Properties

Label 4056.2.c.r.337.5
Level $4056$
Weight $2$
Character 4056.337
Analytic conductor $32.387$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4056,2,Mod(337,4056)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4056, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4056.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4056 = 2^{3} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4056.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,12,0,0,0,0,0,12,0,0,0,0,0,0,0,-18,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.3873230598\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 39x^{10} + 601x^{8} + 4599x^{6} + 17849x^{4} + 31203x^{2} + 16129 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.5
Root \(-1.88227i\) of defining polynomial
Character \(\chi\) \(=\) 4056.337
Dual form 4056.2.c.r.337.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.88227i q^{5} +1.29156i q^{7} +1.00000 q^{9} +4.19367i q^{11} -1.88227i q^{15} +1.68421 q^{17} -1.19025i q^{19} +1.29156i q^{21} -3.01499 q^{23} +1.45707 q^{25} +1.00000 q^{27} +3.15000 q^{29} +1.47463i q^{31} +4.19367i q^{33} +2.43106 q^{35} +8.15343i q^{37} +10.0181i q^{41} -10.7587 q^{43} -1.88227i q^{45} -5.31909i q^{47} +5.33187 q^{49} +1.68421 q^{51} +8.29590 q^{53} +7.89361 q^{55} -1.19025i q^{57} -3.03369i q^{59} +7.84487 q^{61} +1.29156i q^{63} -4.50497i q^{67} -3.01499 q^{69} +3.85816i q^{71} +1.76494i q^{73} +1.45707 q^{75} -5.41637 q^{77} -12.6593 q^{79} +1.00000 q^{81} +15.6280i q^{83} -3.17013i q^{85} +3.15000 q^{87} +10.6679i q^{89} +1.47463i q^{93} -2.24036 q^{95} +2.38541i q^{97} +4.19367i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{3} + 12 q^{9} - 18 q^{17} - 24 q^{23} - 18 q^{25} + 12 q^{27} + 14 q^{29} + 12 q^{35} - 30 q^{43} - 26 q^{49} - 18 q^{51} + 44 q^{53} + 6 q^{55} + 50 q^{61} - 24 q^{69} - 18 q^{75} - 90 q^{77}+ \cdots - 94 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4056\mathbb{Z}\right)^\times\).

\(n\) \(1015\) \(2029\) \(2705\) \(3889\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) − 1.88227i − 0.841776i −0.907113 0.420888i \(-0.861719\pi\)
0.907113 0.420888i \(-0.138281\pi\)
\(6\) 0 0
\(7\) 1.29156i 0.488164i 0.969755 + 0.244082i \(0.0784866\pi\)
−0.969755 + 0.244082i \(0.921513\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.19367i 1.26444i 0.774790 + 0.632219i \(0.217856\pi\)
−0.774790 + 0.632219i \(0.782144\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) − 1.88227i − 0.486000i
\(16\) 0 0
\(17\) 1.68421 0.408480 0.204240 0.978921i \(-0.434528\pi\)
0.204240 + 0.978921i \(0.434528\pi\)
\(18\) 0 0
\(19\) − 1.19025i − 0.273061i −0.990636 0.136531i \(-0.956405\pi\)
0.990636 0.136531i \(-0.0435952\pi\)
\(20\) 0 0
\(21\) 1.29156i 0.281841i
\(22\) 0 0
\(23\) −3.01499 −0.628670 −0.314335 0.949312i \(-0.601781\pi\)
−0.314335 + 0.949312i \(0.601781\pi\)
\(24\) 0 0
\(25\) 1.45707 0.291413
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 3.15000 0.584941 0.292471 0.956275i \(-0.405523\pi\)
0.292471 + 0.956275i \(0.405523\pi\)
\(30\) 0 0
\(31\) 1.47463i 0.264851i 0.991193 + 0.132425i \(0.0422765\pi\)
−0.991193 + 0.132425i \(0.957723\pi\)
\(32\) 0 0
\(33\) 4.19367i 0.730024i
\(34\) 0 0
\(35\) 2.43106 0.410924
\(36\) 0 0
\(37\) 8.15343i 1.34041i 0.742174 + 0.670207i \(0.233795\pi\)
−0.742174 + 0.670207i \(0.766205\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.0181i 1.56457i 0.622921 + 0.782285i \(0.285946\pi\)
−0.622921 + 0.782285i \(0.714054\pi\)
\(42\) 0 0
\(43\) −10.7587 −1.64069 −0.820345 0.571869i \(-0.806218\pi\)
−0.820345 + 0.571869i \(0.806218\pi\)
\(44\) 0 0
\(45\) − 1.88227i − 0.280592i
\(46\) 0 0
\(47\) − 5.31909i − 0.775869i −0.921687 0.387934i \(-0.873189\pi\)
0.921687 0.387934i \(-0.126811\pi\)
\(48\) 0 0
\(49\) 5.33187 0.761696
\(50\) 0 0
\(51\) 1.68421 0.235836
\(52\) 0 0
\(53\) 8.29590 1.13953 0.569765 0.821808i \(-0.307034\pi\)
0.569765 + 0.821808i \(0.307034\pi\)
\(54\) 0 0
\(55\) 7.89361 1.06437
\(56\) 0 0
\(57\) − 1.19025i − 0.157652i
\(58\) 0 0
\(59\) − 3.03369i − 0.394953i −0.980308 0.197477i \(-0.936725\pi\)
0.980308 0.197477i \(-0.0632746\pi\)
\(60\) 0 0
\(61\) 7.84487 1.00443 0.502216 0.864742i \(-0.332518\pi\)
0.502216 + 0.864742i \(0.332518\pi\)
\(62\) 0 0
\(63\) 1.29156i 0.162721i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 4.50497i − 0.550370i −0.961391 0.275185i \(-0.911261\pi\)
0.961391 0.275185i \(-0.0887390\pi\)
\(68\) 0 0
\(69\) −3.01499 −0.362963
\(70\) 0 0
\(71\) 3.85816i 0.457880i 0.973441 + 0.228940i \(0.0735259\pi\)
−0.973441 + 0.228940i \(0.926474\pi\)
\(72\) 0 0
\(73\) 1.76494i 0.206571i 0.994652 + 0.103285i \(0.0329355\pi\)
−0.994652 + 0.103285i \(0.967064\pi\)
\(74\) 0 0
\(75\) 1.45707 0.168248
\(76\) 0 0
\(77\) −5.41637 −0.617253
\(78\) 0 0
\(79\) −12.6593 −1.42428 −0.712140 0.702037i \(-0.752274\pi\)
−0.712140 + 0.702037i \(0.752274\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 15.6280i 1.71540i 0.514149 + 0.857701i \(0.328108\pi\)
−0.514149 + 0.857701i \(0.671892\pi\)
\(84\) 0 0
\(85\) − 3.17013i − 0.343849i
\(86\) 0 0
\(87\) 3.15000 0.337716
\(88\) 0 0
\(89\) 10.6679i 1.13080i 0.824818 + 0.565398i \(0.191278\pi\)
−0.824818 + 0.565398i \(0.808722\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.47463i 0.152912i
\(94\) 0 0
\(95\) −2.24036 −0.229856
\(96\) 0 0
\(97\) 2.38541i 0.242201i 0.992640 + 0.121101i \(0.0386424\pi\)
−0.992640 + 0.121101i \(0.961358\pi\)
\(98\) 0 0
\(99\) 4.19367i 0.421479i
\(100\) 0 0
\(101\) 0.880061 0.0875693 0.0437847 0.999041i \(-0.486058\pi\)
0.0437847 + 0.999041i \(0.486058\pi\)
\(102\) 0 0
\(103\) −5.21107 −0.513462 −0.256731 0.966483i \(-0.582645\pi\)
−0.256731 + 0.966483i \(0.582645\pi\)
\(104\) 0 0
\(105\) 2.43106 0.237247
\(106\) 0 0
\(107\) 19.9637 1.92996 0.964981 0.262319i \(-0.0844874\pi\)
0.964981 + 0.262319i \(0.0844874\pi\)
\(108\) 0 0
\(109\) 18.5577i 1.77751i 0.458386 + 0.888753i \(0.348428\pi\)
−0.458386 + 0.888753i \(0.651572\pi\)
\(110\) 0 0
\(111\) 8.15343i 0.773889i
\(112\) 0 0
\(113\) 9.98409 0.939224 0.469612 0.882873i \(-0.344394\pi\)
0.469612 + 0.882873i \(0.344394\pi\)
\(114\) 0 0
\(115\) 5.67503i 0.529199i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.17525i 0.199405i
\(120\) 0 0
\(121\) −6.58685 −0.598805
\(122\) 0 0
\(123\) 10.0181i 0.903305i
\(124\) 0 0
\(125\) − 12.1539i − 1.08708i
\(126\) 0 0
\(127\) 14.7930 1.31267 0.656335 0.754469i \(-0.272106\pi\)
0.656335 + 0.754469i \(0.272106\pi\)
\(128\) 0 0
\(129\) −10.7587 −0.947252
\(130\) 0 0
\(131\) −0.834088 −0.0728746 −0.0364373 0.999336i \(-0.511601\pi\)
−0.0364373 + 0.999336i \(0.511601\pi\)
\(132\) 0 0
\(133\) 1.53727 0.133299
\(134\) 0 0
\(135\) − 1.88227i − 0.162000i
\(136\) 0 0
\(137\) 6.20377i 0.530024i 0.964245 + 0.265012i \(0.0853759\pi\)
−0.964245 + 0.265012i \(0.914624\pi\)
\(138\) 0 0
\(139\) −20.1616 −1.71008 −0.855042 0.518559i \(-0.826469\pi\)
−0.855042 + 0.518559i \(0.826469\pi\)
\(140\) 0 0
\(141\) − 5.31909i − 0.447948i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) − 5.92915i − 0.492389i
\(146\) 0 0
\(147\) 5.33187 0.439766
\(148\) 0 0
\(149\) − 16.2561i − 1.33175i −0.746063 0.665876i \(-0.768058\pi\)
0.746063 0.665876i \(-0.231942\pi\)
\(150\) 0 0
\(151\) − 18.0930i − 1.47239i −0.676769 0.736195i \(-0.736621\pi\)
0.676769 0.736195i \(-0.263379\pi\)
\(152\) 0 0
\(153\) 1.68421 0.136160
\(154\) 0 0
\(155\) 2.77564 0.222945
\(156\) 0 0
\(157\) 15.0559 1.20159 0.600795 0.799403i \(-0.294851\pi\)
0.600795 + 0.799403i \(0.294851\pi\)
\(158\) 0 0
\(159\) 8.29590 0.657907
\(160\) 0 0
\(161\) − 3.89404i − 0.306894i
\(162\) 0 0
\(163\) 7.31660i 0.573080i 0.958068 + 0.286540i \(0.0925051\pi\)
−0.958068 + 0.286540i \(0.907495\pi\)
\(164\) 0 0
\(165\) 7.89361 0.614517
\(166\) 0 0
\(167\) − 11.9586i − 0.925385i −0.886519 0.462693i \(-0.846883\pi\)
0.886519 0.462693i \(-0.153117\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) − 1.19025i − 0.0910204i
\(172\) 0 0
\(173\) 16.6231 1.26383 0.631915 0.775038i \(-0.282269\pi\)
0.631915 + 0.775038i \(0.282269\pi\)
\(174\) 0 0
\(175\) 1.88189i 0.142257i
\(176\) 0 0
\(177\) − 3.03369i − 0.228026i
\(178\) 0 0
\(179\) −1.89790 −0.141856 −0.0709278 0.997481i \(-0.522596\pi\)
−0.0709278 + 0.997481i \(0.522596\pi\)
\(180\) 0 0
\(181\) −16.3850 −1.21789 −0.608944 0.793213i \(-0.708406\pi\)
−0.608944 + 0.793213i \(0.708406\pi\)
\(182\) 0 0
\(183\) 7.84487 0.579909
\(184\) 0 0
\(185\) 15.3469 1.12833
\(186\) 0 0
\(187\) 7.06300i 0.516498i
\(188\) 0 0
\(189\) 1.29156i 0.0939471i
\(190\) 0 0
\(191\) 13.5859 0.983042 0.491521 0.870866i \(-0.336441\pi\)
0.491521 + 0.870866i \(0.336441\pi\)
\(192\) 0 0
\(193\) 24.8588i 1.78938i 0.446689 + 0.894689i \(0.352603\pi\)
−0.446689 + 0.894689i \(0.647397\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 4.47333i − 0.318711i −0.987221 0.159356i \(-0.949058\pi\)
0.987221 0.159356i \(-0.0509416\pi\)
\(198\) 0 0
\(199\) 4.49522 0.318658 0.159329 0.987226i \(-0.449067\pi\)
0.159329 + 0.987226i \(0.449067\pi\)
\(200\) 0 0
\(201\) − 4.50497i − 0.317756i
\(202\) 0 0
\(203\) 4.06842i 0.285547i
\(204\) 0 0
\(205\) 18.8568 1.31702
\(206\) 0 0
\(207\) −3.01499 −0.209557
\(208\) 0 0
\(209\) 4.99150 0.345269
\(210\) 0 0
\(211\) 21.7861 1.49982 0.749908 0.661542i \(-0.230098\pi\)
0.749908 + 0.661542i \(0.230098\pi\)
\(212\) 0 0
\(213\) 3.85816i 0.264357i
\(214\) 0 0
\(215\) 20.2508i 1.38109i
\(216\) 0 0
\(217\) −1.90457 −0.129291
\(218\) 0 0
\(219\) 1.76494i 0.119264i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 0.0555395i − 0.00371920i −0.999998 0.00185960i \(-0.999408\pi\)
0.999998 0.00185960i \(-0.000591929\pi\)
\(224\) 0 0
\(225\) 1.45707 0.0971378
\(226\) 0 0
\(227\) 5.24936i 0.348412i 0.984709 + 0.174206i \(0.0557359\pi\)
−0.984709 + 0.174206i \(0.944264\pi\)
\(228\) 0 0
\(229\) − 21.6951i − 1.43365i −0.697252 0.716826i \(-0.745594\pi\)
0.697252 0.716826i \(-0.254406\pi\)
\(230\) 0 0
\(231\) −5.41637 −0.356371
\(232\) 0 0
\(233\) −9.34933 −0.612495 −0.306248 0.951952i \(-0.599074\pi\)
−0.306248 + 0.951952i \(0.599074\pi\)
\(234\) 0 0
\(235\) −10.0119 −0.653107
\(236\) 0 0
\(237\) −12.6593 −0.822309
\(238\) 0 0
\(239\) 14.7781i 0.955913i 0.878383 + 0.477957i \(0.158622\pi\)
−0.878383 + 0.477957i \(0.841378\pi\)
\(240\) 0 0
\(241\) − 16.7668i − 1.08004i −0.841651 0.540022i \(-0.818416\pi\)
0.841651 0.540022i \(-0.181584\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) − 10.0360i − 0.641178i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 15.6280i 0.990387i
\(250\) 0 0
\(251\) −1.44048 −0.0909222 −0.0454611 0.998966i \(-0.514476\pi\)
−0.0454611 + 0.998966i \(0.514476\pi\)
\(252\) 0 0
\(253\) − 12.6439i − 0.794914i
\(254\) 0 0
\(255\) − 3.17013i − 0.198521i
\(256\) 0 0
\(257\) 21.0265 1.31160 0.655799 0.754935i \(-0.272332\pi\)
0.655799 + 0.754935i \(0.272332\pi\)
\(258\) 0 0
\(259\) −10.5306 −0.654342
\(260\) 0 0
\(261\) 3.15000 0.194980
\(262\) 0 0
\(263\) 10.6833 0.658760 0.329380 0.944197i \(-0.393160\pi\)
0.329380 + 0.944197i \(0.393160\pi\)
\(264\) 0 0
\(265\) − 15.6151i − 0.959228i
\(266\) 0 0
\(267\) 10.6679i 0.652866i
\(268\) 0 0
\(269\) 18.3247 1.11728 0.558638 0.829412i \(-0.311324\pi\)
0.558638 + 0.829412i \(0.311324\pi\)
\(270\) 0 0
\(271\) − 3.64076i − 0.221161i −0.993867 0.110580i \(-0.964729\pi\)
0.993867 0.110580i \(-0.0352709\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.11045i 0.368474i
\(276\) 0 0
\(277\) −22.3601 −1.34349 −0.671744 0.740783i \(-0.734454\pi\)
−0.671744 + 0.740783i \(0.734454\pi\)
\(278\) 0 0
\(279\) 1.47463i 0.0882836i
\(280\) 0 0
\(281\) 2.39777i 0.143039i 0.997439 + 0.0715195i \(0.0227848\pi\)
−0.997439 + 0.0715195i \(0.977215\pi\)
\(282\) 0 0
\(283\) 1.64168 0.0975879 0.0487939 0.998809i \(-0.484462\pi\)
0.0487939 + 0.998809i \(0.484462\pi\)
\(284\) 0 0
\(285\) −2.24036 −0.132708
\(286\) 0 0
\(287\) −12.9390 −0.763766
\(288\) 0 0
\(289\) −14.1635 −0.833144
\(290\) 0 0
\(291\) 2.38541i 0.139835i
\(292\) 0 0
\(293\) 1.35348i 0.0790709i 0.999218 + 0.0395355i \(0.0125878\pi\)
−0.999218 + 0.0395355i \(0.987412\pi\)
\(294\) 0 0
\(295\) −5.71022 −0.332462
\(296\) 0 0
\(297\) 4.19367i 0.243341i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) − 13.8955i − 0.800925i
\(302\) 0 0
\(303\) 0.880061 0.0505582
\(304\) 0 0
\(305\) − 14.7661i − 0.845507i
\(306\) 0 0
\(307\) − 23.9864i − 1.36898i −0.729023 0.684489i \(-0.760025\pi\)
0.729023 0.684489i \(-0.239975\pi\)
\(308\) 0 0
\(309\) −5.21107 −0.296447
\(310\) 0 0
\(311\) −6.23414 −0.353506 −0.176753 0.984255i \(-0.556559\pi\)
−0.176753 + 0.984255i \(0.556559\pi\)
\(312\) 0 0
\(313\) −28.7120 −1.62290 −0.811450 0.584422i \(-0.801321\pi\)
−0.811450 + 0.584422i \(0.801321\pi\)
\(314\) 0 0
\(315\) 2.43106 0.136975
\(316\) 0 0
\(317\) − 13.8082i − 0.775545i −0.921755 0.387772i \(-0.873245\pi\)
0.921755 0.387772i \(-0.126755\pi\)
\(318\) 0 0
\(319\) 13.2101i 0.739622i
\(320\) 0 0
\(321\) 19.9637 1.11426
\(322\) 0 0
\(323\) − 2.00462i − 0.111540i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 18.5577i 1.02624i
\(328\) 0 0
\(329\) 6.86992 0.378751
\(330\) 0 0
\(331\) − 7.06203i − 0.388165i −0.980985 0.194082i \(-0.937827\pi\)
0.980985 0.194082i \(-0.0621729\pi\)
\(332\) 0 0
\(333\) 8.15343i 0.446805i
\(334\) 0 0
\(335\) −8.47956 −0.463288
\(336\) 0 0
\(337\) 15.9635 0.869585 0.434792 0.900531i \(-0.356822\pi\)
0.434792 + 0.900531i \(0.356822\pi\)
\(338\) 0 0
\(339\) 9.98409 0.542261
\(340\) 0 0
\(341\) −6.18410 −0.334888
\(342\) 0 0
\(343\) 15.9274i 0.859996i
\(344\) 0 0
\(345\) 5.67503i 0.305533i
\(346\) 0 0
\(347\) 17.1822 0.922388 0.461194 0.887299i \(-0.347421\pi\)
0.461194 + 0.887299i \(0.347421\pi\)
\(348\) 0 0
\(349\) 28.2999i 1.51486i 0.652918 + 0.757429i \(0.273545\pi\)
−0.652918 + 0.757429i \(0.726455\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 0.313161i − 0.0166679i −0.999965 0.00833393i \(-0.997347\pi\)
0.999965 0.00833393i \(-0.00265280\pi\)
\(354\) 0 0
\(355\) 7.26210 0.385432
\(356\) 0 0
\(357\) 2.17525i 0.115127i
\(358\) 0 0
\(359\) 12.3342i 0.650977i 0.945546 + 0.325488i \(0.105529\pi\)
−0.945546 + 0.325488i \(0.894471\pi\)
\(360\) 0 0
\(361\) 17.5833 0.925438
\(362\) 0 0
\(363\) −6.58685 −0.345720
\(364\) 0 0
\(365\) 3.32209 0.173886
\(366\) 0 0
\(367\) −9.08368 −0.474164 −0.237082 0.971490i \(-0.576191\pi\)
−0.237082 + 0.971490i \(0.576191\pi\)
\(368\) 0 0
\(369\) 10.0181i 0.521523i
\(370\) 0 0
\(371\) 10.7146i 0.556277i
\(372\) 0 0
\(373\) −16.5431 −0.856569 −0.428285 0.903644i \(-0.640882\pi\)
−0.428285 + 0.903644i \(0.640882\pi\)
\(374\) 0 0
\(375\) − 12.1539i − 0.627626i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 10.4212i − 0.535299i −0.963516 0.267650i \(-0.913753\pi\)
0.963516 0.267650i \(-0.0862469\pi\)
\(380\) 0 0
\(381\) 14.7930 0.757871
\(382\) 0 0
\(383\) 15.5767i 0.795931i 0.917400 + 0.397965i \(0.130284\pi\)
−0.917400 + 0.397965i \(0.869716\pi\)
\(384\) 0 0
\(385\) 10.1951i 0.519589i
\(386\) 0 0
\(387\) −10.7587 −0.546896
\(388\) 0 0
\(389\) −13.0121 −0.659742 −0.329871 0.944026i \(-0.607005\pi\)
−0.329871 + 0.944026i \(0.607005\pi\)
\(390\) 0 0
\(391\) −5.07787 −0.256799
\(392\) 0 0
\(393\) −0.834088 −0.0420742
\(394\) 0 0
\(395\) 23.8282i 1.19892i
\(396\) 0 0
\(397\) − 33.9449i − 1.70364i −0.523831 0.851822i \(-0.675498\pi\)
0.523831 0.851822i \(-0.324502\pi\)
\(398\) 0 0
\(399\) 1.53727 0.0769600
\(400\) 0 0
\(401\) 37.0787i 1.85162i 0.377988 + 0.925811i \(0.376616\pi\)
−0.377988 + 0.925811i \(0.623384\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 1.88227i − 0.0935307i
\(406\) 0 0
\(407\) −34.1928 −1.69487
\(408\) 0 0
\(409\) − 31.0280i − 1.53424i −0.641505 0.767118i \(-0.721690\pi\)
0.641505 0.767118i \(-0.278310\pi\)
\(410\) 0 0
\(411\) 6.20377i 0.306009i
\(412\) 0 0
\(413\) 3.91819 0.192802
\(414\) 0 0
\(415\) 29.4162 1.44398
\(416\) 0 0
\(417\) −20.1616 −0.987317
\(418\) 0 0
\(419\) −27.5226 −1.34457 −0.672284 0.740293i \(-0.734687\pi\)
−0.672284 + 0.740293i \(0.734687\pi\)
\(420\) 0 0
\(421\) 10.2919i 0.501599i 0.968039 + 0.250799i \(0.0806934\pi\)
−0.968039 + 0.250799i \(0.919307\pi\)
\(422\) 0 0
\(423\) − 5.31909i − 0.258623i
\(424\) 0 0
\(425\) 2.45400 0.119036
\(426\) 0 0
\(427\) 10.1321i 0.490327i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 30.9340i 1.49004i 0.667043 + 0.745020i \(0.267560\pi\)
−0.667043 + 0.745020i \(0.732440\pi\)
\(432\) 0 0
\(433\) −9.59342 −0.461030 −0.230515 0.973069i \(-0.574041\pi\)
−0.230515 + 0.973069i \(0.574041\pi\)
\(434\) 0 0
\(435\) − 5.92915i − 0.284281i
\(436\) 0 0
\(437\) 3.58859i 0.171665i
\(438\) 0 0
\(439\) −18.3735 −0.876918 −0.438459 0.898751i \(-0.644476\pi\)
−0.438459 + 0.898751i \(0.644476\pi\)
\(440\) 0 0
\(441\) 5.33187 0.253899
\(442\) 0 0
\(443\) −16.7144 −0.794125 −0.397062 0.917792i \(-0.629970\pi\)
−0.397062 + 0.917792i \(0.629970\pi\)
\(444\) 0 0
\(445\) 20.0799 0.951878
\(446\) 0 0
\(447\) − 16.2561i − 0.768887i
\(448\) 0 0
\(449\) 32.4482i 1.53132i 0.643243 + 0.765662i \(0.277588\pi\)
−0.643243 + 0.765662i \(0.722412\pi\)
\(450\) 0 0
\(451\) −42.0127 −1.97830
\(452\) 0 0
\(453\) − 18.0930i − 0.850085i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 16.5767i 0.775427i 0.921780 + 0.387713i \(0.126735\pi\)
−0.921780 + 0.387713i \(0.873265\pi\)
\(458\) 0 0
\(459\) 1.68421 0.0786120
\(460\) 0 0
\(461\) 2.43380i 0.113353i 0.998393 + 0.0566767i \(0.0180504\pi\)
−0.998393 + 0.0566767i \(0.981950\pi\)
\(462\) 0 0
\(463\) − 30.9325i − 1.43755i −0.695240 0.718777i \(-0.744702\pi\)
0.695240 0.718777i \(-0.255298\pi\)
\(464\) 0 0
\(465\) 2.77564 0.128717
\(466\) 0 0
\(467\) −19.4582 −0.900417 −0.450208 0.892924i \(-0.648650\pi\)
−0.450208 + 0.892924i \(0.648650\pi\)
\(468\) 0 0
\(469\) 5.81844 0.268670
\(470\) 0 0
\(471\) 15.0559 0.693738
\(472\) 0 0
\(473\) − 45.1185i − 2.07455i
\(474\) 0 0
\(475\) − 1.73427i − 0.0795737i
\(476\) 0 0
\(477\) 8.29590 0.379843
\(478\) 0 0
\(479\) − 21.0622i − 0.962356i −0.876623 0.481178i \(-0.840209\pi\)
0.876623 0.481178i \(-0.159791\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) − 3.89404i − 0.177185i
\(484\) 0 0
\(485\) 4.48997 0.203879
\(486\) 0 0
\(487\) 37.6092i 1.70424i 0.523349 + 0.852118i \(0.324682\pi\)
−0.523349 + 0.852118i \(0.675318\pi\)
\(488\) 0 0
\(489\) 7.31660i 0.330868i
\(490\) 0 0
\(491\) −36.5335 −1.64873 −0.824367 0.566056i \(-0.808469\pi\)
−0.824367 + 0.566056i \(0.808469\pi\)
\(492\) 0 0
\(493\) 5.30526 0.238937
\(494\) 0 0
\(495\) 7.89361 0.354791
\(496\) 0 0
\(497\) −4.98305 −0.223520
\(498\) 0 0
\(499\) − 22.4840i − 1.00652i −0.864134 0.503262i \(-0.832133\pi\)
0.864134 0.503262i \(-0.167867\pi\)
\(500\) 0 0
\(501\) − 11.9586i − 0.534271i
\(502\) 0 0
\(503\) −2.21863 −0.0989237 −0.0494619 0.998776i \(-0.515751\pi\)
−0.0494619 + 0.998776i \(0.515751\pi\)
\(504\) 0 0
\(505\) − 1.65651i − 0.0737137i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 28.2456i − 1.25196i −0.779837 0.625982i \(-0.784698\pi\)
0.779837 0.625982i \(-0.215302\pi\)
\(510\) 0 0
\(511\) −2.27953 −0.100840
\(512\) 0 0
\(513\) − 1.19025i − 0.0525507i
\(514\) 0 0
\(515\) 9.80863i 0.432220i
\(516\) 0 0
\(517\) 22.3065 0.981038
\(518\) 0 0
\(519\) 16.6231 0.729673
\(520\) 0 0
\(521\) 28.1688 1.23410 0.617050 0.786924i \(-0.288328\pi\)
0.617050 + 0.786924i \(0.288328\pi\)
\(522\) 0 0
\(523\) 4.70961 0.205937 0.102968 0.994685i \(-0.467166\pi\)
0.102968 + 0.994685i \(0.467166\pi\)
\(524\) 0 0
\(525\) 1.88189i 0.0821323i
\(526\) 0 0
\(527\) 2.48358i 0.108186i
\(528\) 0 0
\(529\) −13.9098 −0.604774
\(530\) 0 0
\(531\) − 3.03369i − 0.131651i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 37.5770i − 1.62460i
\(536\) 0 0
\(537\) −1.89790 −0.0819004
\(538\) 0 0
\(539\) 22.3601i 0.963118i
\(540\) 0 0
\(541\) − 3.17651i − 0.136569i −0.997666 0.0682844i \(-0.978247\pi\)
0.997666 0.0682844i \(-0.0217525\pi\)
\(542\) 0 0
\(543\) −16.3850 −0.703148
\(544\) 0 0
\(545\) 34.9306 1.49626
\(546\) 0 0
\(547\) −25.4331 −1.08744 −0.543721 0.839266i \(-0.682985\pi\)
−0.543721 + 0.839266i \(0.682985\pi\)
\(548\) 0 0
\(549\) 7.84487 0.334811
\(550\) 0 0
\(551\) − 3.74928i − 0.159725i
\(552\) 0 0
\(553\) − 16.3502i − 0.695282i
\(554\) 0 0
\(555\) 15.3469 0.651441
\(556\) 0 0
\(557\) − 20.1670i − 0.854505i −0.904132 0.427252i \(-0.859482\pi\)
0.904132 0.427252i \(-0.140518\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 7.06300i 0.298200i
\(562\) 0 0
\(563\) 18.2498 0.769136 0.384568 0.923097i \(-0.374350\pi\)
0.384568 + 0.923097i \(0.374350\pi\)
\(564\) 0 0
\(565\) − 18.7927i − 0.790616i
\(566\) 0 0
\(567\) 1.29156i 0.0542404i
\(568\) 0 0
\(569\) −27.4857 −1.15226 −0.576129 0.817359i \(-0.695438\pi\)
−0.576129 + 0.817359i \(0.695438\pi\)
\(570\) 0 0
\(571\) 0.0250476 0.00104821 0.000524106 1.00000i \(-0.499833\pi\)
0.000524106 1.00000i \(0.499833\pi\)
\(572\) 0 0
\(573\) 13.5859 0.567559
\(574\) 0 0
\(575\) −4.39305 −0.183203
\(576\) 0 0
\(577\) − 21.0269i − 0.875362i −0.899130 0.437681i \(-0.855800\pi\)
0.899130 0.437681i \(-0.144200\pi\)
\(578\) 0 0
\(579\) 24.8588i 1.03310i
\(580\) 0 0
\(581\) −20.1846 −0.837397
\(582\) 0 0
\(583\) 34.7902i 1.44086i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 29.4551i 1.21574i 0.794035 + 0.607872i \(0.207976\pi\)
−0.794035 + 0.607872i \(0.792024\pi\)
\(588\) 0 0
\(589\) 1.75517 0.0723206
\(590\) 0 0
\(591\) − 4.47333i − 0.184008i
\(592\) 0 0
\(593\) − 3.93477i − 0.161582i −0.996731 0.0807909i \(-0.974255\pi\)
0.996731 0.0807909i \(-0.0257446\pi\)
\(594\) 0 0
\(595\) 4.09441 0.167854
\(596\) 0 0
\(597\) 4.49522 0.183977
\(598\) 0 0
\(599\) 35.1931 1.43795 0.718975 0.695036i \(-0.244612\pi\)
0.718975 + 0.695036i \(0.244612\pi\)
\(600\) 0 0
\(601\) −14.9780 −0.610967 −0.305484 0.952197i \(-0.598818\pi\)
−0.305484 + 0.952197i \(0.598818\pi\)
\(602\) 0 0
\(603\) − 4.50497i − 0.183457i
\(604\) 0 0
\(605\) 12.3982i 0.504059i
\(606\) 0 0
\(607\) −24.6169 −0.999170 −0.499585 0.866265i \(-0.666514\pi\)
−0.499585 + 0.866265i \(0.666514\pi\)
\(608\) 0 0
\(609\) 4.06842i 0.164861i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 36.1429i − 1.45980i −0.683554 0.729900i \(-0.739567\pi\)
0.683554 0.729900i \(-0.260433\pi\)
\(614\) 0 0
\(615\) 18.8568 0.760380
\(616\) 0 0
\(617\) 12.0808i 0.486356i 0.969982 + 0.243178i \(0.0781898\pi\)
−0.969982 + 0.243178i \(0.921810\pi\)
\(618\) 0 0
\(619\) 23.1257i 0.929500i 0.885442 + 0.464750i \(0.153856\pi\)
−0.885442 + 0.464750i \(0.846144\pi\)
\(620\) 0 0
\(621\) −3.01499 −0.120988
\(622\) 0 0
\(623\) −13.7782 −0.552014
\(624\) 0 0
\(625\) −15.5916 −0.623665
\(626\) 0 0
\(627\) 4.99150 0.199341
\(628\) 0 0
\(629\) 13.7320i 0.547533i
\(630\) 0 0
\(631\) − 43.7565i − 1.74192i −0.491354 0.870960i \(-0.663498\pi\)
0.491354 0.870960i \(-0.336502\pi\)
\(632\) 0 0
\(633\) 21.7861 0.865920
\(634\) 0 0
\(635\) − 27.8445i − 1.10497i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 3.85816i 0.152627i
\(640\) 0 0
\(641\) 7.76562 0.306724 0.153362 0.988170i \(-0.450990\pi\)
0.153362 + 0.988170i \(0.450990\pi\)
\(642\) 0 0
\(643\) 9.44419i 0.372442i 0.982508 + 0.186221i \(0.0596241\pi\)
−0.982508 + 0.186221i \(0.940376\pi\)
\(644\) 0 0
\(645\) 20.2508i 0.797374i
\(646\) 0 0
\(647\) 41.8606 1.64571 0.822856 0.568250i \(-0.192379\pi\)
0.822856 + 0.568250i \(0.192379\pi\)
\(648\) 0 0
\(649\) 12.7223 0.499394
\(650\) 0 0
\(651\) −1.90457 −0.0746460
\(652\) 0 0
\(653\) −43.8823 −1.71725 −0.858624 0.512605i \(-0.828680\pi\)
−0.858624 + 0.512605i \(0.828680\pi\)
\(654\) 0 0
\(655\) 1.56998i 0.0613441i
\(656\) 0 0
\(657\) 1.76494i 0.0688569i
\(658\) 0 0
\(659\) −27.3533 −1.06553 −0.532767 0.846262i \(-0.678848\pi\)
−0.532767 + 0.846262i \(0.678848\pi\)
\(660\) 0 0
\(661\) − 46.8238i − 1.82123i −0.413251 0.910617i \(-0.635607\pi\)
0.413251 0.910617i \(-0.364393\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 2.89356i − 0.112208i
\(666\) 0 0
\(667\) −9.49724 −0.367735
\(668\) 0 0
\(669\) − 0.0555395i − 0.00214728i
\(670\) 0 0
\(671\) 32.8988i 1.27004i
\(672\) 0 0
\(673\) −36.2574 −1.39762 −0.698811 0.715307i \(-0.746287\pi\)
−0.698811 + 0.715307i \(0.746287\pi\)
\(674\) 0 0
\(675\) 1.45707 0.0560825
\(676\) 0 0
\(677\) 51.1630 1.96636 0.983178 0.182652i \(-0.0584682\pi\)
0.983178 + 0.182652i \(0.0584682\pi\)
\(678\) 0 0
\(679\) −3.08089 −0.118234
\(680\) 0 0
\(681\) 5.24936i 0.201156i
\(682\) 0 0
\(683\) − 30.8240i − 1.17945i −0.807605 0.589724i \(-0.799237\pi\)
0.807605 0.589724i \(-0.200763\pi\)
\(684\) 0 0
\(685\) 11.6772 0.446161
\(686\) 0 0
\(687\) − 21.6951i − 0.827720i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 4.12305i − 0.156848i −0.996920 0.0784241i \(-0.975011\pi\)
0.996920 0.0784241i \(-0.0249888\pi\)
\(692\) 0 0
\(693\) −5.41637 −0.205751
\(694\) 0 0
\(695\) 37.9495i 1.43951i
\(696\) 0 0
\(697\) 16.8726i 0.639095i
\(698\) 0 0
\(699\) −9.34933 −0.353624
\(700\) 0 0
\(701\) −6.97922 −0.263602 −0.131801 0.991276i \(-0.542076\pi\)
−0.131801 + 0.991276i \(0.542076\pi\)
\(702\) 0 0
\(703\) 9.70459 0.366015
\(704\) 0 0
\(705\) −10.0119 −0.377072
\(706\) 0 0
\(707\) 1.13665i 0.0427482i
\(708\) 0 0
\(709\) − 23.1455i − 0.869247i −0.900612 0.434623i \(-0.856882\pi\)
0.900612 0.434623i \(-0.143118\pi\)
\(710\) 0 0
\(711\) −12.6593 −0.474760
\(712\) 0 0
\(713\) − 4.44599i − 0.166504i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 14.7781i 0.551897i
\(718\) 0 0
\(719\) −21.8249 −0.813930 −0.406965 0.913444i \(-0.633413\pi\)
−0.406965 + 0.913444i \(0.633413\pi\)
\(720\) 0 0
\(721\) − 6.73041i − 0.250653i
\(722\) 0 0
\(723\) − 16.7668i − 0.623563i
\(724\) 0 0
\(725\) 4.58976 0.170460
\(726\) 0 0
\(727\) 43.0916 1.59818 0.799090 0.601211i \(-0.205315\pi\)
0.799090 + 0.601211i \(0.205315\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −18.1199 −0.670189
\(732\) 0 0
\(733\) 23.5077i 0.868277i 0.900846 + 0.434138i \(0.142947\pi\)
−0.900846 + 0.434138i \(0.857053\pi\)
\(734\) 0 0
\(735\) − 10.0360i − 0.370184i
\(736\) 0 0
\(737\) 18.8923 0.695909
\(738\) 0 0
\(739\) − 23.9187i − 0.879862i −0.898032 0.439931i \(-0.855003\pi\)
0.898032 0.439931i \(-0.144997\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.613067i 0.0224912i 0.999937 + 0.0112456i \(0.00357967\pi\)
−0.999937 + 0.0112456i \(0.996420\pi\)
\(744\) 0 0
\(745\) −30.5983 −1.12104
\(746\) 0 0
\(747\) 15.6280i 0.571800i
\(748\) 0 0
\(749\) 25.7843i 0.942137i
\(750\) 0 0
\(751\) −0.945022 −0.0344843 −0.0172422 0.999851i \(-0.505489\pi\)
−0.0172422 + 0.999851i \(0.505489\pi\)
\(752\) 0 0
\(753\) −1.44048 −0.0524939
\(754\) 0 0
\(755\) −34.0559 −1.23942
\(756\) 0 0
\(757\) −14.8014 −0.537966 −0.268983 0.963145i \(-0.586688\pi\)
−0.268983 + 0.963145i \(0.586688\pi\)
\(758\) 0 0
\(759\) − 12.6439i − 0.458944i
\(760\) 0 0
\(761\) − 11.6688i − 0.422994i −0.977379 0.211497i \(-0.932166\pi\)
0.977379 0.211497i \(-0.0678339\pi\)
\(762\) 0 0
\(763\) −23.9684 −0.867714
\(764\) 0 0
\(765\) − 3.17013i − 0.114616i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) − 2.64412i − 0.0953494i −0.998863 0.0476747i \(-0.984819\pi\)
0.998863 0.0476747i \(-0.0151811\pi\)
\(770\) 0 0
\(771\) 21.0265 0.757252
\(772\) 0 0
\(773\) 0.0776248i 0.00279197i 0.999999 + 0.00139599i \(0.000444356\pi\)
−0.999999 + 0.00139599i \(0.999556\pi\)
\(774\) 0 0
\(775\) 2.14863i 0.0771811i
\(776\) 0 0
\(777\) −10.5306 −0.377784
\(778\) 0 0
\(779\) 11.9240 0.427223
\(780\) 0 0
\(781\) −16.1799 −0.578961
\(782\) 0 0
\(783\) 3.15000 0.112572
\(784\) 0 0
\(785\) − 28.3392i − 1.01147i
\(786\) 0 0
\(787\) − 24.3434i − 0.867749i −0.900973 0.433874i \(-0.857146\pi\)
0.900973 0.433874i \(-0.142854\pi\)
\(788\) 0 0
\(789\) 10.6833 0.380335
\(790\) 0 0
\(791\) 12.8950i 0.458495i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 15.6151i − 0.553811i
\(796\) 0 0
\(797\) 46.4833 1.64652 0.823261 0.567663i \(-0.192152\pi\)
0.823261 + 0.567663i \(0.192152\pi\)
\(798\) 0 0
\(799\) − 8.95844i − 0.316927i
\(800\) 0 0
\(801\) 10.6679i 0.376932i
\(802\) 0 0
\(803\) −7.40158 −0.261196
\(804\) 0 0
\(805\) −7.32964 −0.258336
\(806\) 0 0
\(807\) 18.3247 0.645060
\(808\) 0 0
\(809\) 17.4581 0.613796 0.306898 0.951742i \(-0.400709\pi\)
0.306898 + 0.951742i \(0.400709\pi\)
\(810\) 0 0
\(811\) 13.3281i 0.468012i 0.972235 + 0.234006i \(0.0751835\pi\)
−0.972235 + 0.234006i \(0.924817\pi\)
\(812\) 0 0
\(813\) − 3.64076i − 0.127687i
\(814\) 0 0
\(815\) 13.7718 0.482405
\(816\) 0 0
\(817\) 12.8055i 0.448009i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 11.0294i − 0.384928i −0.981304 0.192464i \(-0.938352\pi\)
0.981304 0.192464i \(-0.0616479\pi\)
\(822\) 0 0
\(823\) 12.1161 0.422340 0.211170 0.977449i \(-0.432273\pi\)
0.211170 + 0.977449i \(0.432273\pi\)
\(824\) 0 0
\(825\) 6.11045i 0.212739i
\(826\) 0 0
\(827\) 23.6413i 0.822087i 0.911616 + 0.411044i \(0.134836\pi\)
−0.911616 + 0.411044i \(0.865164\pi\)
\(828\) 0 0
\(829\) 43.4519 1.50915 0.754574 0.656215i \(-0.227843\pi\)
0.754574 + 0.656215i \(0.227843\pi\)
\(830\) 0 0
\(831\) −22.3601 −0.775663
\(832\) 0 0
\(833\) 8.97997 0.311138
\(834\) 0 0
\(835\) −22.5093 −0.778967
\(836\) 0 0
\(837\) 1.47463i 0.0509706i
\(838\) 0 0
\(839\) − 17.2176i − 0.594416i −0.954813 0.297208i \(-0.903945\pi\)
0.954813 0.297208i \(-0.0960555\pi\)
\(840\) 0 0
\(841\) −19.0775 −0.657844
\(842\) 0 0
\(843\) 2.39777i 0.0825836i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 8.50731i − 0.292315i
\(848\) 0 0
\(849\) 1.64168 0.0563424
\(850\) 0 0
\(851\) − 24.5825i − 0.842678i
\(852\) 0 0
\(853\) 19.5329i 0.668793i 0.942432 + 0.334397i \(0.108533\pi\)
−0.942432 + 0.334397i \(0.891467\pi\)
\(854\) 0 0
\(855\) −2.24036 −0.0766188
\(856\) 0 0
\(857\) 19.9607 0.681843 0.340922 0.940092i \(-0.389261\pi\)
0.340922 + 0.940092i \(0.389261\pi\)
\(858\) 0 0
\(859\) 36.0681 1.23063 0.615315 0.788282i \(-0.289029\pi\)
0.615315 + 0.788282i \(0.289029\pi\)
\(860\) 0 0
\(861\) −12.9390 −0.440960
\(862\) 0 0
\(863\) 3.06724i 0.104410i 0.998636 + 0.0522051i \(0.0166249\pi\)
−0.998636 + 0.0522051i \(0.983375\pi\)
\(864\) 0 0
\(865\) − 31.2891i − 1.06386i
\(866\) 0 0
\(867\) −14.1635 −0.481016
\(868\) 0 0
\(869\) − 53.0888i − 1.80091i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 2.38541i 0.0807337i
\(874\) 0 0
\(875\) 15.6975 0.530673
\(876\) 0 0
\(877\) 26.5958i 0.898075i 0.893513 + 0.449038i \(0.148233\pi\)
−0.893513 + 0.449038i \(0.851767\pi\)
\(878\) 0 0
\(879\) 1.35348i 0.0456516i
\(880\) 0 0
\(881\) −56.4634 −1.90230 −0.951151 0.308727i \(-0.900097\pi\)
−0.951151 + 0.308727i \(0.900097\pi\)
\(882\) 0 0
\(883\) −29.6728 −0.998568 −0.499284 0.866438i \(-0.666404\pi\)
−0.499284 + 0.866438i \(0.666404\pi\)
\(884\) 0 0
\(885\) −5.71022 −0.191947
\(886\) 0 0
\(887\) −42.4301 −1.42466 −0.712332 0.701843i \(-0.752361\pi\)
−0.712332 + 0.701843i \(0.752361\pi\)
\(888\) 0 0
\(889\) 19.1061i 0.640798i
\(890\) 0 0
\(891\) 4.19367i 0.140493i
\(892\) 0 0
\(893\) −6.33103 −0.211860
\(894\) 0 0
\(895\) 3.57236i 0.119411i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.64508i 0.154922i
\(900\) 0 0
\(901\) 13.9720 0.465475
\(902\) 0 0
\(903\) − 13.8955i − 0.462414i
\(904\) 0 0
\(905\) 30.8410i 1.02519i
\(906\) 0 0
\(907\) 11.1465 0.370114 0.185057 0.982728i \(-0.440753\pi\)
0.185057 + 0.982728i \(0.440753\pi\)
\(908\) 0 0
\(909\) 0.880061 0.0291898
\(910\) 0 0
\(911\) −44.4798 −1.47368 −0.736841 0.676066i \(-0.763683\pi\)
−0.736841 + 0.676066i \(0.763683\pi\)
\(912\) 0 0
\(913\) −65.5389 −2.16902
\(914\) 0 0
\(915\) − 14.7661i − 0.488154i
\(916\) 0 0
\(917\) − 1.07727i − 0.0355747i
\(918\) 0 0
\(919\) −31.2712 −1.03154 −0.515771 0.856726i \(-0.672495\pi\)
−0.515771 + 0.856726i \(0.672495\pi\)
\(920\) 0 0
\(921\) − 23.9864i − 0.790380i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 11.8801i 0.390615i
\(926\) 0 0
\(927\) −5.21107 −0.171154
\(928\) 0 0
\(929\) − 19.2303i − 0.630927i −0.948938 0.315464i \(-0.897840\pi\)
0.948938 0.315464i \(-0.102160\pi\)
\(930\) 0 0
\(931\) − 6.34625i − 0.207990i
\(932\) 0 0
\(933\) −6.23414 −0.204097
\(934\) 0 0
\(935\) 13.2945 0.434775
\(936\) 0 0
\(937\) −40.1991 −1.31325 −0.656624 0.754218i \(-0.728016\pi\)
−0.656624 + 0.754218i \(0.728016\pi\)
\(938\) 0 0
\(939\) −28.7120 −0.936982
\(940\) 0 0
\(941\) − 57.3886i − 1.87082i −0.353570 0.935408i \(-0.615032\pi\)
0.353570 0.935408i \(-0.384968\pi\)
\(942\) 0 0
\(943\) − 30.2046i − 0.983597i
\(944\) 0 0
\(945\) 2.43106 0.0790824
\(946\) 0 0
\(947\) − 12.1040i − 0.393328i −0.980471 0.196664i \(-0.936989\pi\)
0.980471 0.196664i \(-0.0630108\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) − 13.8082i − 0.447761i
\(952\) 0 0
\(953\) −23.5095 −0.761547 −0.380773 0.924668i \(-0.624342\pi\)
−0.380773 + 0.924668i \(0.624342\pi\)
\(954\) 0 0
\(955\) − 25.5723i − 0.827501i
\(956\) 0 0
\(957\) 13.2101i 0.427021i
\(958\) 0 0
\(959\) −8.01254 −0.258738
\(960\) 0 0
\(961\) 28.8255 0.929854
\(962\) 0 0
\(963\) 19.9637 0.643321
\(964\) 0 0
\(965\) 46.7910 1.50626
\(966\) 0 0
\(967\) − 45.1235i − 1.45107i −0.688183 0.725537i \(-0.741591\pi\)
0.688183 0.725537i \(-0.258409\pi\)
\(968\) 0 0
\(969\) − 2.00462i − 0.0643977i
\(970\) 0 0
\(971\) 39.7833 1.27671 0.638353 0.769744i \(-0.279616\pi\)
0.638353 + 0.769744i \(0.279616\pi\)
\(972\) 0 0
\(973\) − 26.0399i − 0.834801i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 10.4379i − 0.333937i −0.985962 0.166968i \(-0.946602\pi\)
0.985962 0.166968i \(-0.0533978\pi\)
\(978\) 0 0
\(979\) −44.7377 −1.42982
\(980\) 0 0
\(981\) 18.5577i 0.592502i
\(982\) 0 0
\(983\) − 1.56154i − 0.0498052i −0.999690 0.0249026i \(-0.992072\pi\)
0.999690 0.0249026i \(-0.00792757\pi\)
\(984\) 0 0
\(985\) −8.42000 −0.268283
\(986\) 0 0
\(987\) 6.86992 0.218672
\(988\) 0 0
\(989\) 32.4375 1.03145
\(990\) 0 0
\(991\) −3.79782 −0.120642 −0.0603209 0.998179i \(-0.519212\pi\)
−0.0603209 + 0.998179i \(0.519212\pi\)
\(992\) 0 0
\(993\) − 7.06203i − 0.224107i
\(994\) 0 0
\(995\) − 8.46121i − 0.268238i
\(996\) 0 0
\(997\) −19.2540 −0.609780 −0.304890 0.952388i \(-0.598620\pi\)
−0.304890 + 0.952388i \(0.598620\pi\)
\(998\) 0 0
\(999\) 8.15343i 0.257963i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4056.2.c.r.337.5 12
13.5 odd 4 4056.2.a.bh.1.3 6
13.8 odd 4 4056.2.a.bi.1.4 yes 6
13.12 even 2 inner 4056.2.c.r.337.8 12
52.31 even 4 8112.2.a.ct.1.3 6
52.47 even 4 8112.2.a.cu.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4056.2.a.bh.1.3 6 13.5 odd 4
4056.2.a.bi.1.4 yes 6 13.8 odd 4
4056.2.c.r.337.5 12 1.1 even 1 trivial
4056.2.c.r.337.8 12 13.12 even 2 inner
8112.2.a.ct.1.3 6 52.31 even 4
8112.2.a.cu.1.4 6 52.47 even 4