Properties

Label 1350.2.j.d.1099.1
Level $1350$
Weight $2$
Character 1350.1099
Analytic conductor $10.780$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1350,2,Mod(199,1350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1350.199"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1350, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1350.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,0,0,0,0,0,0,6,0,0,-8,0,-2,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7798042729\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 450)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1099.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1350.1099
Dual form 1350.2.j.d.199.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(3.46410 + 2.00000i) q^{7} -1.00000i q^{8} +(1.50000 - 2.59808i) q^{11} +(3.46410 - 2.00000i) q^{13} +(-2.00000 - 3.46410i) q^{14} +(-0.500000 + 0.866025i) q^{16} +3.00000i q^{17} +4.00000 q^{19} +(-2.59808 + 1.50000i) q^{22} +(-5.19615 + 3.00000i) q^{23} -4.00000 q^{26} +4.00000i q^{28} +(3.00000 - 5.19615i) q^{29} +(-4.00000 - 6.92820i) q^{31} +(0.866025 - 0.500000i) q^{32} +(1.50000 - 2.59808i) q^{34} +8.00000i q^{37} +(-3.46410 - 2.00000i) q^{38} +(-3.00000 - 5.19615i) q^{41} +(-0.866025 - 0.500000i) q^{43} +3.00000 q^{44} +6.00000 q^{46} +(10.3923 + 6.00000i) q^{47} +(4.50000 + 7.79423i) q^{49} +(3.46410 + 2.00000i) q^{52} +(2.00000 - 3.46410i) q^{56} +(-5.19615 + 3.00000i) q^{58} +(4.50000 + 7.79423i) q^{59} +(-4.00000 + 6.92820i) q^{61} +8.00000i q^{62} -1.00000 q^{64} +(-3.46410 + 2.00000i) q^{67} +(-2.59808 + 1.50000i) q^{68} +6.00000 q^{71} -14.0000i q^{73} +(4.00000 - 6.92820i) q^{74} +(2.00000 + 3.46410i) q^{76} +(10.3923 - 6.00000i) q^{77} +(4.00000 - 6.92820i) q^{79} +6.00000i q^{82} +(7.79423 + 4.50000i) q^{83} +(0.500000 + 0.866025i) q^{86} +(-2.59808 - 1.50000i) q^{88} -9.00000 q^{89} +16.0000 q^{91} +(-5.19615 - 3.00000i) q^{92} +(-6.00000 - 10.3923i) q^{94} +(6.06218 + 3.50000i) q^{97} -9.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 6 q^{11} - 8 q^{14} - 2 q^{16} + 16 q^{19} - 16 q^{26} + 12 q^{29} - 16 q^{31} + 6 q^{34} - 12 q^{41} + 12 q^{44} + 24 q^{46} + 18 q^{49} + 8 q^{56} + 18 q^{59} - 16 q^{61} - 4 q^{64} + 24 q^{71}+ \cdots - 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 0 0
\(7\) 3.46410 + 2.00000i 1.30931 + 0.755929i 0.981981 0.188982i \(-0.0605189\pi\)
0.327327 + 0.944911i \(0.393852\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 1.50000 2.59808i 0.452267 0.783349i −0.546259 0.837616i \(-0.683949\pi\)
0.998526 + 0.0542666i \(0.0172821\pi\)
\(12\) 0 0
\(13\) 3.46410 2.00000i 0.960769 0.554700i 0.0643593 0.997927i \(-0.479500\pi\)
0.896410 + 0.443227i \(0.146166\pi\)
\(14\) −2.00000 3.46410i −0.534522 0.925820i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.00000i 0.727607i 0.931476 + 0.363803i \(0.118522\pi\)
−0.931476 + 0.363803i \(0.881478\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.59808 + 1.50000i −0.553912 + 0.319801i
\(23\) −5.19615 + 3.00000i −1.08347 + 0.625543i −0.931831 0.362892i \(-0.881789\pi\)
−0.151642 + 0.988436i \(0.548456\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −4.00000 −0.784465
\(27\) 0 0
\(28\) 4.00000i 0.755929i
\(29\) 3.00000 5.19615i 0.557086 0.964901i −0.440652 0.897678i \(-0.645253\pi\)
0.997738 0.0672232i \(-0.0214140\pi\)
\(30\) 0 0
\(31\) −4.00000 6.92820i −0.718421 1.24434i −0.961625 0.274367i \(-0.911532\pi\)
0.243204 0.969975i \(-0.421802\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0 0
\(34\) 1.50000 2.59808i 0.257248 0.445566i
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) −3.46410 2.00000i −0.561951 0.324443i
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 5.19615i −0.468521 0.811503i 0.530831 0.847477i \(-0.321880\pi\)
−0.999353 + 0.0359748i \(0.988546\pi\)
\(42\) 0 0
\(43\) −0.866025 0.500000i −0.132068 0.0762493i 0.432511 0.901629i \(-0.357628\pi\)
−0.564578 + 0.825380i \(0.690961\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) 6.00000 0.884652
\(47\) 10.3923 + 6.00000i 1.51587 + 0.875190i 0.999826 + 0.0186297i \(0.00593036\pi\)
0.516047 + 0.856560i \(0.327403\pi\)
\(48\) 0 0
\(49\) 4.50000 + 7.79423i 0.642857 + 1.11346i
\(50\) 0 0
\(51\) 0 0
\(52\) 3.46410 + 2.00000i 0.480384 + 0.277350i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.00000 3.46410i 0.267261 0.462910i
\(57\) 0 0
\(58\) −5.19615 + 3.00000i −0.682288 + 0.393919i
\(59\) 4.50000 + 7.79423i 0.585850 + 1.01472i 0.994769 + 0.102151i \(0.0325726\pi\)
−0.408919 + 0.912571i \(0.634094\pi\)
\(60\) 0 0
\(61\) −4.00000 + 6.92820i −0.512148 + 0.887066i 0.487753 + 0.872982i \(0.337817\pi\)
−0.999901 + 0.0140840i \(0.995517\pi\)
\(62\) 8.00000i 1.01600i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −3.46410 + 2.00000i −0.423207 + 0.244339i −0.696449 0.717607i \(-0.745238\pi\)
0.273241 + 0.961946i \(0.411904\pi\)
\(68\) −2.59808 + 1.50000i −0.315063 + 0.181902i
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 14.0000i 1.63858i −0.573382 0.819288i \(-0.694369\pi\)
0.573382 0.819288i \(-0.305631\pi\)
\(74\) 4.00000 6.92820i 0.464991 0.805387i
\(75\) 0 0
\(76\) 2.00000 + 3.46410i 0.229416 + 0.397360i
\(77\) 10.3923 6.00000i 1.18431 0.683763i
\(78\) 0 0
\(79\) 4.00000 6.92820i 0.450035 0.779484i −0.548352 0.836247i \(-0.684745\pi\)
0.998388 + 0.0567635i \(0.0180781\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 6.00000i 0.662589i
\(83\) 7.79423 + 4.50000i 0.855528 + 0.493939i 0.862512 0.506036i \(-0.168890\pi\)
−0.00698436 + 0.999976i \(0.502223\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.500000 + 0.866025i 0.0539164 + 0.0933859i
\(87\) 0 0
\(88\) −2.59808 1.50000i −0.276956 0.159901i
\(89\) −9.00000 −0.953998 −0.476999 0.878904i \(-0.658275\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 0 0
\(91\) 16.0000 1.67726
\(92\) −5.19615 3.00000i −0.541736 0.312772i
\(93\) 0 0
\(94\) −6.00000 10.3923i −0.618853 1.07188i
\(95\) 0 0
\(96\) 0 0
\(97\) 6.06218 + 3.50000i 0.615521 + 0.355371i 0.775123 0.631810i \(-0.217688\pi\)
−0.159602 + 0.987181i \(0.551021\pi\)
\(98\) 9.00000i 0.909137i
\(99\) 0 0
\(100\) 0 0
\(101\) 6.00000 10.3923i 0.597022 1.03407i −0.396236 0.918149i \(-0.629684\pi\)
0.993258 0.115924i \(-0.0369830\pi\)
\(102\) 0 0
\(103\) −6.92820 + 4.00000i −0.682656 + 0.394132i −0.800855 0.598858i \(-0.795621\pi\)
0.118199 + 0.992990i \(0.462288\pi\)
\(104\) −2.00000 3.46410i −0.196116 0.339683i
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000i 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −3.46410 + 2.00000i −0.327327 + 0.188982i
\(113\) 2.59808 1.50000i 0.244406 0.141108i −0.372794 0.927914i \(-0.621600\pi\)
0.617200 + 0.786806i \(0.288267\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 0 0
\(118\) 9.00000i 0.828517i
\(119\) −6.00000 + 10.3923i −0.550019 + 0.952661i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 6.92820 4.00000i 0.627250 0.362143i
\(123\) 0 0
\(124\) 4.00000 6.92820i 0.359211 0.622171i
\(125\) 0 0
\(126\) 0 0
\(127\) 16.0000i 1.41977i −0.704317 0.709885i \(-0.748747\pi\)
0.704317 0.709885i \(-0.251253\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000 + 10.3923i 0.524222 + 0.907980i 0.999602 + 0.0281993i \(0.00897729\pi\)
−0.475380 + 0.879781i \(0.657689\pi\)
\(132\) 0 0
\(133\) 13.8564 + 8.00000i 1.20150 + 0.693688i
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 3.00000 0.257248
\(137\) 15.5885 + 9.00000i 1.33181 + 0.768922i 0.985577 0.169226i \(-0.0541268\pi\)
0.346235 + 0.938148i \(0.387460\pi\)
\(138\) 0 0
\(139\) 5.50000 + 9.52628i 0.466504 + 0.808008i 0.999268 0.0382553i \(-0.0121800\pi\)
−0.532764 + 0.846264i \(0.678847\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −5.19615 3.00000i −0.436051 0.251754i
\(143\) 12.0000i 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) −7.00000 + 12.1244i −0.579324 + 1.00342i
\(147\) 0 0
\(148\) −6.92820 + 4.00000i −0.569495 + 0.328798i
\(149\) 3.00000 + 5.19615i 0.245770 + 0.425685i 0.962348 0.271821i \(-0.0876260\pi\)
−0.716578 + 0.697507i \(0.754293\pi\)
\(150\) 0 0
\(151\) 5.00000 8.66025i 0.406894 0.704761i −0.587646 0.809118i \(-0.699945\pi\)
0.994540 + 0.104357i \(0.0332784\pi\)
\(152\) 4.00000i 0.324443i
\(153\) 0 0
\(154\) −12.0000 −0.966988
\(155\) 0 0
\(156\) 0 0
\(157\) −3.46410 + 2.00000i −0.276465 + 0.159617i −0.631822 0.775113i \(-0.717693\pi\)
0.355357 + 0.934731i \(0.384359\pi\)
\(158\) −6.92820 + 4.00000i −0.551178 + 0.318223i
\(159\) 0 0
\(160\) 0 0
\(161\) −24.0000 −1.89146
\(162\) 0 0
\(163\) 11.0000i 0.861586i −0.902451 0.430793i \(-0.858234\pi\)
0.902451 0.430793i \(-0.141766\pi\)
\(164\) 3.00000 5.19615i 0.234261 0.405751i
\(165\) 0 0
\(166\) −4.50000 7.79423i −0.349268 0.604949i
\(167\) −15.5885 + 9.00000i −1.20627 + 0.696441i −0.961943 0.273252i \(-0.911901\pi\)
−0.244328 + 0.969693i \(0.578568\pi\)
\(168\) 0 0
\(169\) 1.50000 2.59808i 0.115385 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) 1.00000i 0.0762493i
\(173\) 5.19615 + 3.00000i 0.395056 + 0.228086i 0.684349 0.729155i \(-0.260087\pi\)
−0.289292 + 0.957241i \(0.593420\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.50000 + 2.59808i 0.113067 + 0.195837i
\(177\) 0 0
\(178\) 7.79423 + 4.50000i 0.584202 + 0.337289i
\(179\) −3.00000 −0.224231 −0.112115 0.993695i \(-0.535763\pi\)
−0.112115 + 0.993695i \(0.535763\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) −13.8564 8.00000i −1.02711 0.592999i
\(183\) 0 0
\(184\) 3.00000 + 5.19615i 0.221163 + 0.383065i
\(185\) 0 0
\(186\) 0 0
\(187\) 7.79423 + 4.50000i 0.569970 + 0.329073i
\(188\) 12.0000i 0.875190i
\(189\) 0 0
\(190\) 0 0
\(191\) 3.00000 5.19615i 0.217072 0.375980i −0.736839 0.676068i \(-0.763683\pi\)
0.953912 + 0.300088i \(0.0970159\pi\)
\(192\) 0 0
\(193\) −4.33013 + 2.50000i −0.311689 + 0.179954i −0.647682 0.761911i \(-0.724262\pi\)
0.335993 + 0.941865i \(0.390928\pi\)
\(194\) −3.50000 6.06218i −0.251285 0.435239i
\(195\) 0 0
\(196\) −4.50000 + 7.79423i −0.321429 + 0.556731i
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) 0 0
\(199\) −2.00000 −0.141776 −0.0708881 0.997484i \(-0.522583\pi\)
−0.0708881 + 0.997484i \(0.522583\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −10.3923 + 6.00000i −0.731200 + 0.422159i
\(203\) 20.7846 12.0000i 1.45879 0.842235i
\(204\) 0 0
\(205\) 0 0
\(206\) 8.00000 0.557386
\(207\) 0 0
\(208\) 4.00000i 0.277350i
\(209\) 6.00000 10.3923i 0.415029 0.718851i
\(210\) 0 0
\(211\) −11.5000 19.9186i −0.791693 1.37125i −0.924918 0.380166i \(-0.875867\pi\)
0.133226 0.991086i \(-0.457467\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −6.00000 + 10.3923i −0.410152 + 0.710403i
\(215\) 0 0
\(216\) 0 0
\(217\) 32.0000i 2.17230i
\(218\) 1.73205 + 1.00000i 0.117309 + 0.0677285i
\(219\) 0 0
\(220\) 0 0
\(221\) 6.00000 + 10.3923i 0.403604 + 0.699062i
\(222\) 0 0
\(223\) 1.73205 + 1.00000i 0.115987 + 0.0669650i 0.556871 0.830599i \(-0.312002\pi\)
−0.440884 + 0.897564i \(0.645335\pi\)
\(224\) 4.00000 0.267261
\(225\) 0 0
\(226\) −3.00000 −0.199557
\(227\) −23.3827 13.5000i −1.55196 0.896026i −0.997982 0.0634974i \(-0.979775\pi\)
−0.553981 0.832529i \(-0.686892\pi\)
\(228\) 0 0
\(229\) 4.00000 + 6.92820i 0.264327 + 0.457829i 0.967387 0.253302i \(-0.0815167\pi\)
−0.703060 + 0.711131i \(0.748183\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −5.19615 3.00000i −0.341144 0.196960i
\(233\) 15.0000i 0.982683i 0.870967 + 0.491341i \(0.163493\pi\)
−0.870967 + 0.491341i \(0.836507\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −4.50000 + 7.79423i −0.292925 + 0.507361i
\(237\) 0 0
\(238\) 10.3923 6.00000i 0.673633 0.388922i
\(239\) −9.00000 15.5885i −0.582162 1.00833i −0.995223 0.0976302i \(-0.968874\pi\)
0.413061 0.910703i \(-0.364460\pi\)
\(240\) 0 0
\(241\) −13.0000 + 22.5167i −0.837404 + 1.45043i 0.0546547 + 0.998505i \(0.482594\pi\)
−0.892058 + 0.451920i \(0.850739\pi\)
\(242\) 2.00000i 0.128565i
\(243\) 0 0
\(244\) −8.00000 −0.512148
\(245\) 0 0
\(246\) 0 0
\(247\) 13.8564 8.00000i 0.881662 0.509028i
\(248\) −6.92820 + 4.00000i −0.439941 + 0.254000i
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 18.0000i 1.13165i
\(254\) −8.00000 + 13.8564i −0.501965 + 0.869428i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −2.59808 + 1.50000i −0.162064 + 0.0935674i −0.578838 0.815442i \(-0.696494\pi\)
0.416775 + 0.909010i \(0.363160\pi\)
\(258\) 0 0
\(259\) −16.0000 + 27.7128i −0.994192 + 1.72199i
\(260\) 0 0
\(261\) 0 0
\(262\) 12.0000i 0.741362i
\(263\) −20.7846 12.0000i −1.28163 0.739952i −0.304487 0.952517i \(-0.598485\pi\)
−0.977147 + 0.212565i \(0.931818\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −8.00000 13.8564i −0.490511 0.849591i
\(267\) 0 0
\(268\) −3.46410 2.00000i −0.211604 0.122169i
\(269\) −12.0000 −0.731653 −0.365826 0.930683i \(-0.619214\pi\)
−0.365826 + 0.930683i \(0.619214\pi\)
\(270\) 0 0
\(271\) −4.00000 −0.242983 −0.121491 0.992592i \(-0.538768\pi\)
−0.121491 + 0.992592i \(0.538768\pi\)
\(272\) −2.59808 1.50000i −0.157532 0.0909509i
\(273\) 0 0
\(274\) −9.00000 15.5885i −0.543710 0.941733i
\(275\) 0 0
\(276\) 0 0
\(277\) −1.73205 1.00000i −0.104069 0.0600842i 0.447062 0.894503i \(-0.352470\pi\)
−0.551131 + 0.834419i \(0.685804\pi\)
\(278\) 11.0000i 0.659736i
\(279\) 0 0
\(280\) 0 0
\(281\) −9.00000 + 15.5885i −0.536895 + 0.929929i 0.462174 + 0.886789i \(0.347070\pi\)
−0.999069 + 0.0431402i \(0.986264\pi\)
\(282\) 0 0
\(283\) 0.866025 0.500000i 0.0514799 0.0297219i −0.474039 0.880504i \(-0.657204\pi\)
0.525519 + 0.850782i \(0.323871\pi\)
\(284\) 3.00000 + 5.19615i 0.178017 + 0.308335i
\(285\) 0 0
\(286\) −6.00000 + 10.3923i −0.354787 + 0.614510i
\(287\) 24.0000i 1.41668i
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 12.1244 7.00000i 0.709524 0.409644i
\(293\) −10.3923 + 6.00000i −0.607125 + 0.350524i −0.771839 0.635818i \(-0.780663\pi\)
0.164714 + 0.986341i \(0.447330\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 8.00000 0.464991
\(297\) 0 0
\(298\) 6.00000i 0.347571i
\(299\) −12.0000 + 20.7846i −0.693978 + 1.20201i
\(300\) 0 0
\(301\) −2.00000 3.46410i −0.115278 0.199667i
\(302\) −8.66025 + 5.00000i −0.498342 + 0.287718i
\(303\) 0 0
\(304\) −2.00000 + 3.46410i −0.114708 + 0.198680i
\(305\) 0 0
\(306\) 0 0
\(307\) 1.00000i 0.0570730i −0.999593 0.0285365i \(-0.990915\pi\)
0.999593 0.0285365i \(-0.00908469\pi\)
\(308\) 10.3923 + 6.00000i 0.592157 + 0.341882i
\(309\) 0 0
\(310\) 0 0
\(311\) 3.00000 + 5.19615i 0.170114 + 0.294647i 0.938460 0.345389i \(-0.112253\pi\)
−0.768345 + 0.640036i \(0.778920\pi\)
\(312\) 0 0
\(313\) 14.7224 + 8.50000i 0.832161 + 0.480448i 0.854592 0.519300i \(-0.173807\pi\)
−0.0224310 + 0.999748i \(0.507141\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −15.5885 9.00000i −0.875535 0.505490i −0.00635137 0.999980i \(-0.502022\pi\)
−0.869184 + 0.494489i \(0.835355\pi\)
\(318\) 0 0
\(319\) −9.00000 15.5885i −0.503903 0.872786i
\(320\) 0 0
\(321\) 0 0
\(322\) 20.7846 + 12.0000i 1.15828 + 0.668734i
\(323\) 12.0000i 0.667698i
\(324\) 0 0
\(325\) 0 0
\(326\) −5.50000 + 9.52628i −0.304617 + 0.527612i
\(327\) 0 0
\(328\) −5.19615 + 3.00000i −0.286910 + 0.165647i
\(329\) 24.0000 + 41.5692i 1.32316 + 2.29179i
\(330\) 0 0
\(331\) −8.50000 + 14.7224i −0.467202 + 0.809218i −0.999298 0.0374662i \(-0.988071\pi\)
0.532096 + 0.846684i \(0.321405\pi\)
\(332\) 9.00000i 0.493939i
\(333\) 0 0
\(334\) 18.0000 0.984916
\(335\) 0 0
\(336\) 0 0
\(337\) −11.2583 + 6.50000i −0.613280 + 0.354078i −0.774248 0.632882i \(-0.781872\pi\)
0.160968 + 0.986960i \(0.448538\pi\)
\(338\) −2.59808 + 1.50000i −0.141317 + 0.0815892i
\(339\) 0 0
\(340\) 0 0
\(341\) −24.0000 −1.29967
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) −0.500000 + 0.866025i −0.0269582 + 0.0466930i
\(345\) 0 0
\(346\) −3.00000 5.19615i −0.161281 0.279347i
\(347\) −23.3827 + 13.5000i −1.25525 + 0.724718i −0.972147 0.234372i \(-0.924697\pi\)
−0.283101 + 0.959090i \(0.591363\pi\)
\(348\) 0 0
\(349\) 7.00000 12.1244i 0.374701 0.649002i −0.615581 0.788074i \(-0.711079\pi\)
0.990282 + 0.139072i \(0.0444119\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3.00000i 0.159901i
\(353\) 7.79423 + 4.50000i 0.414845 + 0.239511i 0.692869 0.721063i \(-0.256346\pi\)
−0.278024 + 0.960574i \(0.589680\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −4.50000 7.79423i −0.238500 0.413093i
\(357\) 0 0
\(358\) 2.59808 + 1.50000i 0.137313 + 0.0792775i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −1.73205 1.00000i −0.0910346 0.0525588i
\(363\) 0 0
\(364\) 8.00000 + 13.8564i 0.419314 + 0.726273i
\(365\) 0 0
\(366\) 0 0
\(367\) −22.5167 13.0000i −1.17536 0.678594i −0.220423 0.975404i \(-0.570744\pi\)
−0.954937 + 0.296810i \(0.904077\pi\)
\(368\) 6.00000i 0.312772i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −6.92820 + 4.00000i −0.358729 + 0.207112i −0.668523 0.743691i \(-0.733073\pi\)
0.309794 + 0.950804i \(0.399740\pi\)
\(374\) −4.50000 7.79423i −0.232689 0.403030i
\(375\) 0 0
\(376\) 6.00000 10.3923i 0.309426 0.535942i
\(377\) 24.0000i 1.23606i
\(378\) 0 0
\(379\) −29.0000 −1.48963 −0.744815 0.667271i \(-0.767462\pi\)
−0.744815 + 0.667271i \(0.767462\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −5.19615 + 3.00000i −0.265858 + 0.153493i
\(383\) 15.5885 9.00000i 0.796533 0.459879i −0.0457244 0.998954i \(-0.514560\pi\)
0.842257 + 0.539076i \(0.181226\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 5.00000 0.254493
\(387\) 0 0
\(388\) 7.00000i 0.355371i
\(389\) 3.00000 5.19615i 0.152106 0.263455i −0.779895 0.625910i \(-0.784728\pi\)
0.932002 + 0.362454i \(0.118061\pi\)
\(390\) 0 0
\(391\) −9.00000 15.5885i −0.455150 0.788342i
\(392\) 7.79423 4.50000i 0.393668 0.227284i
\(393\) 0 0
\(394\) 9.00000 15.5885i 0.453413 0.785335i
\(395\) 0 0
\(396\) 0 0
\(397\) 14.0000i 0.702640i 0.936255 + 0.351320i \(0.114267\pi\)
−0.936255 + 0.351320i \(0.885733\pi\)
\(398\) 1.73205 + 1.00000i 0.0868199 + 0.0501255i
\(399\) 0 0
\(400\) 0 0
\(401\) −7.50000 12.9904i −0.374532 0.648709i 0.615725 0.787961i \(-0.288863\pi\)
−0.990257 + 0.139253i \(0.955530\pi\)
\(402\) 0 0
\(403\) −27.7128 16.0000i −1.38047 0.797017i
\(404\) 12.0000 0.597022
\(405\) 0 0
\(406\) −24.0000 −1.19110
\(407\) 20.7846 + 12.0000i 1.03025 + 0.594818i
\(408\) 0 0
\(409\) −11.0000 19.0526i −0.543915 0.942088i −0.998674 0.0514740i \(-0.983608\pi\)
0.454759 0.890614i \(-0.349725\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −6.92820 4.00000i −0.341328 0.197066i
\(413\) 36.0000i 1.77144i
\(414\) 0 0
\(415\) 0 0
\(416\) 2.00000 3.46410i 0.0980581 0.169842i
\(417\) 0 0
\(418\) −10.3923 + 6.00000i −0.508304 + 0.293470i
\(419\) −4.50000 7.79423i −0.219839 0.380773i 0.734919 0.678155i \(-0.237220\pi\)
−0.954759 + 0.297382i \(0.903887\pi\)
\(420\) 0 0
\(421\) −16.0000 + 27.7128i −0.779792 + 1.35064i 0.152269 + 0.988339i \(0.451342\pi\)
−0.932061 + 0.362301i \(0.881991\pi\)
\(422\) 23.0000i 1.11962i
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −27.7128 + 16.0000i −1.34112 + 0.774294i
\(428\) 10.3923 6.00000i 0.502331 0.290021i
\(429\) 0 0
\(430\) 0 0
\(431\) −6.00000 −0.289010 −0.144505 0.989504i \(-0.546159\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(432\) 0 0
\(433\) 7.00000i 0.336399i 0.985753 + 0.168199i \(0.0537952\pi\)
−0.985753 + 0.168199i \(0.946205\pi\)
\(434\) −16.0000 + 27.7128i −0.768025 + 1.33026i
\(435\) 0 0
\(436\) −1.00000 1.73205i −0.0478913 0.0829502i
\(437\) −20.7846 + 12.0000i −0.994263 + 0.574038i
\(438\) 0 0
\(439\) 7.00000 12.1244i 0.334092 0.578664i −0.649218 0.760602i \(-0.724904\pi\)
0.983310 + 0.181938i \(0.0582371\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 12.0000i 0.570782i
\(443\) −7.79423 4.50000i −0.370315 0.213801i 0.303281 0.952901i \(-0.401918\pi\)
−0.673596 + 0.739100i \(0.735251\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1.00000 1.73205i −0.0473514 0.0820150i
\(447\) 0 0
\(448\) −3.46410 2.00000i −0.163663 0.0944911i
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) 2.59808 + 1.50000i 0.122203 + 0.0705541i
\(453\) 0 0
\(454\) 13.5000 + 23.3827i 0.633586 + 1.09740i
\(455\) 0 0
\(456\) 0 0
\(457\) 8.66025 + 5.00000i 0.405110 + 0.233890i 0.688686 0.725059i \(-0.258188\pi\)
−0.283577 + 0.958950i \(0.591521\pi\)
\(458\) 8.00000i 0.373815i
\(459\) 0 0
\(460\) 0 0
\(461\) −3.00000 + 5.19615i −0.139724 + 0.242009i −0.927392 0.374091i \(-0.877955\pi\)
0.787668 + 0.616100i \(0.211288\pi\)
\(462\) 0 0
\(463\) −12.1244 + 7.00000i −0.563467 + 0.325318i −0.754536 0.656259i \(-0.772138\pi\)
0.191069 + 0.981577i \(0.438805\pi\)
\(464\) 3.00000 + 5.19615i 0.139272 + 0.241225i
\(465\) 0 0
\(466\) 7.50000 12.9904i 0.347431 0.601768i
\(467\) 9.00000i 0.416470i −0.978079 0.208235i \(-0.933228\pi\)
0.978079 0.208235i \(-0.0667719\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) 0 0
\(472\) 7.79423 4.50000i 0.358758 0.207129i
\(473\) −2.59808 + 1.50000i −0.119460 + 0.0689701i
\(474\) 0 0
\(475\) 0 0
\(476\) −12.0000 −0.550019
\(477\) 0 0
\(478\) 18.0000i 0.823301i
\(479\) 6.00000 10.3923i 0.274147 0.474837i −0.695773 0.718262i \(-0.744938\pi\)
0.969920 + 0.243426i \(0.0782712\pi\)
\(480\) 0 0
\(481\) 16.0000 + 27.7128i 0.729537 + 1.26360i
\(482\) 22.5167 13.0000i 1.02561 0.592134i
\(483\) 0 0
\(484\) −1.00000 + 1.73205i −0.0454545 + 0.0787296i
\(485\) 0 0
\(486\) 0 0
\(487\) 2.00000i 0.0906287i 0.998973 + 0.0453143i \(0.0144289\pi\)
−0.998973 + 0.0453143i \(0.985571\pi\)
\(488\) 6.92820 + 4.00000i 0.313625 + 0.181071i
\(489\) 0 0
\(490\) 0 0
\(491\) −7.50000 12.9904i −0.338470 0.586248i 0.645675 0.763612i \(-0.276576\pi\)
−0.984145 + 0.177365i \(0.943243\pi\)
\(492\) 0 0
\(493\) 15.5885 + 9.00000i 0.702069 + 0.405340i
\(494\) −16.0000 −0.719874
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 20.7846 + 12.0000i 0.932317 + 0.538274i
\(498\) 0 0
\(499\) 5.50000 + 9.52628i 0.246214 + 0.426455i 0.962472 0.271380i \(-0.0874801\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −10.3923 6.00000i −0.463831 0.267793i
\(503\) 12.0000i 0.535054i −0.963550 0.267527i \(-0.913794\pi\)
0.963550 0.267527i \(-0.0862064\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 9.00000 15.5885i 0.400099 0.692991i
\(507\) 0 0
\(508\) 13.8564 8.00000i 0.614779 0.354943i
\(509\) −15.0000 25.9808i −0.664863 1.15158i −0.979322 0.202306i \(-0.935156\pi\)
0.314459 0.949271i \(-0.398177\pi\)
\(510\) 0 0
\(511\) 28.0000 48.4974i 1.23865 2.14540i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 3.00000 0.132324
\(515\) 0 0
\(516\) 0 0
\(517\) 31.1769 18.0000i 1.37116 0.791639i
\(518\) 27.7128 16.0000i 1.21763 0.703000i
\(519\) 0 0
\(520\) 0 0
\(521\) 27.0000 1.18289 0.591446 0.806345i \(-0.298557\pi\)
0.591446 + 0.806345i \(0.298557\pi\)
\(522\) 0 0
\(523\) 29.0000i 1.26808i −0.773300 0.634041i \(-0.781395\pi\)
0.773300 0.634041i \(-0.218605\pi\)
\(524\) −6.00000 + 10.3923i −0.262111 + 0.453990i
\(525\) 0 0
\(526\) 12.0000 + 20.7846i 0.523225 + 0.906252i
\(527\) 20.7846 12.0000i 0.905392 0.522728i
\(528\) 0 0
\(529\) 6.50000 11.2583i 0.282609 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 16.0000i 0.693688i
\(533\) −20.7846 12.0000i −0.900281 0.519778i
\(534\) 0 0
\(535\) 0 0
\(536\) 2.00000 + 3.46410i 0.0863868 + 0.149626i
\(537\) 0 0
\(538\) 10.3923 + 6.00000i 0.448044 + 0.258678i
\(539\) 27.0000 1.16297
\(540\) 0 0
\(541\) 8.00000 0.343947 0.171973 0.985102i \(-0.444986\pi\)
0.171973 + 0.985102i \(0.444986\pi\)
\(542\) 3.46410 + 2.00000i 0.148796 + 0.0859074i
\(543\) 0 0
\(544\) 1.50000 + 2.59808i 0.0643120 + 0.111392i
\(545\) 0 0
\(546\) 0 0
\(547\) −17.3205 10.0000i −0.740571 0.427569i 0.0817056 0.996657i \(-0.473963\pi\)
−0.822277 + 0.569087i \(0.807297\pi\)
\(548\) 18.0000i 0.768922i
\(549\) 0 0
\(550\) 0 0
\(551\) 12.0000 20.7846i 0.511217 0.885454i
\(552\) 0 0
\(553\) 27.7128 16.0000i 1.17847 0.680389i
\(554\) 1.00000 + 1.73205i 0.0424859 + 0.0735878i
\(555\) 0 0
\(556\) −5.50000 + 9.52628i −0.233252 + 0.404004i
\(557\) 6.00000i 0.254228i 0.991888 + 0.127114i \(0.0405714\pi\)
−0.991888 + 0.127114i \(0.959429\pi\)
\(558\) 0 0
\(559\) −4.00000 −0.169182
\(560\) 0 0
\(561\) 0 0
\(562\) 15.5885 9.00000i 0.657559 0.379642i
\(563\) −2.59808 + 1.50000i −0.109496 + 0.0632175i −0.553748 0.832684i \(-0.686803\pi\)
0.444252 + 0.895902i \(0.353470\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1.00000 −0.0420331
\(567\) 0 0
\(568\) 6.00000i 0.251754i
\(569\) 13.5000 23.3827i 0.565949 0.980253i −0.431011 0.902347i \(-0.641843\pi\)
0.996961 0.0779066i \(-0.0248236\pi\)
\(570\) 0 0
\(571\) 12.5000 + 21.6506i 0.523109 + 0.906051i 0.999638 + 0.0268925i \(0.00856117\pi\)
−0.476530 + 0.879158i \(0.658105\pi\)
\(572\) 10.3923 6.00000i 0.434524 0.250873i
\(573\) 0 0
\(574\) −12.0000 + 20.7846i −0.500870 + 0.867533i
\(575\) 0 0
\(576\) 0 0
\(577\) 38.0000i 1.58196i 0.611842 + 0.790980i \(0.290429\pi\)
−0.611842 + 0.790980i \(0.709571\pi\)
\(578\) −6.92820 4.00000i −0.288175 0.166378i
\(579\) 0 0
\(580\) 0 0
\(581\) 18.0000 + 31.1769i 0.746766 + 1.29344i
\(582\) 0 0
\(583\) 0 0
\(584\) −14.0000 −0.579324
\(585\) 0 0
\(586\) 12.0000 0.495715
\(587\) −2.59808 1.50000i −0.107234 0.0619116i 0.445424 0.895320i \(-0.353053\pi\)
−0.552658 + 0.833408i \(0.686386\pi\)
\(588\) 0 0
\(589\) −16.0000 27.7128i −0.659269 1.14189i
\(590\) 0 0
\(591\) 0 0
\(592\) −6.92820 4.00000i −0.284747 0.164399i
\(593\) 45.0000i 1.84793i −0.382479 0.923964i \(-0.624930\pi\)
0.382479 0.923964i \(-0.375070\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.00000 + 5.19615i −0.122885 + 0.212843i
\(597\) 0 0
\(598\) 20.7846 12.0000i 0.849946 0.490716i
\(599\) −9.00000 15.5885i −0.367730 0.636927i 0.621480 0.783430i \(-0.286532\pi\)
−0.989210 + 0.146503i \(0.953198\pi\)
\(600\) 0 0
\(601\) 18.5000 32.0429i 0.754631 1.30706i −0.190927 0.981604i \(-0.561149\pi\)
0.945558 0.325455i \(-0.105517\pi\)
\(602\) 4.00000i 0.163028i
\(603\) 0 0
\(604\) 10.0000 0.406894
\(605\) 0 0
\(606\) 0 0
\(607\) −13.8564 + 8.00000i −0.562414 + 0.324710i −0.754114 0.656744i \(-0.771933\pi\)
0.191700 + 0.981454i \(0.438600\pi\)
\(608\) 3.46410 2.00000i 0.140488 0.0811107i
\(609\) 0 0
\(610\) 0 0
\(611\) 48.0000 1.94187
\(612\) 0 0
\(613\) 14.0000i 0.565455i −0.959200 0.282727i \(-0.908761\pi\)
0.959200 0.282727i \(-0.0912392\pi\)
\(614\) −0.500000 + 0.866025i −0.0201784 + 0.0349499i
\(615\) 0 0
\(616\) −6.00000 10.3923i −0.241747 0.418718i
\(617\) −23.3827 + 13.5000i −0.941351 + 0.543490i −0.890384 0.455211i \(-0.849564\pi\)
−0.0509678 + 0.998700i \(0.516231\pi\)
\(618\) 0 0
\(619\) 17.5000 30.3109i 0.703384 1.21830i −0.263887 0.964554i \(-0.585005\pi\)
0.967271 0.253744i \(-0.0816620\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 6.00000i 0.240578i
\(623\) −31.1769 18.0000i −1.24908 0.721155i
\(624\) 0 0
\(625\) 0 0
\(626\) −8.50000 14.7224i −0.339728 0.588427i
\(627\) 0 0
\(628\) −3.46410 2.00000i −0.138233 0.0798087i
\(629\) −24.0000 −0.956943
\(630\) 0 0
\(631\) 38.0000 1.51276 0.756378 0.654135i \(-0.226967\pi\)
0.756378 + 0.654135i \(0.226967\pi\)
\(632\) −6.92820 4.00000i −0.275589 0.159111i
\(633\) 0 0
\(634\) 9.00000 + 15.5885i 0.357436 + 0.619097i
\(635\) 0 0
\(636\) 0 0
\(637\) 31.1769 + 18.0000i 1.23527 + 0.713186i
\(638\) 18.0000i 0.712627i
\(639\) 0 0
\(640\) 0 0
\(641\) −13.5000 + 23.3827i −0.533218 + 0.923561i 0.466029 + 0.884769i \(0.345684\pi\)
−0.999247 + 0.0387913i \(0.987649\pi\)
\(642\) 0 0
\(643\) −19.9186 + 11.5000i −0.785512 + 0.453516i −0.838380 0.545086i \(-0.816497\pi\)
0.0528680 + 0.998602i \(0.483164\pi\)
\(644\) −12.0000 20.7846i −0.472866 0.819028i
\(645\) 0 0
\(646\) 6.00000 10.3923i 0.236067 0.408880i
\(647\) 12.0000i 0.471769i −0.971781 0.235884i \(-0.924201\pi\)
0.971781 0.235884i \(-0.0757987\pi\)
\(648\) 0 0
\(649\) 27.0000 1.05984
\(650\) 0 0
\(651\) 0 0
\(652\) 9.52628 5.50000i 0.373078 0.215397i
\(653\) −20.7846 + 12.0000i −0.813365 + 0.469596i −0.848123 0.529799i \(-0.822267\pi\)
0.0347583 + 0.999396i \(0.488934\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) 48.0000i 1.87123i
\(659\) 22.5000 38.9711i 0.876476 1.51810i 0.0212930 0.999773i \(-0.493222\pi\)
0.855183 0.518327i \(-0.173445\pi\)
\(660\) 0 0
\(661\) 5.00000 + 8.66025i 0.194477 + 0.336845i 0.946729 0.322031i \(-0.104366\pi\)
−0.752252 + 0.658876i \(0.771032\pi\)
\(662\) 14.7224 8.50000i 0.572204 0.330362i
\(663\) 0 0
\(664\) 4.50000 7.79423i 0.174634 0.302475i
\(665\) 0 0
\(666\) 0 0
\(667\) 36.0000i 1.39393i
\(668\) −15.5885 9.00000i −0.603136 0.348220i
\(669\) 0 0
\(670\) 0 0
\(671\) 12.0000 + 20.7846i 0.463255 + 0.802381i
\(672\) 0 0
\(673\) −39.8372 23.0000i −1.53561 0.886585i −0.999088 0.0426985i \(-0.986405\pi\)
−0.536522 0.843886i \(-0.680262\pi\)
\(674\) 13.0000 0.500741
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) 15.5885 + 9.00000i 0.599113 + 0.345898i 0.768693 0.639618i \(-0.220908\pi\)
−0.169580 + 0.985517i \(0.554241\pi\)
\(678\) 0 0
\(679\) 14.0000 + 24.2487i 0.537271 + 0.930580i
\(680\) 0 0
\(681\) 0 0
\(682\) 20.7846 + 12.0000i 0.795884 + 0.459504i
\(683\) 36.0000i 1.37750i 0.724998 + 0.688751i \(0.241841\pi\)
−0.724998 + 0.688751i \(0.758159\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 4.00000 6.92820i 0.152721 0.264520i
\(687\) 0 0
\(688\) 0.866025 0.500000i 0.0330169 0.0190623i
\(689\) 0 0
\(690\) 0 0
\(691\) 9.50000 16.4545i 0.361397 0.625958i −0.626794 0.779185i \(-0.715633\pi\)
0.988191 + 0.153227i \(0.0489666\pi\)
\(692\) 6.00000i 0.228086i
\(693\) 0 0
\(694\) 27.0000 1.02491
\(695\) 0 0
\(696\) 0 0
\(697\) 15.5885 9.00000i 0.590455 0.340899i
\(698\) −12.1244 + 7.00000i −0.458914 + 0.264954i
\(699\) 0 0
\(700\) 0 0
\(701\) −48.0000 −1.81293 −0.906467 0.422276i \(-0.861231\pi\)
−0.906467 + 0.422276i \(0.861231\pi\)
\(702\) 0 0
\(703\) 32.0000i 1.20690i
\(704\) −1.50000 + 2.59808i −0.0565334 + 0.0979187i
\(705\) 0 0
\(706\) −4.50000 7.79423i −0.169360 0.293340i
\(707\) 41.5692 24.0000i 1.56337 0.902613i
\(708\) 0 0
\(709\) −26.0000 + 45.0333i −0.976450 + 1.69126i −0.301388 + 0.953502i \(0.597450\pi\)
−0.675063 + 0.737760i \(0.735884\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 9.00000i 0.337289i
\(713\) 41.5692 + 24.0000i 1.55678 + 0.898807i
\(714\) 0 0
\(715\) 0 0
\(716\) −1.50000 2.59808i −0.0560576 0.0970947i
\(717\) 0 0
\(718\) 0 0
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) −32.0000 −1.19174
\(722\) 2.59808 + 1.50000i 0.0966904 + 0.0558242i
\(723\) 0 0
\(724\) 1.00000 + 1.73205i 0.0371647 + 0.0643712i
\(725\) 0 0
\(726\) 0 0
\(727\) −12.1244 7.00000i −0.449667 0.259616i 0.258022 0.966139i \(-0.416929\pi\)
−0.707690 + 0.706523i \(0.750263\pi\)
\(728\) 16.0000i 0.592999i
\(729\) 0 0
\(730\) 0 0
\(731\) 1.50000 2.59808i 0.0554795 0.0960933i
\(732\) 0 0
\(733\) 3.46410 2.00000i 0.127950 0.0738717i −0.434659 0.900595i \(-0.643131\pi\)
0.562609 + 0.826723i \(0.309798\pi\)
\(734\) 13.0000 + 22.5167i 0.479839 + 0.831105i
\(735\) 0 0
\(736\) −3.00000 + 5.19615i −0.110581 + 0.191533i
\(737\) 12.0000i 0.442026i
\(738\) 0 0
\(739\) 25.0000 0.919640 0.459820 0.888012i \(-0.347914\pi\)
0.459820 + 0.888012i \(0.347914\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 8.00000 0.292901
\(747\) 0 0
\(748\) 9.00000i 0.329073i
\(749\) 24.0000 41.5692i 0.876941 1.51891i
\(750\) 0 0
\(751\) 17.0000 + 29.4449i 0.620339 + 1.07446i 0.989423 + 0.145062i \(0.0463382\pi\)
−0.369084 + 0.929396i \(0.620328\pi\)
\(752\) −10.3923 + 6.00000i −0.378968 + 0.218797i
\(753\) 0 0
\(754\) −12.0000 + 20.7846i −0.437014 + 0.756931i
\(755\) 0 0
\(756\) 0 0
\(757\) 20.0000i 0.726912i 0.931611 + 0.363456i \(0.118403\pi\)
−0.931611 + 0.363456i \(0.881597\pi\)
\(758\) 25.1147 + 14.5000i 0.912208 + 0.526664i
\(759\) 0 0
\(760\) 0 0
\(761\) −19.5000 33.7750i −0.706874 1.22434i −0.966011 0.258502i \(-0.916771\pi\)
0.259136 0.965841i \(-0.416562\pi\)
\(762\) 0 0
\(763\) −6.92820 4.00000i −0.250818 0.144810i
\(764\) 6.00000 0.217072
\(765\) 0 0
\(766\) −18.0000 −0.650366
\(767\) 31.1769 + 18.0000i 1.12573 + 0.649942i
\(768\) 0 0
\(769\) 2.50000 + 4.33013i 0.0901523 + 0.156148i 0.907575 0.419890i \(-0.137931\pi\)
−0.817423 + 0.576038i \(0.804598\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.33013 2.50000i −0.155845 0.0899770i
\(773\) 42.0000i 1.51064i −0.655359 0.755318i \(-0.727483\pi\)
0.655359 0.755318i \(-0.272517\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 3.50000 6.06218i 0.125643 0.217620i
\(777\) 0 0
\(778\) −5.19615 + 3.00000i −0.186291 + 0.107555i
\(779\) −12.0000 20.7846i −0.429945 0.744686i
\(780\) 0 0
\(781\) 9.00000 15.5885i 0.322045 0.557799i
\(782\) 18.0000i 0.643679i
\(783\) 0 0
\(784\) −9.00000 −0.321429
\(785\) 0 0
\(786\) 0 0
\(787\) −3.46410 + 2.00000i −0.123482 + 0.0712923i −0.560469 0.828176i \(-0.689379\pi\)
0.436987 + 0.899468i \(0.356046\pi\)
\(788\) −15.5885 + 9.00000i −0.555316 + 0.320612i
\(789\) 0 0
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 32.0000i 1.13635i
\(794\) 7.00000 12.1244i 0.248421 0.430277i
\(795\) 0 0
\(796\) −1.00000 1.73205i −0.0354441 0.0613909i
\(797\) −10.3923 + 6.00000i −0.368114 + 0.212531i −0.672634 0.739975i \(-0.734837\pi\)
0.304520 + 0.952506i \(0.401504\pi\)
\(798\) 0 0
\(799\) −18.0000 + 31.1769i −0.636794 + 1.10296i
\(800\) 0 0
\(801\) 0 0
\(802\) 15.0000i 0.529668i
\(803\) −36.3731 21.0000i −1.28358 0.741074i
\(804\) 0 0
\(805\) 0 0
\(806\) 16.0000 + 27.7128i 0.563576 + 0.976142i
\(807\) 0 0
\(808\) −10.3923 6.00000i −0.365600 0.211079i
\(809\) 45.0000 1.58212 0.791058 0.611741i \(-0.209531\pi\)
0.791058 + 0.611741i \(0.209531\pi\)
\(810\) 0 0
\(811\) 5.00000 0.175574 0.0877869 0.996139i \(-0.472021\pi\)
0.0877869 + 0.996139i \(0.472021\pi\)
\(812\) 20.7846 + 12.0000i 0.729397 + 0.421117i
\(813\) 0 0
\(814\) −12.0000 20.7846i −0.420600 0.728500i
\(815\) 0 0
\(816\) 0 0
\(817\) −3.46410 2.00000i −0.121194 0.0699711i
\(818\) 22.0000i 0.769212i
\(819\) 0 0
\(820\) 0 0
\(821\) 12.0000 20.7846i 0.418803 0.725388i −0.577016 0.816733i \(-0.695783\pi\)
0.995819 + 0.0913446i \(0.0291165\pi\)
\(822\) 0 0
\(823\) 34.6410 20.0000i 1.20751 0.697156i 0.245295 0.969448i \(-0.421115\pi\)
0.962215 + 0.272292i \(0.0877817\pi\)
\(824\) 4.00000 + 6.92820i 0.139347 + 0.241355i
\(825\) 0 0
\(826\) 18.0000 31.1769i 0.626300 1.08478i
\(827\) 15.0000i 0.521601i −0.965393 0.260801i \(-0.916014\pi\)
0.965393 0.260801i \(-0.0839865\pi\)
\(828\) 0 0
\(829\) −20.0000 −0.694629 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −3.46410 + 2.00000i −0.120096 + 0.0693375i
\(833\) −23.3827 + 13.5000i −0.810162 + 0.467747i
\(834\) 0 0
\(835\) 0 0
\(836\) 12.0000 0.415029
\(837\) 0 0
\(838\) 9.00000i 0.310900i
\(839\) −24.0000 + 41.5692i −0.828572 + 1.43513i 0.0705865 + 0.997506i \(0.477513\pi\)
−0.899158 + 0.437623i \(0.855820\pi\)
\(840\) 0 0
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) 27.7128 16.0000i 0.955047 0.551396i
\(843\) 0 0
\(844\) 11.5000 19.9186i 0.395846 0.685626i
\(845\) 0 0
\(846\) 0 0
\(847\) 8.00000i 0.274883i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −24.0000 41.5692i −0.822709 1.42497i
\(852\) 0 0
\(853\) −39.8372 23.0000i −1.36400 0.787505i −0.373845 0.927491i \(-0.621961\pi\)
−0.990153 + 0.139986i \(0.955294\pi\)
\(854\) 32.0000 1.09502
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) −23.3827 13.5000i −0.798737 0.461151i 0.0442921 0.999019i \(-0.485897\pi\)
−0.843029 + 0.537867i \(0.819230\pi\)
\(858\) 0 0
\(859\) −8.00000 13.8564i −0.272956 0.472774i 0.696661 0.717400i \(-0.254668\pi\)
−0.969618 + 0.244626i \(0.921335\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 5.19615 + 3.00000i 0.176982 + 0.102180i
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 3.50000 6.06218i 0.118935 0.206001i
\(867\) 0 0
\(868\) 27.7128 16.0000i 0.940634 0.543075i
\(869\) −12.0000 20.7846i −0.407072 0.705070i
\(870\) 0 0
\(871\) −8.00000 + 13.8564i −0.271070 + 0.469506i
\(872\) 2.00000i 0.0677285i
\(873\) 0 0
\(874\) 24.0000 0.811812
\(875\) 0 0
\(876\) 0 0
\(877\) −13.8564 + 8.00000i −0.467898 + 0.270141i −0.715359 0.698757i \(-0.753737\pi\)
0.247462 + 0.968898i \(0.420404\pi\)
\(878\) −12.1244 + 7.00000i −0.409177 + 0.236239i
\(879\) 0 0
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) 13.0000i 0.437485i 0.975783 + 0.218742i \(0.0701954\pi\)
−0.975783 + 0.218742i \(0.929805\pi\)
\(884\) −6.00000 + 10.3923i −0.201802 + 0.349531i
\(885\) 0 0
\(886\) 4.50000 + 7.79423i 0.151180 + 0.261852i
\(887\) −25.9808 + 15.0000i −0.872349 + 0.503651i −0.868128 0.496340i \(-0.834677\pi\)
−0.00422062 + 0.999991i \(0.501343\pi\)
\(888\) 0 0
\(889\) 32.0000 55.4256i 1.07325 1.85892i
\(890\) 0 0
\(891\) 0 0
\(892\) 2.00000i 0.0669650i
\(893\) 41.5692 + 24.0000i 1.39106 + 0.803129i
\(894\) 0 0
\(895\) 0 0
\(896\) 2.00000 + 3.46410i 0.0668153 + 0.115728i
\(897\) 0 0
\(898\) −15.5885 9.00000i −0.520194 0.300334i
\(899\) −48.0000 −1.60089
\(900\) 0 0
\(901\) 0 0
\(902\) 15.5885 + 9.00000i 0.519039 + 0.299667i
\(903\) 0 0
\(904\) −1.50000 2.59808i −0.0498893 0.0864107i
\(905\) 0 0
\(906\) 0 0
\(907\) −14.7224 8.50000i −0.488850 0.282238i 0.235247 0.971936i \(-0.424410\pi\)
−0.724097 + 0.689698i \(0.757743\pi\)
\(908\) 27.0000i 0.896026i
\(909\) 0 0
\(910\) 0 0
\(911\) −9.00000 + 15.5885i −0.298183 + 0.516469i −0.975720 0.219020i \(-0.929714\pi\)
0.677537 + 0.735489i \(0.263047\pi\)
\(912\) 0 0
\(913\) 23.3827 13.5000i 0.773854 0.446785i
\(914\) −5.00000 8.66025i −0.165385 0.286456i
\(915\) 0 0
\(916\) −4.00000 + 6.92820i −0.132164 + 0.228914i
\(917\) 48.0000i 1.58510i
\(918\) 0 0
\(919\) 46.0000 1.51740 0.758700 0.651440i \(-0.225835\pi\)
0.758700 + 0.651440i \(0.225835\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 5.19615 3.00000i 0.171126 0.0987997i
\(923\) 20.7846 12.0000i 0.684134 0.394985i
\(924\) 0 0
\(925\) 0 0
\(926\) 14.0000 0.460069
\(927\) 0 0
\(928\) 6.00000i 0.196960i
\(929\) −21.0000 + 36.3731i −0.688988 + 1.19336i 0.283178 + 0.959067i \(0.408611\pi\)
−0.972166 + 0.234294i \(0.924722\pi\)
\(930\) 0 0
\(931\) 18.0000 + 31.1769i 0.589926 + 1.02178i
\(932\) −12.9904 + 7.50000i −0.425514 + 0.245671i
\(933\) 0 0
\(934\) −4.50000 + 7.79423i −0.147244 + 0.255035i
\(935\) 0 0
\(936\) 0 0
\(937\) 37.0000i 1.20874i −0.796705 0.604369i \(-0.793425\pi\)
0.796705 0.604369i \(-0.206575\pi\)
\(938\) 13.8564 + 8.00000i 0.452428 + 0.261209i
\(939\) 0 0
\(940\) 0 0
\(941\) 12.0000 + 20.7846i 0.391189 + 0.677559i 0.992607 0.121376i \(-0.0387306\pi\)
−0.601418 + 0.798935i \(0.705397\pi\)
\(942\) 0 0
\(943\) 31.1769 + 18.0000i 1.01526 + 0.586161i
\(944\) −9.00000 −0.292925
\(945\) 0 0
\(946\) 3.00000 0.0975384
\(947\) −7.79423 4.50000i −0.253278 0.146230i 0.367986 0.929831i \(-0.380047\pi\)
−0.621264 + 0.783601i \(0.713381\pi\)
\(948\) 0 0
\(949\) −28.0000 48.4974i −0.908918 1.57429i
\(950\) 0 0
\(951\) 0 0
\(952\) 10.3923 + 6.00000i 0.336817 + 0.194461i
\(953\) 27.0000i 0.874616i −0.899312 0.437308i \(-0.855932\pi\)
0.899312 0.437308i \(-0.144068\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 9.00000 15.5885i 0.291081 0.504167i
\(957\) 0 0
\(958\) −10.3923 + 6.00000i −0.335760 + 0.193851i
\(959\) 36.0000 + 62.3538i 1.16250 + 2.01351i
\(960\) 0 0
\(961\) −16.5000 + 28.5788i −0.532258 + 0.921898i
\(962\) 32.0000i 1.03172i
\(963\) 0 0
\(964\) −26.0000 −0.837404
\(965\) 0 0
\(966\) 0 0
\(967\) −24.2487 + 14.0000i −0.779786 + 0.450210i −0.836354 0.548189i \(-0.815317\pi\)
0.0565684 + 0.998399i \(0.481984\pi\)
\(968\) 1.73205 1.00000i 0.0556702 0.0321412i
\(969\) 0 0
\(970\) 0 0
\(971\) 27.0000 0.866471 0.433236 0.901281i \(-0.357372\pi\)
0.433236 + 0.901281i \(0.357372\pi\)
\(972\) 0 0
\(973\) 44.0000i 1.41058i
\(974\) 1.00000 1.73205i 0.0320421 0.0554985i
\(975\) 0 0
\(976\) −4.00000 6.92820i −0.128037 0.221766i
\(977\) 46.7654 27.0000i 1.49616 0.863807i 0.496167 0.868227i \(-0.334741\pi\)
0.999990 + 0.00442082i \(0.00140720\pi\)
\(978\) 0 0
\(979\) −13.5000 + 23.3827i −0.431462 + 0.747314i
\(980\) 0 0
\(981\) 0 0
\(982\) 15.0000i 0.478669i
\(983\) −46.7654 27.0000i −1.49158 0.861166i −0.491630 0.870804i \(-0.663599\pi\)
−0.999954 + 0.00963785i \(0.996932\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −9.00000 15.5885i −0.286618 0.496438i
\(987\) 0 0
\(988\) 13.8564 + 8.00000i 0.440831 + 0.254514i
\(989\) 6.00000 0.190789
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) −6.92820 4.00000i −0.219971 0.127000i
\(993\) 0 0
\(994\) −12.0000 20.7846i −0.380617 0.659248i
\(995\) 0 0
\(996\) 0 0
\(997\) 8.66025 + 5.00000i 0.274273 + 0.158352i 0.630828 0.775923i \(-0.282715\pi\)
−0.356555 + 0.934274i \(0.616049\pi\)
\(998\) 11.0000i 0.348199i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.2.j.d.1099.1 4
3.2 odd 2 450.2.j.d.349.2 4
5.2 odd 4 1350.2.e.f.451.1 2
5.3 odd 4 1350.2.e.e.451.1 2
5.4 even 2 inner 1350.2.j.d.1099.2 4
9.2 odd 6 4050.2.c.q.649.1 2
9.4 even 3 inner 1350.2.j.d.199.2 4
9.5 odd 6 450.2.j.d.49.1 4
9.7 even 3 4050.2.c.e.649.2 2
15.2 even 4 450.2.e.a.151.1 2
15.8 even 4 450.2.e.h.151.1 yes 2
15.14 odd 2 450.2.j.d.349.1 4
45.2 even 12 4050.2.a.bj.1.1 1
45.4 even 6 inner 1350.2.j.d.199.1 4
45.7 odd 12 4050.2.a.p.1.1 1
45.13 odd 12 1350.2.e.e.901.1 2
45.14 odd 6 450.2.j.d.49.2 4
45.22 odd 12 1350.2.e.f.901.1 2
45.23 even 12 450.2.e.h.301.1 yes 2
45.29 odd 6 4050.2.c.q.649.2 2
45.32 even 12 450.2.e.a.301.1 yes 2
45.34 even 6 4050.2.c.e.649.1 2
45.38 even 12 4050.2.a.b.1.1 1
45.43 odd 12 4050.2.a.t.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
450.2.e.a.151.1 2 15.2 even 4
450.2.e.a.301.1 yes 2 45.32 even 12
450.2.e.h.151.1 yes 2 15.8 even 4
450.2.e.h.301.1 yes 2 45.23 even 12
450.2.j.d.49.1 4 9.5 odd 6
450.2.j.d.49.2 4 45.14 odd 6
450.2.j.d.349.1 4 15.14 odd 2
450.2.j.d.349.2 4 3.2 odd 2
1350.2.e.e.451.1 2 5.3 odd 4
1350.2.e.e.901.1 2 45.13 odd 12
1350.2.e.f.451.1 2 5.2 odd 4
1350.2.e.f.901.1 2 45.22 odd 12
1350.2.j.d.199.1 4 45.4 even 6 inner
1350.2.j.d.199.2 4 9.4 even 3 inner
1350.2.j.d.1099.1 4 1.1 even 1 trivial
1350.2.j.d.1099.2 4 5.4 even 2 inner
4050.2.a.b.1.1 1 45.38 even 12
4050.2.a.p.1.1 1 45.7 odd 12
4050.2.a.t.1.1 1 45.43 odd 12
4050.2.a.bj.1.1 1 45.2 even 12
4050.2.c.e.649.1 2 45.34 even 6
4050.2.c.e.649.2 2 9.7 even 3
4050.2.c.q.649.1 2 9.2 odd 6
4050.2.c.q.649.2 2 45.29 odd 6