L(s) = 1 | + (0.923 + 0.382i)3-s + (0.431 − 1.04i)5-s + (−1.16 − 2.80i)7-s + (0.707 + 0.707i)9-s + (3.84 − 1.59i)11-s + 1.86i·13-s + (0.797 − 0.797i)15-s + (−1.96 − 3.62i)17-s + (5.77 − 5.77i)19-s − 3.04i·21-s + (−6.03 + 2.49i)23-s + (2.63 + 2.63i)25-s + (0.382 + 0.923i)27-s + (−2.72 + 6.58i)29-s + (7.71 + 3.19i)31-s + ⋯ |
L(s) = 1 | + (0.533 + 0.220i)3-s + (0.193 − 0.466i)5-s + (−0.439 − 1.06i)7-s + (0.235 + 0.235i)9-s + (1.15 − 0.480i)11-s + 0.516i·13-s + (0.206 − 0.206i)15-s + (−0.475 − 0.879i)17-s + (1.32 − 1.32i)19-s − 0.663i·21-s + (−1.25 + 0.521i)23-s + (0.527 + 0.527i)25-s + (0.0736 + 0.177i)27-s + (−0.506 + 1.22i)29-s + (1.38 + 0.574i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.804 + 0.593i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.804 + 0.593i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.59334 - 0.524105i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.59334 - 0.524105i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.923 - 0.382i)T \) |
| 17 | \( 1 + (1.96 + 3.62i)T \) |
good | 5 | \( 1 + (-0.431 + 1.04i)T + (-3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 + (1.16 + 2.80i)T + (-4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-3.84 + 1.59i)T + (7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 - 1.86iT - 13T^{2} \) |
| 19 | \( 1 + (-5.77 + 5.77i)T - 19iT^{2} \) |
| 23 | \( 1 + (6.03 - 2.49i)T + (16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (2.72 - 6.58i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (-7.71 - 3.19i)T + (21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (-0.323 - 0.134i)T + (26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (-1.40 - 3.39i)T + (-28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (6.71 + 6.71i)T + 43iT^{2} \) |
| 47 | \( 1 + 4.96iT - 47T^{2} \) |
| 53 | \( 1 + (7.13 - 7.13i)T - 53iT^{2} \) |
| 59 | \( 1 + (-0.0213 - 0.0213i)T + 59iT^{2} \) |
| 61 | \( 1 + (-1.66 - 4.02i)T + (-43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 - 5.70T + 67T^{2} \) |
| 71 | \( 1 + (3.98 + 1.65i)T + (50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (3.25 - 7.85i)T + (-51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (8.15 - 3.37i)T + (55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (10.1 - 10.1i)T - 83iT^{2} \) |
| 89 | \( 1 + 1.83iT - 89T^{2} \) |
| 97 | \( 1 + (4.76 - 11.5i)T + (-68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.21364075606127268609965094376, −10.00866707180091653223038450325, −9.318976820928644399596419892796, −8.655484761648791705151652452431, −7.27362698984563076262503675033, −6.70018569656499360936694092234, −5.16034456560499637107244232927, −4.11239918660868690850462029851, −3.09955620857960024884494148621, −1.20133531873565416401679627030,
1.87766364272804359388755197878, 3.06747024927656244847667188088, 4.23948297005497249600700114071, 5.95844657129974206073255918754, 6.41047784206628343331603960241, 7.78534009130852819888064025334, 8.534780552203715398486226040234, 9.670708413606491437955524127063, 10.06536238959211116875992160689, 11.57352285935510076460060730452