 0 0
\(945\) −1.31271 3.16916i −0.0427024 0.103093i
\(946\) 0 0
\(947\) 19.5154 47.1142i 0.634164 1.53101i −0.200178 0.979760i \(-0.564152\pi\)
0.834342 0.551248i \(-0.185848\pi\)
\(948\) 0 0
\(949\) −14.6212 6.05629i −0.474624 0.196596i
\(950\) 0 0
\(951\) −27.9501 −0.906344
\(952\) 0 0
\(953\) 32.3984 1.04949 0.524743 0.851261i \(-0.324161\pi\)
0.524743 + 0.851261i \(0.324161\pi\)
\(954\) 0 0
\(955\) −14.2720 5.91164i −0.461830 0.191296i
\(956\) 0 0
\(957\) −11.3505 + 27.4025i −0.366909 + 0.885796i
\(958\) 0 0
\(959\) −8.09498 19.5430i −0.261400 0.631077i
\(960\) 0 0
\(961\) 27.4295 + 27.4295i 0.884822 + 0.884822i
\(962\) 0 0
\(963\) −8.56187 + 3.54644i −0.275902 + 0.114282i
\(964\) 0 0
\(965\) 19.5202i 0.628377i
\(966\) 0 0
\(967\) 26.2196 26.2196i 0.843166 0.843166i −0.146103 0.989269i \(-0.546673\pi\)
0.989269 + 0.146103i \(0.0466732\pi\)
\(968\) 0 0
\(969\) −26.1373 21.2273i −0.839651 0.681919i
\(970\) 0 0
\(971\) 9.14662 9.14662i 0.293529 0.293529i −0.544944 0.838473i \(-0.683449\pi\)
0.838473 + 0.544944i \(0.183449\pi\)
\(972\) 0 0
\(973\) 50.5179i 1.61953i
\(974\) 0 0
\(975\) −6.41154 + 2.65575i −0.205334 + 0.0850520i
\(976\) 0 0
\(977\) −25.9677 25.9677i −0.830779 0.830779i 0.156844 0.987623i \(-0.449868\pi\)
−0.987623 + 0.156844i \(0.949868\pi\)
\(978\) 0 0
\(979\) −2.92709 7.06663i −0.0935504 0.225851i
\(980\) 0 0
\(981\) 3.98225 9.61399i 0.127143 0.306951i
\(982\) 0 0
\(983\) 45.3866 + 18.7997i 1.44761 + 0.599618i 0.961629 0.274353i \(-0.0884638\pi\)
0.485977 + 0.873971i \(0.338464\pi\)
\(984\) 0 0
\(985\) −5.82956 −0.185745
\(986\) 0 0
\(987\) −15.1011 −0.480674
\(988\) 0 0
\(989\) 57.2589 + 23.7174i 1.82073 + 0.754170i
\(990\) 0 0
\(991\) 15.6480 37.7777i 0.497076 1.20005i −0.453975 0.891014i \(-0.649995\pi\)
0.951051 0.309033i \(-0.100005\pi\)
\(992\) 0 0
\(993\) −10.3253 24.9275i −0.327664 0.791050i
\(994\) 0 0
\(995\) 20.3611 + 20.3611i 0.645490 + 0.645490i
\(996\) 0 0
\(997\) 29.6933 12.2994i 0.940398 0.389525i 0.140784 0.990040i \(-0.455038\pi\)
0.799614 + 0.600515i \(0.205038\pi\)
\(998\) 0 0
\(999\) 0.350281i 0.0110824i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 408.2.ba.b.145.4 yes 16
3.2 odd 2 1224.2.bq.d.145.2 16
4.3 odd 2 816.2.bq.e.145.2 16
17.2 even 8 inner 408.2.ba.b.121.4 16
17.6 odd 16 6936.2.a.bn.1.4 8
17.11 odd 16 6936.2.a.bm.1.5 8
51.2 odd 8 1224.2.bq.d.937.2 16
68.19 odd 8 816.2.bq.e.529.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.ba.b.121.4 16 17.2 even 8 inner
408.2.ba.b.145.4 yes 16 1.1 even 1 trivial
816.2.bq.e.145.2 16 4.3 odd 2
816.2.bq.e.529.2 16 68.19 odd 8
1224.2.bq.d.145.2 16 3.2 odd 2
1224.2.bq.d.937.2 16 51.2 odd 8
6936.2.a.bm.1.5 8 17.11 odd 16
6936.2.a.bn.1.4 8 17.6 odd 16