Properties

Label 4056.2.c.r.337.8
Level $4056$
Weight $2$
Character 4056.337
Analytic conductor $32.387$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4056,2,Mod(337,4056)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4056, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4056.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4056 = 2^{3} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4056.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,12,0,0,0,0,0,12,0,0,0,0,0,0,0,-18,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.3873230598\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 39x^{10} + 601x^{8} + 4599x^{6} + 17849x^{4} + 31203x^{2} + 16129 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.8
Root \(1.88227i\) of defining polynomial
Character \(\chi\) \(=\) 4056.337
Dual form 4056.2.c.r.337.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +1.88227i q^{5} -1.29156i q^{7} +1.00000 q^{9} -4.19367i q^{11} +1.88227i q^{15} +1.68421 q^{17} +1.19025i q^{19} -1.29156i q^{21} -3.01499 q^{23} +1.45707 q^{25} +1.00000 q^{27} +3.15000 q^{29} -1.47463i q^{31} -4.19367i q^{33} +2.43106 q^{35} -8.15343i q^{37} -10.0181i q^{41} -10.7587 q^{43} +1.88227i q^{45} +5.31909i q^{47} +5.33187 q^{49} +1.68421 q^{51} +8.29590 q^{53} +7.89361 q^{55} +1.19025i q^{57} +3.03369i q^{59} +7.84487 q^{61} -1.29156i q^{63} +4.50497i q^{67} -3.01499 q^{69} -3.85816i q^{71} -1.76494i q^{73} +1.45707 q^{75} -5.41637 q^{77} -12.6593 q^{79} +1.00000 q^{81} -15.6280i q^{83} +3.17013i q^{85} +3.15000 q^{87} -10.6679i q^{89} -1.47463i q^{93} -2.24036 q^{95} -2.38541i q^{97} -4.19367i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{3} + 12 q^{9} - 18 q^{17} - 24 q^{23} - 18 q^{25} + 12 q^{27} + 14 q^{29} + 12 q^{35} - 30 q^{43} - 26 q^{49} - 18 q^{51} + 44 q^{53} + 6 q^{55} + 50 q^{61} - 24 q^{69} - 18 q^{75} - 90 q^{77}+ \cdots - 94 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4056\mathbb{Z}\right)^\times\).

\(n\) \(1015\) \(2029\) \(2705\) \(3889\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 1.88227i 0.841776i 0.907113 + 0.420888i \(0.138281\pi\)
−0.907113 + 0.420888i \(0.861719\pi\)
\(6\) 0 0
\(7\) − 1.29156i − 0.488164i −0.969755 0.244082i \(-0.921513\pi\)
0.969755 0.244082i \(-0.0784866\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) − 4.19367i − 1.26444i −0.774790 0.632219i \(-0.782144\pi\)
0.774790 0.632219i \(-0.217856\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 1.88227i 0.486000i
\(16\) 0 0
\(17\) 1.68421 0.408480 0.204240 0.978921i \(-0.434528\pi\)
0.204240 + 0.978921i \(0.434528\pi\)
\(18\) 0 0
\(19\) 1.19025i 0.273061i 0.990636 + 0.136531i \(0.0435952\pi\)
−0.990636 + 0.136531i \(0.956405\pi\)
\(20\) 0 0
\(21\) − 1.29156i − 0.281841i
\(22\) 0 0
\(23\) −3.01499 −0.628670 −0.314335 0.949312i \(-0.601781\pi\)
−0.314335 + 0.949312i \(0.601781\pi\)
\(24\) 0 0
\(25\) 1.45707 0.291413
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 3.15000 0.584941 0.292471 0.956275i \(-0.405523\pi\)
0.292471 + 0.956275i \(0.405523\pi\)
\(30\) 0 0
\(31\) − 1.47463i − 0.264851i −0.991193 0.132425i \(-0.957723\pi\)
0.991193 0.132425i \(-0.0422765\pi\)
\(32\) 0 0
\(33\) − 4.19367i − 0.730024i
\(34\) 0 0
\(35\) 2.43106 0.410924
\(36\) 0 0
\(37\) − 8.15343i − 1.34041i −0.742174 0.670207i \(-0.766205\pi\)
0.742174 0.670207i \(-0.233795\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 10.0181i − 1.56457i −0.622921 0.782285i \(-0.714054\pi\)
0.622921 0.782285i \(-0.285946\pi\)
\(42\) 0 0
\(43\) −10.7587 −1.64069 −0.820345 0.571869i \(-0.806218\pi\)
−0.820345 + 0.571869i \(0.806218\pi\)
\(44\) 0 0
\(45\) 1.88227i 0.280592i
\(46\) 0 0
\(47\) 5.31909i 0.775869i 0.921687 + 0.387934i \(0.126811\pi\)
−0.921687 + 0.387934i \(0.873189\pi\)
\(48\) 0 0
\(49\) 5.33187 0.761696
\(50\) 0 0
\(51\) 1.68421 0.235836
\(52\) 0 0
\(53\) 8.29590 1.13953 0.569765 0.821808i \(-0.307034\pi\)
0.569765 + 0.821808i \(0.307034\pi\)
\(54\) 0 0
\(55\) 7.89361 1.06437
\(56\) 0 0
\(57\) 1.19025i 0.157652i
\(58\) 0 0
\(59\) 3.03369i 0.394953i 0.980308 + 0.197477i \(0.0632746\pi\)
−0.980308 + 0.197477i \(0.936725\pi\)
\(60\) 0 0
\(61\) 7.84487 1.00443 0.502216 0.864742i \(-0.332518\pi\)
0.502216 + 0.864742i \(0.332518\pi\)
\(62\) 0 0
\(63\) − 1.29156i − 0.162721i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.50497i 0.550370i 0.961391 + 0.275185i \(0.0887390\pi\)
−0.961391 + 0.275185i \(0.911261\pi\)
\(68\) 0 0
\(69\) −3.01499 −0.362963
\(70\) 0 0
\(71\) − 3.85816i − 0.457880i −0.973441 0.228940i \(-0.926474\pi\)
0.973441 0.228940i \(-0.0735259\pi\)
\(72\) 0 0
\(73\) − 1.76494i − 0.206571i −0.994652 0.103285i \(-0.967064\pi\)
0.994652 0.103285i \(-0.0329355\pi\)
\(74\) 0 0
\(75\) 1.45707 0.168248
\(76\) 0 0
\(77\) −5.41637 −0.617253
\(78\) 0 0
\(79\) −12.6593 −1.42428 −0.712140 0.702037i \(-0.752274\pi\)
−0.712140 + 0.702037i \(0.752274\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 15.6280i − 1.71540i −0.514149 0.857701i \(-0.671892\pi\)
0.514149 0.857701i \(-0.328108\pi\)
\(84\) 0 0
\(85\) 3.17013i 0.343849i
\(86\) 0 0
\(87\) 3.15000 0.337716
\(88\) 0 0
\(89\) − 10.6679i − 1.13080i −0.824818 0.565398i \(-0.808722\pi\)
0.824818 0.565398i \(-0.191278\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) − 1.47463i − 0.152912i
\(94\) 0 0
\(95\) −2.24036 −0.229856
\(96\) 0 0
\(97\) − 2.38541i − 0.242201i −0.992640 0.121101i \(-0.961358\pi\)
0.992640 0.121101i \(-0.0386424\pi\)
\(98\) 0 0
\(99\) − 4.19367i − 0.421479i
\(100\) 0 0
\(101\) 0.880061 0.0875693 0.0437847 0.999041i \(-0.486058\pi\)
0.0437847 + 0.999041i \(0.486058\pi\)
\(102\) 0 0
\(103\) −5.21107 −0.513462 −0.256731 0.966483i \(-0.582645\pi\)
−0.256731 + 0.966483i \(0.582645\pi\)
\(104\) 0 0
\(105\) 2.43106 0.237247
\(106\) 0 0
\(107\) 19.9637 1.92996 0.964981 0.262319i \(-0.0844874\pi\)
0.964981 + 0.262319i \(0.0844874\pi\)
\(108\) 0 0
\(109\) − 18.5577i − 1.77751i −0.458386 0.888753i \(-0.651572\pi\)
0.458386 0.888753i \(-0.348428\pi\)
\(110\) 0 0
\(111\) − 8.15343i − 0.773889i
\(112\) 0 0
\(113\) 9.98409 0.939224 0.469612 0.882873i \(-0.344394\pi\)
0.469612 + 0.882873i \(0.344394\pi\)
\(114\) 0 0
\(115\) − 5.67503i − 0.529199i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 2.17525i − 0.199405i
\(120\) 0 0
\(121\) −6.58685 −0.598805
\(122\) 0 0
\(123\) − 10.0181i − 0.903305i
\(124\) 0 0
\(125\) 12.1539i 1.08708i
\(126\) 0 0
\(127\) 14.7930 1.31267 0.656335 0.754469i \(-0.272106\pi\)
0.656335 + 0.754469i \(0.272106\pi\)
\(128\) 0 0
\(129\) −10.7587 −0.947252
\(130\) 0 0
\(131\) −0.834088 −0.0728746 −0.0364373 0.999336i \(-0.511601\pi\)
−0.0364373 + 0.999336i \(0.511601\pi\)
\(132\) 0 0
\(133\) 1.53727 0.133299
\(134\) 0 0
\(135\) 1.88227i 0.162000i
\(136\) 0 0
\(137\) − 6.20377i − 0.530024i −0.964245 0.265012i \(-0.914624\pi\)
0.964245 0.265012i \(-0.0853759\pi\)
\(138\) 0 0
\(139\) −20.1616 −1.71008 −0.855042 0.518559i \(-0.826469\pi\)
−0.855042 + 0.518559i \(0.826469\pi\)
\(140\) 0 0
\(141\) 5.31909i 0.447948i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 5.92915i 0.492389i
\(146\) 0 0
\(147\) 5.33187 0.439766
\(148\) 0 0
\(149\) 16.2561i 1.33175i 0.746063 + 0.665876i \(0.231942\pi\)
−0.746063 + 0.665876i \(0.768058\pi\)
\(150\) 0 0
\(151\) 18.0930i 1.47239i 0.676769 + 0.736195i \(0.263379\pi\)
−0.676769 + 0.736195i \(0.736621\pi\)
\(152\) 0 0
\(153\) 1.68421 0.136160
\(154\) 0 0
\(155\) 2.77564 0.222945
\(156\) 0 0
\(157\) 15.0559 1.20159 0.600795 0.799403i \(-0.294851\pi\)
0.600795 + 0.799403i \(0.294851\pi\)
\(158\) 0 0
\(159\) 8.29590 0.657907
\(160\) 0 0
\(161\) 3.89404i 0.306894i
\(162\) 0 0
\(163\) − 7.31660i − 0.573080i −0.958068 0.286540i \(-0.907495\pi\)
0.958068 0.286540i \(-0.0925051\pi\)
\(164\) 0 0
\(165\) 7.89361 0.614517
\(166\) 0 0
\(167\) 11.9586i 0.925385i 0.886519 + 0.462693i \(0.153117\pi\)
−0.886519 + 0.462693i \(0.846883\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 1.19025i 0.0910204i
\(172\) 0 0
\(173\) 16.6231 1.26383 0.631915 0.775038i \(-0.282269\pi\)
0.631915 + 0.775038i \(0.282269\pi\)
\(174\) 0 0
\(175\) − 1.88189i − 0.142257i
\(176\) 0 0
\(177\) 3.03369i 0.228026i
\(178\) 0 0
\(179\) −1.89790 −0.141856 −0.0709278 0.997481i \(-0.522596\pi\)
−0.0709278 + 0.997481i \(0.522596\pi\)
\(180\) 0 0
\(181\) −16.3850 −1.21789 −0.608944 0.793213i \(-0.708406\pi\)
−0.608944 + 0.793213i \(0.708406\pi\)
\(182\) 0 0
\(183\) 7.84487 0.579909
\(184\) 0 0
\(185\) 15.3469 1.12833
\(186\) 0 0
\(187\) − 7.06300i − 0.516498i
\(188\) 0 0
\(189\) − 1.29156i − 0.0939471i
\(190\) 0 0
\(191\) 13.5859 0.983042 0.491521 0.870866i \(-0.336441\pi\)
0.491521 + 0.870866i \(0.336441\pi\)
\(192\) 0 0
\(193\) − 24.8588i − 1.78938i −0.446689 0.894689i \(-0.647397\pi\)
0.446689 0.894689i \(-0.352603\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.47333i 0.318711i 0.987221 + 0.159356i \(0.0509416\pi\)
−0.987221 + 0.159356i \(0.949058\pi\)
\(198\) 0 0
\(199\) 4.49522 0.318658 0.159329 0.987226i \(-0.449067\pi\)
0.159329 + 0.987226i \(0.449067\pi\)
\(200\) 0 0
\(201\) 4.50497i 0.317756i
\(202\) 0 0
\(203\) − 4.06842i − 0.285547i
\(204\) 0 0
\(205\) 18.8568 1.31702
\(206\) 0 0
\(207\) −3.01499 −0.209557
\(208\) 0 0
\(209\) 4.99150 0.345269
\(210\) 0 0
\(211\) 21.7861 1.49982 0.749908 0.661542i \(-0.230098\pi\)
0.749908 + 0.661542i \(0.230098\pi\)
\(212\) 0 0
\(213\) − 3.85816i − 0.264357i
\(214\) 0 0
\(215\) − 20.2508i − 1.38109i
\(216\) 0 0
\(217\) −1.90457 −0.129291
\(218\) 0 0
\(219\) − 1.76494i − 0.119264i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.0555395i 0.00371920i 0.999998 + 0.00185960i \(0.000591929\pi\)
−0.999998 + 0.00185960i \(0.999408\pi\)
\(224\) 0 0
\(225\) 1.45707 0.0971378
\(226\) 0 0
\(227\) − 5.24936i − 0.348412i −0.984709 0.174206i \(-0.944264\pi\)
0.984709 0.174206i \(-0.0557359\pi\)
\(228\) 0 0
\(229\) 21.6951i 1.43365i 0.697252 + 0.716826i \(0.254406\pi\)
−0.697252 + 0.716826i \(0.745594\pi\)
\(230\) 0 0
\(231\) −5.41637 −0.356371
\(232\) 0 0
\(233\) −9.34933 −0.612495 −0.306248 0.951952i \(-0.599074\pi\)
−0.306248 + 0.951952i \(0.599074\pi\)
\(234\) 0 0
\(235\) −10.0119 −0.653107
\(236\) 0 0
\(237\) −12.6593 −0.822309
\(238\) 0 0
\(239\) − 14.7781i − 0.955913i −0.878383 0.477957i \(-0.841378\pi\)
0.878383 0.477957i \(-0.158622\pi\)
\(240\) 0 0
\(241\) 16.7668i 1.08004i 0.841651 + 0.540022i \(0.181584\pi\)
−0.841651 + 0.540022i \(0.818416\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 10.0360i 0.641178i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) − 15.6280i − 0.990387i
\(250\) 0 0
\(251\) −1.44048 −0.0909222 −0.0454611 0.998966i \(-0.514476\pi\)
−0.0454611 + 0.998966i \(0.514476\pi\)
\(252\) 0 0
\(253\) 12.6439i 0.794914i
\(254\) 0 0
\(255\) 3.17013i 0.198521i
\(256\) 0 0
\(257\) 21.0265 1.31160 0.655799 0.754935i \(-0.272332\pi\)
0.655799 + 0.754935i \(0.272332\pi\)
\(258\) 0 0
\(259\) −10.5306 −0.654342
\(260\) 0 0
\(261\) 3.15000 0.194980
\(262\) 0 0
\(263\) 10.6833 0.658760 0.329380 0.944197i \(-0.393160\pi\)
0.329380 + 0.944197i \(0.393160\pi\)
\(264\) 0 0
\(265\) 15.6151i 0.959228i
\(266\) 0 0
\(267\) − 10.6679i − 0.652866i
\(268\) 0 0
\(269\) 18.3247 1.11728 0.558638 0.829412i \(-0.311324\pi\)
0.558638 + 0.829412i \(0.311324\pi\)
\(270\) 0 0
\(271\) 3.64076i 0.221161i 0.993867 + 0.110580i \(0.0352709\pi\)
−0.993867 + 0.110580i \(0.964729\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 6.11045i − 0.368474i
\(276\) 0 0
\(277\) −22.3601 −1.34349 −0.671744 0.740783i \(-0.734454\pi\)
−0.671744 + 0.740783i \(0.734454\pi\)
\(278\) 0 0
\(279\) − 1.47463i − 0.0882836i
\(280\) 0 0
\(281\) − 2.39777i − 0.143039i −0.997439 0.0715195i \(-0.977215\pi\)
0.997439 0.0715195i \(-0.0227848\pi\)
\(282\) 0 0
\(283\) 1.64168 0.0975879 0.0487939 0.998809i \(-0.484462\pi\)
0.0487939 + 0.998809i \(0.484462\pi\)
\(284\) 0 0
\(285\) −2.24036 −0.132708
\(286\) 0 0
\(287\) −12.9390 −0.763766
\(288\) 0 0
\(289\) −14.1635 −0.833144
\(290\) 0 0
\(291\) − 2.38541i − 0.139835i
\(292\) 0 0
\(293\) − 1.35348i − 0.0790709i −0.999218 0.0395355i \(-0.987412\pi\)
0.999218 0.0395355i \(-0.0125878\pi\)
\(294\) 0 0
\(295\) −5.71022 −0.332462
\(296\) 0 0
\(297\) − 4.19367i − 0.243341i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 13.8955i 0.800925i
\(302\) 0 0
\(303\) 0.880061 0.0505582
\(304\) 0 0
\(305\) 14.7661i 0.845507i
\(306\) 0 0
\(307\) 23.9864i 1.36898i 0.729023 + 0.684489i \(0.239975\pi\)
−0.729023 + 0.684489i \(0.760025\pi\)
\(308\) 0 0
\(309\) −5.21107 −0.296447
\(310\) 0 0
\(311\) −6.23414 −0.353506 −0.176753 0.984255i \(-0.556559\pi\)
−0.176753 + 0.984255i \(0.556559\pi\)
\(312\) 0 0
\(313\) −28.7120 −1.62290 −0.811450 0.584422i \(-0.801321\pi\)
−0.811450 + 0.584422i \(0.801321\pi\)
\(314\) 0 0
\(315\) 2.43106 0.136975
\(316\) 0 0
\(317\) 13.8082i 0.775545i 0.921755 + 0.387772i \(0.126755\pi\)
−0.921755 + 0.387772i \(0.873245\pi\)
\(318\) 0 0
\(319\) − 13.2101i − 0.739622i
\(320\) 0 0
\(321\) 19.9637 1.11426
\(322\) 0 0
\(323\) 2.00462i 0.111540i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 18.5577i − 1.02624i
\(328\) 0 0
\(329\) 6.86992 0.378751
\(330\) 0 0
\(331\) 7.06203i 0.388165i 0.980985 + 0.194082i \(0.0621729\pi\)
−0.980985 + 0.194082i \(0.937827\pi\)
\(332\) 0 0
\(333\) − 8.15343i − 0.446805i
\(334\) 0 0
\(335\) −8.47956 −0.463288
\(336\) 0 0
\(337\) 15.9635 0.869585 0.434792 0.900531i \(-0.356822\pi\)
0.434792 + 0.900531i \(0.356822\pi\)
\(338\) 0 0
\(339\) 9.98409 0.542261
\(340\) 0 0
\(341\) −6.18410 −0.334888
\(342\) 0 0
\(343\) − 15.9274i − 0.859996i
\(344\) 0 0
\(345\) − 5.67503i − 0.305533i
\(346\) 0 0
\(347\) 17.1822 0.922388 0.461194 0.887299i \(-0.347421\pi\)
0.461194 + 0.887299i \(0.347421\pi\)
\(348\) 0 0
\(349\) − 28.2999i − 1.51486i −0.652918 0.757429i \(-0.726455\pi\)
0.652918 0.757429i \(-0.273545\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.313161i 0.0166679i 0.999965 + 0.00833393i \(0.00265280\pi\)
−0.999965 + 0.00833393i \(0.997347\pi\)
\(354\) 0 0
\(355\) 7.26210 0.385432
\(356\) 0 0
\(357\) − 2.17525i − 0.115127i
\(358\) 0 0
\(359\) − 12.3342i − 0.650977i −0.945546 0.325488i \(-0.894471\pi\)
0.945546 0.325488i \(-0.105529\pi\)
\(360\) 0 0
\(361\) 17.5833 0.925438
\(362\) 0 0
\(363\) −6.58685 −0.345720
\(364\) 0 0
\(365\) 3.32209 0.173886
\(366\) 0 0
\(367\) −9.08368 −0.474164 −0.237082 0.971490i \(-0.576191\pi\)
−0.237082 + 0.971490i \(0.576191\pi\)
\(368\) 0 0
\(369\) − 10.0181i − 0.521523i
\(370\) 0 0
\(371\) − 10.7146i − 0.556277i
\(372\) 0 0
\(373\) −16.5431 −0.856569 −0.428285 0.903644i \(-0.640882\pi\)
−0.428285 + 0.903644i \(0.640882\pi\)
\(374\) 0 0
\(375\) 12.1539i 0.627626i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 10.4212i 0.535299i 0.963516 + 0.267650i \(0.0862469\pi\)
−0.963516 + 0.267650i \(0.913753\pi\)
\(380\) 0 0
\(381\) 14.7930 0.757871
\(382\) 0 0
\(383\) − 15.5767i − 0.795931i −0.917400 0.397965i \(-0.869716\pi\)
0.917400 0.397965i \(-0.130284\pi\)
\(384\) 0 0
\(385\) − 10.1951i − 0.519589i
\(386\) 0 0
\(387\) −10.7587 −0.546896
\(388\) 0 0
\(389\) −13.0121 −0.659742 −0.329871 0.944026i \(-0.607005\pi\)
−0.329871 + 0.944026i \(0.607005\pi\)
\(390\) 0 0
\(391\) −5.07787 −0.256799
\(392\) 0 0
\(393\) −0.834088 −0.0420742
\(394\) 0 0
\(395\) − 23.8282i − 1.19892i
\(396\) 0 0
\(397\) 33.9449i 1.70364i 0.523831 + 0.851822i \(0.324502\pi\)
−0.523831 + 0.851822i \(0.675498\pi\)
\(398\) 0 0
\(399\) 1.53727 0.0769600
\(400\) 0 0
\(401\) − 37.0787i − 1.85162i −0.377988 0.925811i \(-0.623384\pi\)
0.377988 0.925811i \(-0.376616\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.88227i 0.0935307i
\(406\) 0 0
\(407\) −34.1928 −1.69487
\(408\) 0 0
\(409\) 31.0280i 1.53424i 0.641505 + 0.767118i \(0.278310\pi\)
−0.641505 + 0.767118i \(0.721690\pi\)
\(410\) 0 0
\(411\) − 6.20377i − 0.306009i
\(412\) 0 0
\(413\) 3.91819 0.192802
\(414\) 0 0
\(415\) 29.4162 1.44398
\(416\) 0 0
\(417\) −20.1616 −0.987317
\(418\) 0 0
\(419\) −27.5226 −1.34457 −0.672284 0.740293i \(-0.734687\pi\)
−0.672284 + 0.740293i \(0.734687\pi\)
\(420\) 0 0
\(421\) − 10.2919i − 0.501599i −0.968039 0.250799i \(-0.919307\pi\)
0.968039 0.250799i \(-0.0806934\pi\)
\(422\) 0 0
\(423\) 5.31909i 0.258623i
\(424\) 0 0
\(425\) 2.45400 0.119036
\(426\) 0 0
\(427\) − 10.1321i − 0.490327i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 30.9340i − 1.49004i −0.667043 0.745020i \(-0.732440\pi\)
0.667043 0.745020i \(-0.267560\pi\)
\(432\) 0 0
\(433\) −9.59342 −0.461030 −0.230515 0.973069i \(-0.574041\pi\)
−0.230515 + 0.973069i \(0.574041\pi\)
\(434\) 0 0
\(435\) 5.92915i 0.284281i
\(436\) 0 0
\(437\) − 3.58859i − 0.171665i
\(438\) 0 0
\(439\) −18.3735 −0.876918 −0.438459 0.898751i \(-0.644476\pi\)
−0.438459 + 0.898751i \(0.644476\pi\)
\(440\) 0 0
\(441\) 5.33187 0.253899
\(442\) 0 0
\(443\) −16.7144 −0.794125 −0.397062 0.917792i \(-0.629970\pi\)
−0.397062 + 0.917792i \(0.629970\pi\)
\(444\) 0 0
\(445\) 20.0799 0.951878
\(446\) 0 0
\(447\) 16.2561i 0.768887i
\(448\) 0 0
\(449\) − 32.4482i − 1.53132i −0.643243 0.765662i \(-0.722412\pi\)
0.643243 0.765662i \(-0.277588\pi\)
\(450\) 0 0
\(451\) −42.0127 −1.97830
\(452\) 0 0
\(453\) 18.0930i 0.850085i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 16.5767i − 0.775427i −0.921780 0.387713i \(-0.873265\pi\)
0.921780 0.387713i \(-0.126735\pi\)
\(458\) 0 0
\(459\) 1.68421 0.0786120
\(460\) 0 0
\(461\) − 2.43380i − 0.113353i −0.998393 0.0566767i \(-0.981950\pi\)
0.998393 0.0566767i \(-0.0180504\pi\)
\(462\) 0 0
\(463\) 30.9325i 1.43755i 0.695240 + 0.718777i \(0.255298\pi\)
−0.695240 + 0.718777i \(0.744702\pi\)
\(464\) 0 0
\(465\) 2.77564 0.128717
\(466\) 0 0
\(467\) −19.4582 −0.900417 −0.450208 0.892924i \(-0.648650\pi\)
−0.450208 + 0.892924i \(0.648650\pi\)
\(468\) 0 0
\(469\) 5.81844 0.268670
\(470\) 0 0
\(471\) 15.0559 0.693738
\(472\) 0 0
\(473\) 45.1185i 2.07455i
\(474\) 0 0
\(475\) 1.73427i 0.0795737i
\(476\) 0 0
\(477\) 8.29590 0.379843
\(478\) 0 0
\(479\) 21.0622i 0.962356i 0.876623 + 0.481178i \(0.159791\pi\)
−0.876623 + 0.481178i \(0.840209\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 3.89404i 0.177185i
\(484\) 0 0
\(485\) 4.48997 0.203879
\(486\) 0 0
\(487\) − 37.6092i − 1.70424i −0.523349 0.852118i \(-0.675318\pi\)
0.523349 0.852118i \(-0.324682\pi\)
\(488\) 0 0
\(489\) − 7.31660i − 0.330868i
\(490\) 0 0
\(491\) −36.5335 −1.64873 −0.824367 0.566056i \(-0.808469\pi\)
−0.824367 + 0.566056i \(0.808469\pi\)
\(492\) 0 0
\(493\) 5.30526 0.238937
\(494\) 0 0
\(495\) 7.89361 0.354791
\(496\) 0 0
\(497\) −4.98305 −0.223520
\(498\) 0 0
\(499\) 22.4840i 1.00652i 0.864134 + 0.503262i \(0.167867\pi\)
−0.864134 + 0.503262i \(0.832133\pi\)
\(500\) 0 0
\(501\) 11.9586i 0.534271i
\(502\) 0 0
\(503\) −2.21863 −0.0989237 −0.0494619 0.998776i \(-0.515751\pi\)
−0.0494619 + 0.998776i \(0.515751\pi\)
\(504\) 0 0
\(505\) 1.65651i 0.0737137i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 28.2456i 1.25196i 0.779837 + 0.625982i \(0.215302\pi\)
−0.779837 + 0.625982i \(0.784698\pi\)
\(510\) 0 0
\(511\) −2.27953 −0.100840
\(512\) 0 0
\(513\) 1.19025i 0.0525507i
\(514\) 0 0
\(515\) − 9.80863i − 0.432220i
\(516\) 0 0
\(517\) 22.3065 0.981038
\(518\) 0 0
\(519\) 16.6231 0.729673
\(520\) 0 0
\(521\) 28.1688 1.23410 0.617050 0.786924i \(-0.288328\pi\)
0.617050 + 0.786924i \(0.288328\pi\)
\(522\) 0 0
\(523\) 4.70961 0.205937 0.102968 0.994685i \(-0.467166\pi\)
0.102968 + 0.994685i \(0.467166\pi\)
\(524\) 0 0
\(525\) − 1.88189i − 0.0821323i
\(526\) 0 0
\(527\) − 2.48358i − 0.108186i
\(528\) 0 0
\(529\) −13.9098 −0.604774
\(530\) 0 0
\(531\) 3.03369i 0.131651i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 37.5770i 1.62460i
\(536\) 0 0
\(537\) −1.89790 −0.0819004
\(538\) 0 0
\(539\) − 22.3601i − 0.963118i
\(540\) 0 0
\(541\) 3.17651i 0.136569i 0.997666 + 0.0682844i \(0.0217525\pi\)
−0.997666 + 0.0682844i \(0.978247\pi\)
\(542\) 0 0
\(543\) −16.3850 −0.703148
\(544\) 0 0
\(545\) 34.9306 1.49626
\(546\) 0 0
\(547\) −25.4331 −1.08744 −0.543721 0.839266i \(-0.682985\pi\)
−0.543721 + 0.839266i \(0.682985\pi\)
\(548\) 0 0
\(549\) 7.84487 0.334811
\(550\) 0 0
\(551\) 3.74928i 0.159725i
\(552\) 0 0
\(553\) 16.3502i 0.695282i
\(554\) 0 0
\(555\) 15.3469 0.651441
\(556\) 0 0
\(557\) 20.1670i 0.854505i 0.904132 + 0.427252i \(0.140518\pi\)
−0.904132 + 0.427252i \(0.859482\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) − 7.06300i − 0.298200i
\(562\) 0 0
\(563\) 18.2498 0.769136 0.384568 0.923097i \(-0.374350\pi\)
0.384568 + 0.923097i \(0.374350\pi\)
\(564\) 0 0
\(565\) 18.7927i 0.790616i
\(566\) 0 0
\(567\) − 1.29156i − 0.0542404i
\(568\) 0 0
\(569\) −27.4857 −1.15226 −0.576129 0.817359i \(-0.695438\pi\)
−0.576129 + 0.817359i \(0.695438\pi\)
\(570\) 0 0
\(571\) 0.0250476 0.00104821 0.000524106 1.00000i \(-0.499833\pi\)
0.000524106 1.00000i \(0.499833\pi\)
\(572\) 0 0
\(573\) 13.5859 0.567559
\(574\) 0 0
\(575\) −4.39305 −0.183203
\(576\) 0 0
\(577\) 21.0269i 0.875362i 0.899130 + 0.437681i \(0.144200\pi\)
−0.899130 + 0.437681i \(0.855800\pi\)
\(578\) 0 0
\(579\) − 24.8588i − 1.03310i
\(580\) 0 0
\(581\) −20.1846 −0.837397
\(582\) 0 0
\(583\) − 34.7902i − 1.44086i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 29.4551i − 1.21574i −0.794035 0.607872i \(-0.792024\pi\)
0.794035 0.607872i \(-0.207976\pi\)
\(588\) 0 0
\(589\) 1.75517 0.0723206
\(590\) 0 0
\(591\) 4.47333i 0.184008i
\(592\) 0 0
\(593\) 3.93477i 0.161582i 0.996731 + 0.0807909i \(0.0257446\pi\)
−0.996731 + 0.0807909i \(0.974255\pi\)
\(594\) 0 0
\(595\) 4.09441 0.167854
\(596\) 0 0
\(597\) 4.49522 0.183977
\(598\) 0 0
\(599\) 35.1931 1.43795 0.718975 0.695036i \(-0.244612\pi\)
0.718975 + 0.695036i \(0.244612\pi\)
\(600\) 0 0
\(601\) −14.9780 −0.610967 −0.305484 0.952197i \(-0.598818\pi\)
−0.305484 + 0.952197i \(0.598818\pi\)
\(602\) 0 0
\(603\) 4.50497i 0.183457i
\(604\) 0 0
\(605\) − 12.3982i − 0.504059i
\(606\) 0 0
\(607\) −24.6169 −0.999170 −0.499585 0.866265i \(-0.666514\pi\)
−0.499585 + 0.866265i \(0.666514\pi\)
\(608\) 0 0
\(609\) − 4.06842i − 0.164861i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 36.1429i 1.45980i 0.683554 + 0.729900i \(0.260433\pi\)
−0.683554 + 0.729900i \(0.739567\pi\)
\(614\) 0 0
\(615\) 18.8568 0.760380
\(616\) 0 0
\(617\) − 12.0808i − 0.486356i −0.969982 0.243178i \(-0.921810\pi\)
0.969982 0.243178i \(-0.0781898\pi\)
\(618\) 0 0
\(619\) − 23.1257i − 0.929500i −0.885442 0.464750i \(-0.846144\pi\)
0.885442 0.464750i \(-0.153856\pi\)
\(620\) 0 0
\(621\) −3.01499 −0.120988
\(622\) 0 0
\(623\) −13.7782 −0.552014
\(624\) 0 0
\(625\) −15.5916 −0.623665
\(626\) 0 0
\(627\) 4.99150 0.199341
\(628\) 0 0
\(629\) − 13.7320i − 0.547533i
\(630\) 0 0
\(631\) 43.7565i 1.74192i 0.491354 + 0.870960i \(0.336502\pi\)
−0.491354 + 0.870960i \(0.663498\pi\)
\(632\) 0 0
\(633\) 21.7861 0.865920
\(634\) 0 0
\(635\) 27.8445i 1.10497i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) − 3.85816i − 0.152627i
\(640\) 0 0
\(641\) 7.76562 0.306724 0.153362 0.988170i \(-0.450990\pi\)
0.153362 + 0.988170i \(0.450990\pi\)
\(642\) 0 0
\(643\) − 9.44419i − 0.372442i −0.982508 0.186221i \(-0.940376\pi\)
0.982508 0.186221i \(-0.0596241\pi\)
\(644\) 0 0
\(645\) − 20.2508i − 0.797374i
\(646\) 0 0
\(647\) 41.8606 1.64571 0.822856 0.568250i \(-0.192379\pi\)
0.822856 + 0.568250i \(0.192379\pi\)
\(648\) 0 0
\(649\) 12.7223 0.499394
\(650\) 0 0
\(651\) −1.90457 −0.0746460
\(652\) 0 0
\(653\) −43.8823 −1.71725 −0.858624 0.512605i \(-0.828680\pi\)
−0.858624 + 0.512605i \(0.828680\pi\)
\(654\) 0 0
\(655\) − 1.56998i − 0.0613441i
\(656\) 0 0
\(657\) − 1.76494i − 0.0688569i
\(658\) 0 0
\(659\) −27.3533 −1.06553 −0.532767 0.846262i \(-0.678848\pi\)
−0.532767 + 0.846262i \(0.678848\pi\)
\(660\) 0 0
\(661\) 46.8238i 1.82123i 0.413251 + 0.910617i \(0.364393\pi\)
−0.413251 + 0.910617i \(0.635607\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.89356i 0.112208i
\(666\) 0 0
\(667\) −9.49724 −0.367735
\(668\) 0 0
\(669\) 0.0555395i 0.00214728i
\(670\) 0 0
\(671\) − 32.8988i − 1.27004i
\(672\) 0 0
\(673\) −36.2574 −1.39762 −0.698811 0.715307i \(-0.746287\pi\)
−0.698811 + 0.715307i \(0.746287\pi\)
\(674\) 0 0
\(675\) 1.45707 0.0560825
\(676\) 0 0
\(677\) 51.1630 1.96636 0.983178 0.182652i \(-0.0584682\pi\)
0.983178 + 0.182652i \(0.0584682\pi\)
\(678\) 0 0
\(679\) −3.08089 −0.118234
\(680\) 0 0
\(681\) − 5.24936i − 0.201156i
\(682\) 0 0
\(683\) 30.8240i 1.17945i 0.807605 + 0.589724i \(0.200763\pi\)
−0.807605 + 0.589724i \(0.799237\pi\)
\(684\) 0 0
\(685\) 11.6772 0.446161
\(686\) 0 0
\(687\) 21.6951i 0.827720i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 4.12305i 0.156848i 0.996920 + 0.0784241i \(0.0249888\pi\)
−0.996920 + 0.0784241i \(0.975011\pi\)
\(692\) 0 0
\(693\) −5.41637 −0.205751
\(694\) 0 0
\(695\) − 37.9495i − 1.43951i
\(696\) 0 0
\(697\) − 16.8726i − 0.639095i
\(698\) 0 0
\(699\) −9.34933 −0.353624
\(700\) 0 0
\(701\) −6.97922 −0.263602 −0.131801 0.991276i \(-0.542076\pi\)
−0.131801 + 0.991276i \(0.542076\pi\)
\(702\) 0 0
\(703\) 9.70459 0.366015
\(704\) 0 0
\(705\) −10.0119 −0.377072
\(706\) 0 0
\(707\) − 1.13665i − 0.0427482i
\(708\) 0 0
\(709\) 23.1455i 0.869247i 0.900612 + 0.434623i \(0.143118\pi\)
−0.900612 + 0.434623i \(0.856882\pi\)
\(710\) 0 0
\(711\) −12.6593 −0.474760
\(712\) 0 0
\(713\) 4.44599i 0.166504i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 14.7781i − 0.551897i
\(718\) 0 0
\(719\) −21.8249 −0.813930 −0.406965 0.913444i \(-0.633413\pi\)
−0.406965 + 0.913444i \(0.633413\pi\)
\(720\) 0 0
\(721\) 6.73041i 0.250653i
\(722\) 0 0
\(723\) 16.7668i 0.623563i
\(724\) 0 0
\(725\) 4.58976 0.170460
\(726\) 0 0
\(727\) 43.0916 1.59818 0.799090 0.601211i \(-0.205315\pi\)
0.799090 + 0.601211i \(0.205315\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −18.1199 −0.670189
\(732\) 0 0
\(733\) − 23.5077i − 0.868277i −0.900846 0.434138i \(-0.857053\pi\)
0.900846 0.434138i \(-0.142947\pi\)
\(734\) 0 0
\(735\) 10.0360i 0.370184i
\(736\) 0 0
\(737\) 18.8923 0.695909
\(738\) 0 0
\(739\) 23.9187i 0.879862i 0.898032 + 0.439931i \(0.144997\pi\)
−0.898032 + 0.439931i \(0.855003\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 0.613067i − 0.0224912i −0.999937 0.0112456i \(-0.996420\pi\)
0.999937 0.0112456i \(-0.00357967\pi\)
\(744\) 0 0
\(745\) −30.5983 −1.12104
\(746\) 0 0
\(747\) − 15.6280i − 0.571800i
\(748\) 0 0
\(749\) − 25.7843i − 0.942137i
\(750\) 0 0
\(751\) −0.945022 −0.0344843 −0.0172422 0.999851i \(-0.505489\pi\)
−0.0172422 + 0.999851i \(0.505489\pi\)
\(752\) 0 0
\(753\) −1.44048 −0.0524939
\(754\) 0 0
\(755\) −34.0559 −1.23942
\(756\) 0 0
\(757\) −14.8014 −0.537966 −0.268983 0.963145i \(-0.586688\pi\)
−0.268983 + 0.963145i \(0.586688\pi\)
\(758\) 0 0
\(759\) 12.6439i 0.458944i
\(760\) 0 0
\(761\) 11.6688i 0.422994i 0.977379 + 0.211497i \(0.0678339\pi\)
−0.977379 + 0.211497i \(0.932166\pi\)
\(762\) 0 0
\(763\) −23.9684 −0.867714
\(764\) 0 0
\(765\) 3.17013i 0.114616i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 2.64412i 0.0953494i 0.998863 + 0.0476747i \(0.0151811\pi\)
−0.998863 + 0.0476747i \(0.984819\pi\)
\(770\) 0 0
\(771\) 21.0265 0.757252
\(772\) 0 0
\(773\) − 0.0776248i − 0.00279197i −0.999999 0.00139599i \(-0.999556\pi\)
0.999999 0.00139599i \(-0.000444356\pi\)
\(774\) 0 0
\(775\) − 2.14863i − 0.0771811i
\(776\) 0 0
\(777\) −10.5306 −0.377784
\(778\) 0 0
\(779\) 11.9240 0.427223
\(780\) 0 0
\(781\) −16.1799 −0.578961
\(782\) 0 0
\(783\) 3.15000 0.112572
\(784\) 0 0
\(785\) 28.3392i 1.01147i
\(786\) 0 0
\(787\) 24.3434i 0.867749i 0.900973 + 0.433874i \(0.142854\pi\)
−0.900973 + 0.433874i \(0.857146\pi\)
\(788\) 0 0
\(789\) 10.6833 0.380335
\(790\) 0 0
\(791\) − 12.8950i − 0.458495i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 15.6151i 0.553811i
\(796\) 0 0
\(797\) 46.4833 1.64652 0.823261 0.567663i \(-0.192152\pi\)
0.823261 + 0.567663i \(0.192152\pi\)
\(798\) 0 0
\(799\) 8.95844i 0.316927i
\(800\) 0 0
\(801\) − 10.6679i − 0.376932i
\(802\) 0 0
\(803\) −7.40158 −0.261196
\(804\) 0 0
\(805\) −7.32964 −0.258336
\(806\) 0 0
\(807\) 18.3247 0.645060
\(808\) 0 0
\(809\) 17.4581 0.613796 0.306898 0.951742i \(-0.400709\pi\)
0.306898 + 0.951742i \(0.400709\pi\)
\(810\) 0 0
\(811\) − 13.3281i − 0.468012i −0.972235 0.234006i \(-0.924817\pi\)
0.972235 0.234006i \(-0.0751835\pi\)
\(812\) 0 0
\(813\) 3.64076i 0.127687i
\(814\) 0 0
\(815\) 13.7718 0.482405
\(816\) 0 0
\(817\) − 12.8055i − 0.448009i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 11.0294i 0.384928i 0.981304 + 0.192464i \(0.0616479\pi\)
−0.981304 + 0.192464i \(0.938352\pi\)
\(822\) 0 0
\(823\) 12.1161 0.422340 0.211170 0.977449i \(-0.432273\pi\)
0.211170 + 0.977449i \(0.432273\pi\)
\(824\) 0 0
\(825\) − 6.11045i − 0.212739i
\(826\) 0 0
\(827\) − 23.6413i − 0.822087i −0.911616 0.411044i \(-0.865164\pi\)
0.911616 0.411044i \(-0.134836\pi\)
\(828\) 0 0
\(829\) 43.4519 1.50915 0.754574 0.656215i \(-0.227843\pi\)
0.754574 + 0.656215i \(0.227843\pi\)
\(830\) 0 0
\(831\) −22.3601 −0.775663
\(832\) 0 0
\(833\) 8.97997 0.311138
\(834\) 0 0
\(835\) −22.5093 −0.778967
\(836\) 0 0
\(837\) − 1.47463i − 0.0509706i
\(838\) 0 0
\(839\) 17.2176i 0.594416i 0.954813 + 0.297208i \(0.0960555\pi\)
−0.954813 + 0.297208i \(0.903945\pi\)
\(840\) 0 0
\(841\) −19.0775 −0.657844
\(842\) 0 0
\(843\) − 2.39777i − 0.0825836i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 8.50731i 0.292315i
\(848\) 0 0
\(849\) 1.64168 0.0563424
\(850\) 0 0
\(851\) 24.5825i 0.842678i
\(852\) 0 0
\(853\) − 19.5329i − 0.668793i −0.942432 0.334397i \(-0.891467\pi\)
0.942432 0.334397i \(-0.108533\pi\)
\(854\) 0 0
\(855\) −2.24036 −0.0766188
\(856\) 0 0
\(857\) 19.9607 0.681843 0.340922 0.940092i \(-0.389261\pi\)
0.340922 + 0.940092i \(0.389261\pi\)
\(858\) 0 0
\(859\) 36.0681 1.23063 0.615315 0.788282i \(-0.289029\pi\)
0.615315 + 0.788282i \(0.289029\pi\)
\(860\) 0 0
\(861\) −12.9390 −0.440960
\(862\) 0 0
\(863\) − 3.06724i − 0.104410i −0.998636 0.0522051i \(-0.983375\pi\)
0.998636 0.0522051i \(-0.0166249\pi\)
\(864\) 0 0
\(865\) 31.2891i 1.06386i
\(866\) 0 0
\(867\) −14.1635 −0.481016
\(868\) 0 0
\(869\) 53.0888i 1.80091i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) − 2.38541i − 0.0807337i
\(874\) 0 0
\(875\) 15.6975 0.530673
\(876\) 0 0
\(877\) − 26.5958i − 0.898075i −0.893513 0.449038i \(-0.851767\pi\)
0.893513 0.449038i \(-0.148233\pi\)
\(878\) 0 0
\(879\) − 1.35348i − 0.0456516i
\(880\) 0 0
\(881\) −56.4634 −1.90230 −0.951151 0.308727i \(-0.900097\pi\)
−0.951151 + 0.308727i \(0.900097\pi\)
\(882\) 0 0
\(883\) −29.6728 −0.998568 −0.499284 0.866438i \(-0.666404\pi\)
−0.499284 + 0.866438i \(0.666404\pi\)
\(884\) 0 0
\(885\) −5.71022 −0.191947
\(886\) 0 0
\(887\) −42.4301 −1.42466 −0.712332 0.701843i \(-0.752361\pi\)
−0.712332 + 0.701843i \(0.752361\pi\)
\(888\) 0 0
\(889\) − 19.1061i − 0.640798i
\(890\) 0 0
\(891\) − 4.19367i − 0.140493i
\(892\) 0 0
\(893\) −6.33103 −0.211860
\(894\) 0 0
\(895\) − 3.57236i − 0.119411i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 4.64508i − 0.154922i
\(900\) 0 0
\(901\) 13.9720 0.465475
\(902\) 0 0
\(903\) 13.8955i 0.462414i
\(904\) 0 0
\(905\) − 30.8410i − 1.02519i
\(906\) 0 0
\(907\) 11.1465 0.370114 0.185057 0.982728i \(-0.440753\pi\)
0.185057 + 0.982728i \(0.440753\pi\)
\(908\) 0 0
\(909\) 0.880061 0.0291898
\(910\) 0 0
\(911\) −44.4798 −1.47368 −0.736841 0.676066i \(-0.763683\pi\)
−0.736841 + 0.676066i \(0.763683\pi\)
\(912\) 0 0
\(913\) −65.5389 −2.16902
\(914\) 0 0
\(915\) 14.7661i 0.488154i
\(916\) 0 0
\(917\) 1.07727i 0.0355747i
\(918\) 0 0
\(919\) −31.2712 −1.03154 −0.515771 0.856726i \(-0.672495\pi\)
−0.515771 + 0.856726i \(0.672495\pi\)
\(920\) 0 0
\(921\) 23.9864i 0.790380i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 11.8801i − 0.390615i
\(926\) 0 0
\(927\) −5.21107 −0.171154
\(928\) 0 0
\(929\) 19.2303i 0.630927i 0.948938 + 0.315464i \(0.102160\pi\)
−0.948938 + 0.315464i \(0.897840\pi\)
\(930\) 0 0
\(931\) 6.34625i 0.207990i
\(932\) 0 0
\(933\) −6.23414 −0.204097
\(934\) 0 0
\(935\) 13.2945 0.434775
\(936\) 0 0
\(937\) −40.1991 −1.31325 −0.656624 0.754218i \(-0.728016\pi\)
−0.656624 + 0.754218i \(0.728016\pi\)
\(938\) 0 0
\(939\) −28.7120 −0.936982
\(940\) 0 0
\(941\) 57.3886i 1.87082i 0.353570 + 0.935408i \(0.384968\pi\)
−0.353570 + 0.935408i \(0.615032\pi\)
\(942\) 0 0
\(943\) 30.2046i 0.983597i
\(944\) 0 0
\(945\) 2.43106 0.0790824
\(946\) 0 0
\(947\) 12.1040i 0.393328i 0.980471 + 0.196664i \(0.0630108\pi\)
−0.980471 + 0.196664i \(0.936989\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 13.8082i 0.447761i
\(952\) 0 0
\(953\) −23.5095 −0.761547 −0.380773 0.924668i \(-0.624342\pi\)
−0.380773 + 0.924668i \(0.624342\pi\)
\(954\) 0 0
\(955\) 25.5723i 0.827501i
\(956\) 0 0
\(957\) − 13.2101i − 0.427021i
\(958\) 0 0
\(959\) −8.01254 −0.258738
\(960\) 0 0
\(961\) 28.8255 0.929854
\(962\) 0 0
\(963\) 19.9637 0.643321
\(964\) 0 0
\(965\) 46.7910 1.50626
\(966\) 0 0
\(967\) 45.1235i 1.45107i 0.688183 + 0.725537i \(0.258409\pi\)
−0.688183 + 0.725537i \(0.741591\pi\)
\(968\) 0 0
\(969\) 2.00462i 0.0643977i
\(970\) 0 0
\(971\) 39.7833 1.27671 0.638353 0.769744i \(-0.279616\pi\)
0.638353 + 0.769744i \(0.279616\pi\)
\(972\) 0 0
\(973\) 26.0399i 0.834801i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 10.4379i 0.333937i 0.985962 + 0.166968i \(0.0533978\pi\)
−0.985962 + 0.166968i \(0.946602\pi\)
\(978\) 0 0
\(979\) −44.7377 −1.42982
\(980\) 0 0
\(981\) − 18.5577i − 0.592502i
\(982\) 0 0
\(983\) 1.56154i 0.0498052i 0.999690 + 0.0249026i \(0.00792757\pi\)
−0.999690 + 0.0249026i \(0.992072\pi\)
\(984\) 0 0
\(985\) −8.42000 −0.268283
\(986\) 0 0
\(987\) 6.86992 0.218672
\(988\) 0 0
\(989\) 32.4375 1.03145
\(990\) 0 0
\(991\) −3.79782 −0.120642 −0.0603209 0.998179i \(-0.519212\pi\)
−0.0603209 + 0.998179i \(0.519212\pi\)
\(992\) 0 0
\(993\) 7.06203i 0.224107i
\(994\) 0 0
\(995\) 8.46121i 0.268238i
\(996\) 0 0
\(997\) −19.2540 −0.609780 −0.304890 0.952388i \(-0.598620\pi\)
−0.304890 + 0.952388i \(0.598620\pi\)
\(998\) 0 0
\(999\) − 8.15343i − 0.257963i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4056.2.c.r.337.8 12
13.5 odd 4 4056.2.a.bi.1.4 yes 6
13.8 odd 4 4056.2.a.bh.1.3 6
13.12 even 2 inner 4056.2.c.r.337.5 12
52.31 even 4 8112.2.a.cu.1.4 6
52.47 even 4 8112.2.a.ct.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4056.2.a.bh.1.3 6 13.8 odd 4
4056.2.a.bi.1.4 yes 6 13.5 odd 4
4056.2.c.r.337.5 12 13.12 even 2 inner
4056.2.c.r.337.8 12 1.1 even 1 trivial
8112.2.a.ct.1.3 6 52.47 even 4
8112.2.a.cu.1.4 6 52.31 even 4