Properties

Label 4050.2.c.q.649.1
Level $4050$
Weight $2$
Character 4050.649
Analytic conductor $32.339$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4050,2,Mod(649,4050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4050.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4050 = 2 \cdot 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4050.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,0,0,0,0,0,6,0,0,-8,0,2,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.3394128186\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 450)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 4050.649
Dual form 4050.2.c.q.649.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} -4.00000i q^{7} +1.00000i q^{8} +3.00000 q^{11} +4.00000i q^{13} -4.00000 q^{14} +1.00000 q^{16} -3.00000i q^{17} +4.00000 q^{19} -3.00000i q^{22} +6.00000i q^{23} +4.00000 q^{26} +4.00000i q^{28} +6.00000 q^{29} +8.00000 q^{31} -1.00000i q^{32} -3.00000 q^{34} +8.00000i q^{37} -4.00000i q^{38} -6.00000 q^{41} +1.00000i q^{43} -3.00000 q^{44} +6.00000 q^{46} +12.0000i q^{47} -9.00000 q^{49} -4.00000i q^{52} +4.00000 q^{56} -6.00000i q^{58} +9.00000 q^{59} +8.00000 q^{61} -8.00000i q^{62} -1.00000 q^{64} -4.00000i q^{67} +3.00000i q^{68} -6.00000 q^{71} -14.0000i q^{73} +8.00000 q^{74} -4.00000 q^{76} -12.0000i q^{77} -8.00000 q^{79} +6.00000i q^{82} +9.00000i q^{83} +1.00000 q^{86} +3.00000i q^{88} +9.00000 q^{89} +16.0000 q^{91} -6.00000i q^{92} +12.0000 q^{94} -7.00000i q^{97} +9.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 6 q^{11} - 8 q^{14} + 2 q^{16} + 8 q^{19} + 8 q^{26} + 12 q^{29} + 16 q^{31} - 6 q^{34} - 12 q^{41} - 6 q^{44} + 12 q^{46} - 18 q^{49} + 8 q^{56} + 18 q^{59} + 16 q^{61} - 2 q^{64} - 12 q^{71}+ \cdots + 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4050\mathbb{Z}\right)^\times\).

\(n\) \(2351\) \(3727\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) − 4.00000i − 1.51186i −0.654654 0.755929i \(-0.727186\pi\)
0.654654 0.755929i \(-0.272814\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) 4.00000i 1.10940i 0.832050 + 0.554700i \(0.187167\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) −4.00000 −1.06904
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 3.00000i − 0.727607i −0.931476 0.363803i \(-0.881478\pi\)
0.931476 0.363803i \(-0.118522\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 3.00000i − 0.639602i
\(23\) 6.00000i 1.25109i 0.780189 + 0.625543i \(0.215123\pi\)
−0.780189 + 0.625543i \(0.784877\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 4.00000 0.784465
\(27\) 0 0
\(28\) 4.00000i 0.755929i
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) 0 0
\(34\) −3.00000 −0.514496
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) − 4.00000i − 0.648886i
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 1.00000i 0.152499i 0.997089 + 0.0762493i \(0.0242945\pi\)
−0.997089 + 0.0762493i \(0.975706\pi\)
\(44\) −3.00000 −0.452267
\(45\) 0 0
\(46\) 6.00000 0.884652
\(47\) 12.0000i 1.75038i 0.483779 + 0.875190i \(0.339264\pi\)
−0.483779 + 0.875190i \(0.660736\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) 0 0
\(52\) − 4.00000i − 0.554700i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.00000 0.534522
\(57\) 0 0
\(58\) − 6.00000i − 0.787839i
\(59\) 9.00000 1.17170 0.585850 0.810419i \(-0.300761\pi\)
0.585850 + 0.810419i \(0.300761\pi\)
\(60\) 0 0
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) − 8.00000i − 1.01600i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 4.00000i − 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) 3.00000i 0.363803i
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) − 14.0000i − 1.63858i −0.573382 0.819288i \(-0.694369\pi\)
0.573382 0.819288i \(-0.305631\pi\)
\(74\) 8.00000 0.929981
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) − 12.0000i − 1.36753i
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 6.00000i 0.662589i
\(83\) 9.00000i 0.987878i 0.869496 + 0.493939i \(0.164443\pi\)
−0.869496 + 0.493939i \(0.835557\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.00000 0.107833
\(87\) 0 0
\(88\) 3.00000i 0.319801i
\(89\) 9.00000 0.953998 0.476999 0.878904i \(-0.341725\pi\)
0.476999 + 0.878904i \(0.341725\pi\)
\(90\) 0 0
\(91\) 16.0000 1.67726
\(92\) − 6.00000i − 0.625543i
\(93\) 0 0
\(94\) 12.0000 1.23771
\(95\) 0 0
\(96\) 0 0
\(97\) − 7.00000i − 0.710742i −0.934725 0.355371i \(-0.884354\pi\)
0.934725 0.355371i \(-0.115646\pi\)
\(98\) 9.00000i 0.909137i
\(99\) 0 0
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) − 8.00000i − 0.788263i −0.919054 0.394132i \(-0.871045\pi\)
0.919054 0.394132i \(-0.128955\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000i 1.16008i 0.814587 + 0.580042i \(0.196964\pi\)
−0.814587 + 0.580042i \(0.803036\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 4.00000i − 0.377964i
\(113\) − 3.00000i − 0.282216i −0.989994 0.141108i \(-0.954933\pi\)
0.989994 0.141108i \(-0.0450665\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) 0 0
\(118\) − 9.00000i − 0.828517i
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) − 8.00000i − 0.724286i
\(123\) 0 0
\(124\) −8.00000 −0.718421
\(125\) 0 0
\(126\) 0 0
\(127\) − 16.0000i − 1.41977i −0.704317 0.709885i \(-0.748747\pi\)
0.704317 0.709885i \(-0.251253\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) − 16.0000i − 1.38738i
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 3.00000 0.257248
\(137\) 18.0000i 1.53784i 0.639343 + 0.768922i \(0.279207\pi\)
−0.639343 + 0.768922i \(0.720793\pi\)
\(138\) 0 0
\(139\) −11.0000 −0.933008 −0.466504 0.884519i \(-0.654487\pi\)
−0.466504 + 0.884519i \(0.654487\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.00000i 0.503509i
\(143\) 12.0000i 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) −14.0000 −1.15865
\(147\) 0 0
\(148\) − 8.00000i − 0.657596i
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 4.00000i 0.324443i
\(153\) 0 0
\(154\) −12.0000 −0.966988
\(155\) 0 0
\(156\) 0 0
\(157\) − 4.00000i − 0.319235i −0.987179 0.159617i \(-0.948974\pi\)
0.987179 0.159617i \(-0.0510260\pi\)
\(158\) 8.00000i 0.636446i
\(159\) 0 0
\(160\) 0 0
\(161\) 24.0000 1.89146
\(162\) 0 0
\(163\) − 11.0000i − 0.861586i −0.902451 0.430793i \(-0.858234\pi\)
0.902451 0.430793i \(-0.141766\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 9.00000 0.698535
\(167\) 18.0000i 1.39288i 0.717614 + 0.696441i \(0.245234\pi\)
−0.717614 + 0.696441i \(0.754766\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) − 1.00000i − 0.0762493i
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.00000 0.226134
\(177\) 0 0
\(178\) − 9.00000i − 0.674579i
\(179\) 3.00000 0.224231 0.112115 0.993695i \(-0.464237\pi\)
0.112115 + 0.993695i \(0.464237\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) − 16.0000i − 1.18600i
\(183\) 0 0
\(184\) −6.00000 −0.442326
\(185\) 0 0
\(186\) 0 0
\(187\) − 9.00000i − 0.658145i
\(188\) − 12.0000i − 0.875190i
\(189\) 0 0
\(190\) 0 0
\(191\) 6.00000 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(192\) 0 0
\(193\) − 5.00000i − 0.359908i −0.983675 0.179954i \(-0.942405\pi\)
0.983675 0.179954i \(-0.0575949\pi\)
\(194\) −7.00000 −0.502571
\(195\) 0 0
\(196\) 9.00000 0.642857
\(197\) − 18.0000i − 1.28245i −0.767354 0.641223i \(-0.778427\pi\)
0.767354 0.641223i \(-0.221573\pi\)
\(198\) 0 0
\(199\) −2.00000 −0.141776 −0.0708881 0.997484i \(-0.522583\pi\)
−0.0708881 + 0.997484i \(0.522583\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 12.0000i − 0.844317i
\(203\) − 24.0000i − 1.68447i
\(204\) 0 0
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) 4.00000i 0.277350i
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) 23.0000 1.58339 0.791693 0.610920i \(-0.209200\pi\)
0.791693 + 0.610920i \(0.209200\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) 0 0
\(216\) 0 0
\(217\) − 32.0000i − 2.17230i
\(218\) 2.00000i 0.135457i
\(219\) 0 0
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) 0 0
\(223\) − 2.00000i − 0.133930i −0.997755 0.0669650i \(-0.978668\pi\)
0.997755 0.0669650i \(-0.0213316\pi\)
\(224\) −4.00000 −0.267261
\(225\) 0 0
\(226\) −3.00000 −0.199557
\(227\) − 27.0000i − 1.79205i −0.444001 0.896026i \(-0.646441\pi\)
0.444001 0.896026i \(-0.353559\pi\)
\(228\) 0 0
\(229\) −8.00000 −0.528655 −0.264327 0.964433i \(-0.585150\pi\)
−0.264327 + 0.964433i \(0.585150\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.00000i 0.393919i
\(233\) − 15.0000i − 0.982683i −0.870967 0.491341i \(-0.836507\pi\)
0.870967 0.491341i \(-0.163493\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −9.00000 −0.585850
\(237\) 0 0
\(238\) 12.0000i 0.777844i
\(239\) −18.0000 −1.16432 −0.582162 0.813073i \(-0.697793\pi\)
−0.582162 + 0.813073i \(0.697793\pi\)
\(240\) 0 0
\(241\) 26.0000 1.67481 0.837404 0.546585i \(-0.184072\pi\)
0.837404 + 0.546585i \(0.184072\pi\)
\(242\) 2.00000i 0.128565i
\(243\) 0 0
\(244\) −8.00000 −0.512148
\(245\) 0 0
\(246\) 0 0
\(247\) 16.0000i 1.01806i
\(248\) 8.00000i 0.508001i
\(249\) 0 0
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 18.0000i 1.13165i
\(254\) −16.0000 −1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 3.00000i 0.187135i 0.995613 + 0.0935674i \(0.0298271\pi\)
−0.995613 + 0.0935674i \(0.970173\pi\)
\(258\) 0 0
\(259\) 32.0000 1.98838
\(260\) 0 0
\(261\) 0 0
\(262\) − 12.0000i − 0.741362i
\(263\) − 24.0000i − 1.47990i −0.672660 0.739952i \(-0.734848\pi\)
0.672660 0.739952i \(-0.265152\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −16.0000 −0.981023
\(267\) 0 0
\(268\) 4.00000i 0.244339i
\(269\) 12.0000 0.731653 0.365826 0.930683i \(-0.380786\pi\)
0.365826 + 0.930683i \(0.380786\pi\)
\(270\) 0 0
\(271\) −4.00000 −0.242983 −0.121491 0.992592i \(-0.538768\pi\)
−0.121491 + 0.992592i \(0.538768\pi\)
\(272\) − 3.00000i − 0.181902i
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) 0 0
\(276\) 0 0
\(277\) 2.00000i 0.120168i 0.998193 + 0.0600842i \(0.0191369\pi\)
−0.998193 + 0.0600842i \(0.980863\pi\)
\(278\) 11.0000i 0.659736i
\(279\) 0 0
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 1.00000i 0.0594438i 0.999558 + 0.0297219i \(0.00946217\pi\)
−0.999558 + 0.0297219i \(0.990538\pi\)
\(284\) 6.00000 0.356034
\(285\) 0 0
\(286\) 12.0000 0.709575
\(287\) 24.0000i 1.41668i
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 14.0000i 0.819288i
\(293\) 12.0000i 0.701047i 0.936554 + 0.350524i \(0.113996\pi\)
−0.936554 + 0.350524i \(0.886004\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −8.00000 −0.464991
\(297\) 0 0
\(298\) − 6.00000i − 0.347571i
\(299\) −24.0000 −1.38796
\(300\) 0 0
\(301\) 4.00000 0.230556
\(302\) 10.0000i 0.575435i
\(303\) 0 0
\(304\) 4.00000 0.229416
\(305\) 0 0
\(306\) 0 0
\(307\) − 1.00000i − 0.0570730i −0.999593 0.0285365i \(-0.990915\pi\)
0.999593 0.0285365i \(-0.00908469\pi\)
\(308\) 12.0000i 0.683763i
\(309\) 0 0
\(310\) 0 0
\(311\) 6.00000 0.340229 0.170114 0.985424i \(-0.445586\pi\)
0.170114 + 0.985424i \(0.445586\pi\)
\(312\) 0 0
\(313\) − 17.0000i − 0.960897i −0.877023 0.480448i \(-0.840474\pi\)
0.877023 0.480448i \(-0.159526\pi\)
\(314\) −4.00000 −0.225733
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) − 18.0000i − 1.01098i −0.862832 0.505490i \(-0.831312\pi\)
0.862832 0.505490i \(-0.168688\pi\)
\(318\) 0 0
\(319\) 18.0000 1.00781
\(320\) 0 0
\(321\) 0 0
\(322\) − 24.0000i − 1.33747i
\(323\) − 12.0000i − 0.667698i
\(324\) 0 0
\(325\) 0 0
\(326\) −11.0000 −0.609234
\(327\) 0 0
\(328\) − 6.00000i − 0.331295i
\(329\) 48.0000 2.64633
\(330\) 0 0
\(331\) 17.0000 0.934405 0.467202 0.884150i \(-0.345262\pi\)
0.467202 + 0.884150i \(0.345262\pi\)
\(332\) − 9.00000i − 0.493939i
\(333\) 0 0
\(334\) 18.0000 0.984916
\(335\) 0 0
\(336\) 0 0
\(337\) − 13.0000i − 0.708155i −0.935216 0.354078i \(-0.884795\pi\)
0.935216 0.354078i \(-0.115205\pi\)
\(338\) 3.00000i 0.163178i
\(339\) 0 0
\(340\) 0 0
\(341\) 24.0000 1.29967
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) −1.00000 −0.0539164
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) 27.0000i 1.44944i 0.689046 + 0.724718i \(0.258030\pi\)
−0.689046 + 0.724718i \(0.741970\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 3.00000i − 0.159901i
\(353\) 9.00000i 0.479022i 0.970894 + 0.239511i \(0.0769871\pi\)
−0.970894 + 0.239511i \(0.923013\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −9.00000 −0.476999
\(357\) 0 0
\(358\) − 3.00000i − 0.158555i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) − 2.00000i − 0.105118i
\(363\) 0 0
\(364\) −16.0000 −0.838628
\(365\) 0 0
\(366\) 0 0
\(367\) 26.0000i 1.35719i 0.734513 + 0.678594i \(0.237411\pi\)
−0.734513 + 0.678594i \(0.762589\pi\)
\(368\) 6.00000i 0.312772i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) − 8.00000i − 0.414224i −0.978317 0.207112i \(-0.933593\pi\)
0.978317 0.207112i \(-0.0664065\pi\)
\(374\) −9.00000 −0.465379
\(375\) 0 0
\(376\) −12.0000 −0.618853
\(377\) 24.0000i 1.23606i
\(378\) 0 0
\(379\) −29.0000 −1.48963 −0.744815 0.667271i \(-0.767462\pi\)
−0.744815 + 0.667271i \(0.767462\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 6.00000i − 0.306987i
\(383\) − 18.0000i − 0.919757i −0.887982 0.459879i \(-0.847893\pi\)
0.887982 0.459879i \(-0.152107\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −5.00000 −0.254493
\(387\) 0 0
\(388\) 7.00000i 0.355371i
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) − 9.00000i − 0.454569i
\(393\) 0 0
\(394\) −18.0000 −0.906827
\(395\) 0 0
\(396\) 0 0
\(397\) 14.0000i 0.702640i 0.936255 + 0.351320i \(0.114267\pi\)
−0.936255 + 0.351320i \(0.885733\pi\)
\(398\) 2.00000i 0.100251i
\(399\) 0 0
\(400\) 0 0
\(401\) −15.0000 −0.749064 −0.374532 0.927214i \(-0.622197\pi\)
−0.374532 + 0.927214i \(0.622197\pi\)
\(402\) 0 0
\(403\) 32.0000i 1.59403i
\(404\) −12.0000 −0.597022
\(405\) 0 0
\(406\) −24.0000 −1.19110
\(407\) 24.0000i 1.18964i
\(408\) 0 0
\(409\) 22.0000 1.08783 0.543915 0.839140i \(-0.316941\pi\)
0.543915 + 0.839140i \(0.316941\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 8.00000i 0.394132i
\(413\) − 36.0000i − 1.77144i
\(414\) 0 0
\(415\) 0 0
\(416\) 4.00000 0.196116
\(417\) 0 0
\(418\) − 12.0000i − 0.586939i
\(419\) −9.00000 −0.439679 −0.219839 0.975536i \(-0.570553\pi\)
−0.219839 + 0.975536i \(0.570553\pi\)
\(420\) 0 0
\(421\) 32.0000 1.55958 0.779792 0.626038i \(-0.215325\pi\)
0.779792 + 0.626038i \(0.215325\pi\)
\(422\) − 23.0000i − 1.11962i
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 32.0000i − 1.54859i
\(428\) − 12.0000i − 0.580042i
\(429\) 0 0
\(430\) 0 0
\(431\) 6.00000 0.289010 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(432\) 0 0
\(433\) 7.00000i 0.336399i 0.985753 + 0.168199i \(0.0537952\pi\)
−0.985753 + 0.168199i \(0.946205\pi\)
\(434\) −32.0000 −1.53605
\(435\) 0 0
\(436\) 2.00000 0.0957826
\(437\) 24.0000i 1.14808i
\(438\) 0 0
\(439\) −14.0000 −0.668184 −0.334092 0.942541i \(-0.608430\pi\)
−0.334092 + 0.942541i \(0.608430\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 12.0000i − 0.570782i
\(443\) − 9.00000i − 0.427603i −0.976877 0.213801i \(-0.931415\pi\)
0.976877 0.213801i \(-0.0685846\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −2.00000 −0.0947027
\(447\) 0 0
\(448\) 4.00000i 0.188982i
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) 3.00000i 0.141108i
\(453\) 0 0
\(454\) −27.0000 −1.26717
\(455\) 0 0
\(456\) 0 0
\(457\) − 10.0000i − 0.467780i −0.972263 0.233890i \(-0.924854\pi\)
0.972263 0.233890i \(-0.0751456\pi\)
\(458\) 8.00000i 0.373815i
\(459\) 0 0
\(460\) 0 0
\(461\) −6.00000 −0.279448 −0.139724 0.990190i \(-0.544622\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(462\) 0 0
\(463\) − 14.0000i − 0.650635i −0.945605 0.325318i \(-0.894529\pi\)
0.945605 0.325318i \(-0.105471\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) −15.0000 −0.694862
\(467\) 9.00000i 0.416470i 0.978079 + 0.208235i \(0.0667719\pi\)
−0.978079 + 0.208235i \(0.933228\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) 0 0
\(472\) 9.00000i 0.414259i
\(473\) 3.00000i 0.137940i
\(474\) 0 0
\(475\) 0 0
\(476\) 12.0000 0.550019
\(477\) 0 0
\(478\) 18.0000i 0.823301i
\(479\) 12.0000 0.548294 0.274147 0.961688i \(-0.411605\pi\)
0.274147 + 0.961688i \(0.411605\pi\)
\(480\) 0 0
\(481\) −32.0000 −1.45907
\(482\) − 26.0000i − 1.18427i
\(483\) 0 0
\(484\) 2.00000 0.0909091
\(485\) 0 0
\(486\) 0 0
\(487\) 2.00000i 0.0906287i 0.998973 + 0.0453143i \(0.0144289\pi\)
−0.998973 + 0.0453143i \(0.985571\pi\)
\(488\) 8.00000i 0.362143i
\(489\) 0 0
\(490\) 0 0
\(491\) −15.0000 −0.676941 −0.338470 0.940977i \(-0.609909\pi\)
−0.338470 + 0.940977i \(0.609909\pi\)
\(492\) 0 0
\(493\) − 18.0000i − 0.810679i
\(494\) 16.0000 0.719874
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 24.0000i 1.07655i
\(498\) 0 0
\(499\) −11.0000 −0.492428 −0.246214 0.969216i \(-0.579187\pi\)
−0.246214 + 0.969216i \(0.579187\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 12.0000i 0.535586i
\(503\) 12.0000i 0.535054i 0.963550 + 0.267527i \(0.0862064\pi\)
−0.963550 + 0.267527i \(0.913794\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 18.0000 0.800198
\(507\) 0 0
\(508\) 16.0000i 0.709885i
\(509\) −30.0000 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(510\) 0 0
\(511\) −56.0000 −2.47729
\(512\) − 1.00000i − 0.0441942i
\(513\) 0 0
\(514\) 3.00000 0.132324
\(515\) 0 0
\(516\) 0 0
\(517\) 36.0000i 1.58328i
\(518\) − 32.0000i − 1.40600i
\(519\) 0 0
\(520\) 0 0
\(521\) −27.0000 −1.18289 −0.591446 0.806345i \(-0.701443\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(522\) 0 0
\(523\) − 29.0000i − 1.26808i −0.773300 0.634041i \(-0.781395\pi\)
0.773300 0.634041i \(-0.218605\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) − 24.0000i − 1.04546i
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 16.0000i 0.693688i
\(533\) − 24.0000i − 1.03956i
\(534\) 0 0
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) 0 0
\(538\) − 12.0000i − 0.517357i
\(539\) −27.0000 −1.16297
\(540\) 0 0
\(541\) 8.00000 0.343947 0.171973 0.985102i \(-0.444986\pi\)
0.171973 + 0.985102i \(0.444986\pi\)
\(542\) 4.00000i 0.171815i
\(543\) 0 0
\(544\) −3.00000 −0.128624
\(545\) 0 0
\(546\) 0 0
\(547\) 20.0000i 0.855138i 0.903983 + 0.427569i \(0.140630\pi\)
−0.903983 + 0.427569i \(0.859370\pi\)
\(548\) − 18.0000i − 0.768922i
\(549\) 0 0
\(550\) 0 0
\(551\) 24.0000 1.02243
\(552\) 0 0
\(553\) 32.0000i 1.36078i
\(554\) 2.00000 0.0849719
\(555\) 0 0
\(556\) 11.0000 0.466504
\(557\) − 6.00000i − 0.254228i −0.991888 0.127114i \(-0.959429\pi\)
0.991888 0.127114i \(-0.0405714\pi\)
\(558\) 0 0
\(559\) −4.00000 −0.169182
\(560\) 0 0
\(561\) 0 0
\(562\) 18.0000i 0.759284i
\(563\) 3.00000i 0.126435i 0.998000 + 0.0632175i \(0.0201362\pi\)
−0.998000 + 0.0632175i \(0.979864\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.00000 0.0420331
\(567\) 0 0
\(568\) − 6.00000i − 0.251754i
\(569\) 27.0000 1.13190 0.565949 0.824440i \(-0.308510\pi\)
0.565949 + 0.824440i \(0.308510\pi\)
\(570\) 0 0
\(571\) −25.0000 −1.04622 −0.523109 0.852266i \(-0.675228\pi\)
−0.523109 + 0.852266i \(0.675228\pi\)
\(572\) − 12.0000i − 0.501745i
\(573\) 0 0
\(574\) 24.0000 1.00174
\(575\) 0 0
\(576\) 0 0
\(577\) 38.0000i 1.58196i 0.611842 + 0.790980i \(0.290429\pi\)
−0.611842 + 0.790980i \(0.709571\pi\)
\(578\) − 8.00000i − 0.332756i
\(579\) 0 0
\(580\) 0 0
\(581\) 36.0000 1.49353
\(582\) 0 0
\(583\) 0 0
\(584\) 14.0000 0.579324
\(585\) 0 0
\(586\) 12.0000 0.495715
\(587\) − 3.00000i − 0.123823i −0.998082 0.0619116i \(-0.980280\pi\)
0.998082 0.0619116i \(-0.0197197\pi\)
\(588\) 0 0
\(589\) 32.0000 1.31854
\(590\) 0 0
\(591\) 0 0
\(592\) 8.00000i 0.328798i
\(593\) 45.0000i 1.84793i 0.382479 + 0.923964i \(0.375070\pi\)
−0.382479 + 0.923964i \(0.624930\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 0 0
\(598\) 24.0000i 0.981433i
\(599\) −18.0000 −0.735460 −0.367730 0.929933i \(-0.619865\pi\)
−0.367730 + 0.929933i \(0.619865\pi\)
\(600\) 0 0
\(601\) −37.0000 −1.50926 −0.754631 0.656150i \(-0.772184\pi\)
−0.754631 + 0.656150i \(0.772184\pi\)
\(602\) − 4.00000i − 0.163028i
\(603\) 0 0
\(604\) 10.0000 0.406894
\(605\) 0 0
\(606\) 0 0
\(607\) − 16.0000i − 0.649420i −0.945814 0.324710i \(-0.894733\pi\)
0.945814 0.324710i \(-0.105267\pi\)
\(608\) − 4.00000i − 0.162221i
\(609\) 0 0
\(610\) 0 0
\(611\) −48.0000 −1.94187
\(612\) 0 0
\(613\) − 14.0000i − 0.565455i −0.959200 0.282727i \(-0.908761\pi\)
0.959200 0.282727i \(-0.0912392\pi\)
\(614\) −1.00000 −0.0403567
\(615\) 0 0
\(616\) 12.0000 0.483494
\(617\) 27.0000i 1.08698i 0.839416 + 0.543490i \(0.182897\pi\)
−0.839416 + 0.543490i \(0.817103\pi\)
\(618\) 0 0
\(619\) −35.0000 −1.40677 −0.703384 0.710810i \(-0.748329\pi\)
−0.703384 + 0.710810i \(0.748329\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 6.00000i − 0.240578i
\(623\) − 36.0000i − 1.44231i
\(624\) 0 0
\(625\) 0 0
\(626\) −17.0000 −0.679457
\(627\) 0 0
\(628\) 4.00000i 0.159617i
\(629\) 24.0000 0.956943
\(630\) 0 0
\(631\) 38.0000 1.51276 0.756378 0.654135i \(-0.226967\pi\)
0.756378 + 0.654135i \(0.226967\pi\)
\(632\) − 8.00000i − 0.318223i
\(633\) 0 0
\(634\) −18.0000 −0.714871
\(635\) 0 0
\(636\) 0 0
\(637\) − 36.0000i − 1.42637i
\(638\) − 18.0000i − 0.712627i
\(639\) 0 0
\(640\) 0 0
\(641\) −27.0000 −1.06644 −0.533218 0.845978i \(-0.679017\pi\)
−0.533218 + 0.845978i \(0.679017\pi\)
\(642\) 0 0
\(643\) − 23.0000i − 0.907031i −0.891248 0.453516i \(-0.850170\pi\)
0.891248 0.453516i \(-0.149830\pi\)
\(644\) −24.0000 −0.945732
\(645\) 0 0
\(646\) −12.0000 −0.472134
\(647\) 12.0000i 0.471769i 0.971781 + 0.235884i \(0.0757987\pi\)
−0.971781 + 0.235884i \(0.924201\pi\)
\(648\) 0 0
\(649\) 27.0000 1.05984
\(650\) 0 0
\(651\) 0 0
\(652\) 11.0000i 0.430793i
\(653\) 24.0000i 0.939193i 0.882881 + 0.469596i \(0.155601\pi\)
−0.882881 + 0.469596i \(0.844399\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) − 48.0000i − 1.87123i
\(659\) 45.0000 1.75295 0.876476 0.481446i \(-0.159888\pi\)
0.876476 + 0.481446i \(0.159888\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) − 17.0000i − 0.660724i
\(663\) 0 0
\(664\) −9.00000 −0.349268
\(665\) 0 0
\(666\) 0 0
\(667\) 36.0000i 1.39393i
\(668\) − 18.0000i − 0.696441i
\(669\) 0 0
\(670\) 0 0
\(671\) 24.0000 0.926510
\(672\) 0 0
\(673\) 46.0000i 1.77317i 0.462566 + 0.886585i \(0.346929\pi\)
−0.462566 + 0.886585i \(0.653071\pi\)
\(674\) −13.0000 −0.500741
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) 18.0000i 0.691796i 0.938272 + 0.345898i \(0.112426\pi\)
−0.938272 + 0.345898i \(0.887574\pi\)
\(678\) 0 0
\(679\) −28.0000 −1.07454
\(680\) 0 0
\(681\) 0 0
\(682\) − 24.0000i − 0.919007i
\(683\) − 36.0000i − 1.37750i −0.724998 0.688751i \(-0.758159\pi\)
0.724998 0.688751i \(-0.241841\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 8.00000 0.305441
\(687\) 0 0
\(688\) 1.00000i 0.0381246i
\(689\) 0 0
\(690\) 0 0
\(691\) −19.0000 −0.722794 −0.361397 0.932412i \(-0.617700\pi\)
−0.361397 + 0.932412i \(0.617700\pi\)
\(692\) − 6.00000i − 0.228086i
\(693\) 0 0
\(694\) 27.0000 1.02491
\(695\) 0 0
\(696\) 0 0
\(697\) 18.0000i 0.681799i
\(698\) 14.0000i 0.529908i
\(699\) 0 0
\(700\) 0 0
\(701\) 48.0000 1.81293 0.906467 0.422276i \(-0.138769\pi\)
0.906467 + 0.422276i \(0.138769\pi\)
\(702\) 0 0
\(703\) 32.0000i 1.20690i
\(704\) −3.00000 −0.113067
\(705\) 0 0
\(706\) 9.00000 0.338719
\(707\) − 48.0000i − 1.80523i
\(708\) 0 0
\(709\) 52.0000 1.95290 0.976450 0.215742i \(-0.0692169\pi\)
0.976450 + 0.215742i \(0.0692169\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 9.00000i 0.337289i
\(713\) 48.0000i 1.79761i
\(714\) 0 0
\(715\) 0 0
\(716\) −3.00000 −0.112115
\(717\) 0 0
\(718\) 0 0
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) −32.0000 −1.19174
\(722\) 3.00000i 0.111648i
\(723\) 0 0
\(724\) −2.00000 −0.0743294
\(725\) 0 0
\(726\) 0 0
\(727\) 14.0000i 0.519231i 0.965712 + 0.259616i \(0.0835959\pi\)
−0.965712 + 0.259616i \(0.916404\pi\)
\(728\) 16.0000i 0.592999i
\(729\) 0 0
\(730\) 0 0
\(731\) 3.00000 0.110959
\(732\) 0 0
\(733\) 4.00000i 0.147743i 0.997268 + 0.0738717i \(0.0235355\pi\)
−0.997268 + 0.0738717i \(0.976464\pi\)
\(734\) 26.0000 0.959678
\(735\) 0 0
\(736\) 6.00000 0.221163
\(737\) − 12.0000i − 0.442026i
\(738\) 0 0
\(739\) 25.0000 0.919640 0.459820 0.888012i \(-0.347914\pi\)
0.459820 + 0.888012i \(0.347914\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −8.00000 −0.292901
\(747\) 0 0
\(748\) 9.00000i 0.329073i
\(749\) 48.0000 1.75388
\(750\) 0 0
\(751\) −34.0000 −1.24068 −0.620339 0.784334i \(-0.713005\pi\)
−0.620339 + 0.784334i \(0.713005\pi\)
\(752\) 12.0000i 0.437595i
\(753\) 0 0
\(754\) 24.0000 0.874028
\(755\) 0 0
\(756\) 0 0
\(757\) 20.0000i 0.726912i 0.931611 + 0.363456i \(0.118403\pi\)
−0.931611 + 0.363456i \(0.881597\pi\)
\(758\) 29.0000i 1.05333i
\(759\) 0 0
\(760\) 0 0
\(761\) −39.0000 −1.41375 −0.706874 0.707339i \(-0.749895\pi\)
−0.706874 + 0.707339i \(0.749895\pi\)
\(762\) 0 0
\(763\) 8.00000i 0.289619i
\(764\) −6.00000 −0.217072
\(765\) 0 0
\(766\) −18.0000 −0.650366
\(767\) 36.0000i 1.29988i
\(768\) 0 0
\(769\) −5.00000 −0.180305 −0.0901523 0.995928i \(-0.528735\pi\)
−0.0901523 + 0.995928i \(0.528735\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 5.00000i 0.179954i
\(773\) 42.0000i 1.51064i 0.655359 + 0.755318i \(0.272517\pi\)
−0.655359 + 0.755318i \(0.727483\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 7.00000 0.251285
\(777\) 0 0
\(778\) − 6.00000i − 0.215110i
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) −18.0000 −0.644091
\(782\) − 18.0000i − 0.643679i
\(783\) 0 0
\(784\) −9.00000 −0.321429
\(785\) 0 0
\(786\) 0 0
\(787\) − 4.00000i − 0.142585i −0.997455 0.0712923i \(-0.977288\pi\)
0.997455 0.0712923i \(-0.0227123\pi\)
\(788\) 18.0000i 0.641223i
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 32.0000i 1.13635i
\(794\) 14.0000 0.496841
\(795\) 0 0
\(796\) 2.00000 0.0708881
\(797\) 12.0000i 0.425062i 0.977154 + 0.212531i \(0.0681706\pi\)
−0.977154 + 0.212531i \(0.931829\pi\)
\(798\) 0 0
\(799\) 36.0000 1.27359
\(800\) 0 0
\(801\) 0 0
\(802\) 15.0000i 0.529668i
\(803\) − 42.0000i − 1.48215i
\(804\) 0 0
\(805\) 0 0
\(806\) 32.0000 1.12715
\(807\) 0 0
\(808\) 12.0000i 0.422159i
\(809\) −45.0000 −1.58212 −0.791058 0.611741i \(-0.790469\pi\)
−0.791058 + 0.611741i \(0.790469\pi\)
\(810\) 0 0
\(811\) 5.00000 0.175574 0.0877869 0.996139i \(-0.472021\pi\)
0.0877869 + 0.996139i \(0.472021\pi\)
\(812\) 24.0000i 0.842235i
\(813\) 0 0
\(814\) 24.0000 0.841200
\(815\) 0 0
\(816\) 0 0
\(817\) 4.00000i 0.139942i
\(818\) − 22.0000i − 0.769212i
\(819\) 0 0
\(820\) 0 0
\(821\) 24.0000 0.837606 0.418803 0.908077i \(-0.362450\pi\)
0.418803 + 0.908077i \(0.362450\pi\)
\(822\) 0 0
\(823\) 40.0000i 1.39431i 0.716919 + 0.697156i \(0.245552\pi\)
−0.716919 + 0.697156i \(0.754448\pi\)
\(824\) 8.00000 0.278693
\(825\) 0 0
\(826\) −36.0000 −1.25260
\(827\) 15.0000i 0.521601i 0.965393 + 0.260801i \(0.0839865\pi\)
−0.965393 + 0.260801i \(0.916014\pi\)
\(828\) 0 0
\(829\) −20.0000 −0.694629 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 4.00000i − 0.138675i
\(833\) 27.0000i 0.935495i
\(834\) 0 0
\(835\) 0 0
\(836\) −12.0000 −0.415029
\(837\) 0 0
\(838\) 9.00000i 0.310900i
\(839\) −48.0000 −1.65714 −0.828572 0.559883i \(-0.810846\pi\)
−0.828572 + 0.559883i \(0.810846\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) − 32.0000i − 1.10279i
\(843\) 0 0
\(844\) −23.0000 −0.791693
\(845\) 0 0
\(846\) 0 0
\(847\) 8.00000i 0.274883i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −48.0000 −1.64542
\(852\) 0 0
\(853\) 46.0000i 1.57501i 0.616308 + 0.787505i \(0.288628\pi\)
−0.616308 + 0.787505i \(0.711372\pi\)
\(854\) −32.0000 −1.09502
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) − 27.0000i − 0.922302i −0.887322 0.461151i \(-0.847437\pi\)
0.887322 0.461151i \(-0.152563\pi\)
\(858\) 0 0
\(859\) 16.0000 0.545913 0.272956 0.962026i \(-0.411998\pi\)
0.272956 + 0.962026i \(0.411998\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 6.00000i − 0.204361i
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 7.00000 0.237870
\(867\) 0 0
\(868\) 32.0000i 1.08615i
\(869\) −24.0000 −0.814144
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) − 2.00000i − 0.0677285i
\(873\) 0 0
\(874\) 24.0000 0.811812
\(875\) 0 0
\(876\) 0 0
\(877\) − 16.0000i − 0.540282i −0.962821 0.270141i \(-0.912930\pi\)
0.962821 0.270141i \(-0.0870703\pi\)
\(878\) 14.0000i 0.472477i
\(879\) 0 0
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 13.0000i 0.437485i 0.975783 + 0.218742i \(0.0701954\pi\)
−0.975783 + 0.218742i \(0.929805\pi\)
\(884\) −12.0000 −0.403604
\(885\) 0 0
\(886\) −9.00000 −0.302361
\(887\) 30.0000i 1.00730i 0.863907 + 0.503651i \(0.168010\pi\)
−0.863907 + 0.503651i \(0.831990\pi\)
\(888\) 0 0
\(889\) −64.0000 −2.14649
\(890\) 0 0
\(891\) 0 0
\(892\) 2.00000i 0.0669650i
\(893\) 48.0000i 1.60626i
\(894\) 0 0
\(895\) 0 0
\(896\) 4.00000 0.133631
\(897\) 0 0
\(898\) 18.0000i 0.600668i
\(899\) 48.0000 1.60089
\(900\) 0 0
\(901\) 0 0
\(902\) 18.0000i 0.599334i
\(903\) 0 0
\(904\) 3.00000 0.0997785
\(905\) 0 0
\(906\) 0 0
\(907\) 17.0000i 0.564476i 0.959344 + 0.282238i \(0.0910767\pi\)
−0.959344 + 0.282238i \(0.908923\pi\)
\(908\) 27.0000i 0.896026i
\(909\) 0 0
\(910\) 0 0
\(911\) −18.0000 −0.596367 −0.298183 0.954509i \(-0.596381\pi\)
−0.298183 + 0.954509i \(0.596381\pi\)
\(912\) 0 0
\(913\) 27.0000i 0.893570i
\(914\) −10.0000 −0.330771
\(915\) 0 0
\(916\) 8.00000 0.264327
\(917\) − 48.0000i − 1.58510i
\(918\) 0 0
\(919\) 46.0000 1.51740 0.758700 0.651440i \(-0.225835\pi\)
0.758700 + 0.651440i \(0.225835\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 6.00000i 0.197599i
\(923\) − 24.0000i − 0.789970i
\(924\) 0 0
\(925\) 0 0
\(926\) −14.0000 −0.460069
\(927\) 0 0
\(928\) − 6.00000i − 0.196960i
\(929\) −42.0000 −1.37798 −0.688988 0.724773i \(-0.741945\pi\)
−0.688988 + 0.724773i \(0.741945\pi\)
\(930\) 0 0
\(931\) −36.0000 −1.17985
\(932\) 15.0000i 0.491341i
\(933\) 0 0
\(934\) 9.00000 0.294489
\(935\) 0 0
\(936\) 0 0
\(937\) − 37.0000i − 1.20874i −0.796705 0.604369i \(-0.793425\pi\)
0.796705 0.604369i \(-0.206575\pi\)
\(938\) 16.0000i 0.522419i
\(939\) 0 0
\(940\) 0 0
\(941\) 24.0000 0.782378 0.391189 0.920310i \(-0.372064\pi\)
0.391189 + 0.920310i \(0.372064\pi\)
\(942\) 0 0
\(943\) − 36.0000i − 1.17232i
\(944\) 9.00000 0.292925
\(945\) 0 0
\(946\) 3.00000 0.0975384
\(947\) − 9.00000i − 0.292461i −0.989251 0.146230i \(-0.953286\pi\)
0.989251 0.146230i \(-0.0467141\pi\)
\(948\) 0 0
\(949\) 56.0000 1.81784
\(950\) 0 0
\(951\) 0 0
\(952\) − 12.0000i − 0.388922i
\(953\) 27.0000i 0.874616i 0.899312 + 0.437308i \(0.144068\pi\)
−0.899312 + 0.437308i \(0.855932\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 18.0000 0.582162
\(957\) 0 0
\(958\) − 12.0000i − 0.387702i
\(959\) 72.0000 2.32500
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 32.0000i 1.03172i
\(963\) 0 0
\(964\) −26.0000 −0.837404
\(965\) 0 0
\(966\) 0 0
\(967\) − 28.0000i − 0.900419i −0.892923 0.450210i \(-0.851349\pi\)
0.892923 0.450210i \(-0.148651\pi\)
\(968\) − 2.00000i − 0.0642824i
\(969\) 0 0
\(970\) 0 0
\(971\) −27.0000 −0.866471 −0.433236 0.901281i \(-0.642628\pi\)
−0.433236 + 0.901281i \(0.642628\pi\)
\(972\) 0 0
\(973\) 44.0000i 1.41058i
\(974\) 2.00000 0.0640841
\(975\) 0 0
\(976\) 8.00000 0.256074
\(977\) − 54.0000i − 1.72761i −0.503824 0.863807i \(-0.668074\pi\)
0.503824 0.863807i \(-0.331926\pi\)
\(978\) 0 0
\(979\) 27.0000 0.862924
\(980\) 0 0
\(981\) 0 0
\(982\) 15.0000i 0.478669i
\(983\) − 54.0000i − 1.72233i −0.508323 0.861166i \(-0.669735\pi\)
0.508323 0.861166i \(-0.330265\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −18.0000 −0.573237
\(987\) 0 0
\(988\) − 16.0000i − 0.509028i
\(989\) −6.00000 −0.190789
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) − 8.00000i − 0.254000i
\(993\) 0 0
\(994\) 24.0000 0.761234
\(995\) 0 0
\(996\) 0 0
\(997\) − 10.0000i − 0.316703i −0.987383 0.158352i \(-0.949382\pi\)
0.987383 0.158352i \(-0.0506179\pi\)
\(998\) 11.0000i 0.348199i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4050.2.c.q.649.1 2
3.2 odd 2 4050.2.c.e.649.2 2
5.2 odd 4 4050.2.a.bj.1.1 1
5.3 odd 4 4050.2.a.b.1.1 1
5.4 even 2 inner 4050.2.c.q.649.2 2
9.2 odd 6 1350.2.j.d.199.2 4
9.4 even 3 450.2.j.d.349.2 4
9.5 odd 6 1350.2.j.d.1099.1 4
9.7 even 3 450.2.j.d.49.1 4
15.2 even 4 4050.2.a.p.1.1 1
15.8 even 4 4050.2.a.t.1.1 1
15.14 odd 2 4050.2.c.e.649.1 2
45.2 even 12 1350.2.e.f.901.1 2
45.4 even 6 450.2.j.d.349.1 4
45.7 odd 12 450.2.e.a.301.1 yes 2
45.13 odd 12 450.2.e.h.151.1 yes 2
45.14 odd 6 1350.2.j.d.1099.2 4
45.22 odd 12 450.2.e.a.151.1 2
45.23 even 12 1350.2.e.e.451.1 2
45.29 odd 6 1350.2.j.d.199.1 4
45.32 even 12 1350.2.e.f.451.1 2
45.34 even 6 450.2.j.d.49.2 4
45.38 even 12 1350.2.e.e.901.1 2
45.43 odd 12 450.2.e.h.301.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
450.2.e.a.151.1 2 45.22 odd 12
450.2.e.a.301.1 yes 2 45.7 odd 12
450.2.e.h.151.1 yes 2 45.13 odd 12
450.2.e.h.301.1 yes 2 45.43 odd 12
450.2.j.d.49.1 4 9.7 even 3
450.2.j.d.49.2 4 45.34 even 6
450.2.j.d.349.1 4 45.4 even 6
450.2.j.d.349.2 4 9.4 even 3
1350.2.e.e.451.1 2 45.23 even 12
1350.2.e.e.901.1 2 45.38 even 12
1350.2.e.f.451.1 2 45.32 even 12
1350.2.e.f.901.1 2 45.2 even 12
1350.2.j.d.199.1 4 45.29 odd 6
1350.2.j.d.199.2 4 9.2 odd 6
1350.2.j.d.1099.1 4 9.5 odd 6
1350.2.j.d.1099.2 4 45.14 odd 6
4050.2.a.b.1.1 1 5.3 odd 4
4050.2.a.p.1.1 1 15.2 even 4
4050.2.a.t.1.1 1 15.8 even 4
4050.2.a.bj.1.1 1 5.2 odd 4
4050.2.c.e.649.1 2 15.14 odd 2
4050.2.c.e.649.2 2 3.2 odd 2
4050.2.c.q.649.1 2 1.1 even 1 trivial
4050.2.c.q.649.2 2 5.4 even 2 inner