Properties

Label 405.4.b.b.244.5
Level $405$
Weight $4$
Character 405.244
Analytic conductor $23.896$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,4,Mod(244,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.244"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 405.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-24,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.8957735523\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 44x^{6} + 567x^{4} + 2024x^{2} + 1900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 244.5
Root \(1.22227i\) of defining polynomial
Character \(\chi\) \(=\) 405.244
Dual form 405.4.b.b.244.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.22227i q^{2} +6.50606 q^{4} +(-10.5103 + 3.81233i) q^{5} +33.1668i q^{7} +17.7303i q^{8} +(-4.65969 - 12.8464i) q^{10} -23.6760 q^{11} +30.9094i q^{13} -40.5387 q^{14} +30.3772 q^{16} -48.7539i q^{17} -34.3436 q^{19} +(-68.3805 + 24.8032i) q^{20} -28.9385i q^{22} -181.561i q^{23} +(95.9323 - 80.1373i) q^{25} -37.7796 q^{26} +215.785i q^{28} -4.29174 q^{29} -270.521 q^{31} +178.972i q^{32} +59.5905 q^{34} +(-126.443 - 348.592i) q^{35} -163.355i q^{37} -41.9772i q^{38} +(-67.5938 - 186.351i) q^{40} -7.40836 q^{41} +378.631i q^{43} -154.038 q^{44} +221.917 q^{46} +177.089i q^{47} -757.035 q^{49} +(97.9494 + 117.255i) q^{50} +201.098i q^{52} +587.283i q^{53} +(248.842 - 90.2608i) q^{55} -588.057 q^{56} -5.24566i q^{58} -844.470 q^{59} +590.383 q^{61} -330.649i q^{62} +24.2662 q^{64} +(-117.837 - 324.867i) q^{65} -494.174i q^{67} -317.196i q^{68} +(426.074 - 154.547i) q^{70} -53.0514 q^{71} +427.365i q^{73} +199.664 q^{74} -223.441 q^{76} -785.258i q^{77} +708.463 q^{79} +(-319.273 + 115.808i) q^{80} -9.05501i q^{82} -243.242i q^{83} +(185.866 + 512.418i) q^{85} -462.790 q^{86} -419.784i q^{88} -558.336 q^{89} -1025.17 q^{91} -1181.25i q^{92} -216.450 q^{94} +(360.961 - 130.929i) q^{95} -471.121i q^{97} -925.301i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{4} - 15 q^{5} + 7 q^{10} + 42 q^{14} + 4 q^{16} + 118 q^{19} + 129 q^{20} + 17 q^{25} + 36 q^{26} - 318 q^{29} - 416 q^{31} + 638 q^{34} - 192 q^{35} - 265 q^{40} - 486 q^{41} - 852 q^{44} - 598 q^{46}+ \cdots - 1674 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22227i 0.432138i 0.976378 + 0.216069i \(0.0693235\pi\)
−0.976378 + 0.216069i \(0.930676\pi\)
\(3\) 0 0
\(4\) 6.50606 0.813257
\(5\) −10.5103 + 3.81233i −0.940069 + 0.340985i
\(6\) 0 0
\(7\) 33.1668i 1.79084i 0.445225 + 0.895419i \(0.353124\pi\)
−0.445225 + 0.895419i \(0.646876\pi\)
\(8\) 17.7303i 0.783577i
\(9\) 0 0
\(10\) −4.65969 12.8464i −0.147352 0.406239i
\(11\) −23.6760 −0.648963 −0.324482 0.945892i \(-0.605190\pi\)
−0.324482 + 0.945892i \(0.605190\pi\)
\(12\) 0 0
\(13\) 30.9094i 0.659440i 0.944079 + 0.329720i \(0.106954\pi\)
−0.944079 + 0.329720i \(0.893046\pi\)
\(14\) −40.5387 −0.773888
\(15\) 0 0
\(16\) 30.3772 0.474644
\(17\) 48.7539i 0.695563i −0.937576 0.347781i \(-0.886935\pi\)
0.937576 0.347781i \(-0.113065\pi\)
\(18\) 0 0
\(19\) −34.3436 −0.414682 −0.207341 0.978269i \(-0.566481\pi\)
−0.207341 + 0.978269i \(0.566481\pi\)
\(20\) −68.3805 + 24.8032i −0.764518 + 0.277308i
\(21\) 0 0
\(22\) 28.9385i 0.280441i
\(23\) 181.561i 1.64601i −0.568036 0.823004i \(-0.692297\pi\)
0.568036 0.823004i \(-0.307703\pi\)
\(24\) 0 0
\(25\) 95.9323 80.1373i 0.767459 0.641099i
\(26\) −37.7796 −0.284969
\(27\) 0 0
\(28\) 215.785i 1.45641i
\(29\) −4.29174 −0.0274812 −0.0137406 0.999906i \(-0.504374\pi\)
−0.0137406 + 0.999906i \(0.504374\pi\)
\(30\) 0 0
\(31\) −270.521 −1.56732 −0.783660 0.621190i \(-0.786650\pi\)
−0.783660 + 0.621190i \(0.786650\pi\)
\(32\) 178.972i 0.988688i
\(33\) 0 0
\(34\) 59.5905 0.300579
\(35\) −126.443 348.592i −0.610649 1.68351i
\(36\) 0 0
\(37\) 163.355i 0.725821i −0.931824 0.362910i \(-0.881783\pi\)
0.931824 0.362910i \(-0.118217\pi\)
\(38\) 41.9772i 0.179200i
\(39\) 0 0
\(40\) −67.5938 186.351i −0.267188 0.736616i
\(41\) −7.40836 −0.0282193 −0.0141097 0.999900i \(-0.504491\pi\)
−0.0141097 + 0.999900i \(0.504491\pi\)
\(42\) 0 0
\(43\) 378.631i 1.34281i 0.741091 + 0.671404i \(0.234309\pi\)
−0.741091 + 0.671404i \(0.765691\pi\)
\(44\) −154.038 −0.527774
\(45\) 0 0
\(46\) 221.917 0.711302
\(47\) 177.089i 0.549596i 0.961502 + 0.274798i \(0.0886110\pi\)
−0.961502 + 0.274798i \(0.911389\pi\)
\(48\) 0 0
\(49\) −757.035 −2.20710
\(50\) 97.9494 + 117.255i 0.277043 + 0.331648i
\(51\) 0 0
\(52\) 201.098i 0.536294i
\(53\) 587.283i 1.52207i 0.648713 + 0.761033i \(0.275308\pi\)
−0.648713 + 0.761033i \(0.724692\pi\)
\(54\) 0 0
\(55\) 248.842 90.2608i 0.610070 0.221287i
\(56\) −588.057 −1.40326
\(57\) 0 0
\(58\) 5.24566i 0.0118757i
\(59\) −844.470 −1.86340 −0.931700 0.363228i \(-0.881675\pi\)
−0.931700 + 0.363228i \(0.881675\pi\)
\(60\) 0 0
\(61\) 590.383 1.23919 0.619596 0.784921i \(-0.287296\pi\)
0.619596 + 0.784921i \(0.287296\pi\)
\(62\) 330.649i 0.677298i
\(63\) 0 0
\(64\) 24.2662 0.0473949
\(65\) −117.837 324.867i −0.224859 0.619919i
\(66\) 0 0
\(67\) 494.174i 0.901090i −0.892754 0.450545i \(-0.851230\pi\)
0.892754 0.450545i \(-0.148770\pi\)
\(68\) 317.196i 0.565671i
\(69\) 0 0
\(70\) 426.074 154.547i 0.727508 0.263884i
\(71\) −53.0514 −0.0886767 −0.0443383 0.999017i \(-0.514118\pi\)
−0.0443383 + 0.999017i \(0.514118\pi\)
\(72\) 0 0
\(73\) 427.365i 0.685196i 0.939482 + 0.342598i \(0.111307\pi\)
−0.939482 + 0.342598i \(0.888693\pi\)
\(74\) 199.664 0.313654
\(75\) 0 0
\(76\) −223.441 −0.337243
\(77\) 785.258i 1.16219i
\(78\) 0 0
\(79\) 708.463 1.00897 0.504483 0.863422i \(-0.331683\pi\)
0.504483 + 0.863422i \(0.331683\pi\)
\(80\) −319.273 + 115.808i −0.446198 + 0.161847i
\(81\) 0 0
\(82\) 9.05501i 0.0121946i
\(83\) 243.242i 0.321678i −0.986981 0.160839i \(-0.948580\pi\)
0.986981 0.160839i \(-0.0514199\pi\)
\(84\) 0 0
\(85\) 185.866 + 512.418i 0.237176 + 0.653877i
\(86\) −462.790 −0.580278
\(87\) 0 0
\(88\) 419.784i 0.508512i
\(89\) −558.336 −0.664983 −0.332491 0.943106i \(-0.607889\pi\)
−0.332491 + 0.943106i \(0.607889\pi\)
\(90\) 0 0
\(91\) −1025.17 −1.18095
\(92\) 1181.25i 1.33863i
\(93\) 0 0
\(94\) −216.450 −0.237501
\(95\) 360.961 130.929i 0.389830 0.141400i
\(96\) 0 0
\(97\) 471.121i 0.493145i −0.969124 0.246572i \(-0.920696\pi\)
0.969124 0.246572i \(-0.0793043\pi\)
\(98\) 925.301i 0.953771i
\(99\) 0 0
\(100\) 624.141 521.378i 0.624141 0.521378i
\(101\) −1173.91 −1.15652 −0.578258 0.815854i \(-0.696267\pi\)
−0.578258 + 0.815854i \(0.696267\pi\)
\(102\) 0 0
\(103\) 1495.18i 1.43034i −0.698952 0.715169i \(-0.746350\pi\)
0.698952 0.715169i \(-0.253650\pi\)
\(104\) −548.033 −0.516722
\(105\) 0 0
\(106\) −717.818 −0.657742
\(107\) 717.918i 0.648633i 0.945949 + 0.324317i \(0.105134\pi\)
−0.945949 + 0.324317i \(0.894866\pi\)
\(108\) 0 0
\(109\) −282.308 −0.248075 −0.124038 0.992278i \(-0.539584\pi\)
−0.124038 + 0.992278i \(0.539584\pi\)
\(110\) 110.323 + 304.152i 0.0956263 + 0.263634i
\(111\) 0 0
\(112\) 1007.51i 0.850011i
\(113\) 2328.58i 1.93854i 0.246002 + 0.969269i \(0.420883\pi\)
−0.246002 + 0.969269i \(0.579117\pi\)
\(114\) 0 0
\(115\) 692.171 + 1908.26i 0.561264 + 1.54736i
\(116\) −27.9223 −0.0223493
\(117\) 0 0
\(118\) 1032.17i 0.805246i
\(119\) 1617.01 1.24564
\(120\) 0 0
\(121\) −770.445 −0.578847
\(122\) 721.607i 0.535502i
\(123\) 0 0
\(124\) −1760.02 −1.27463
\(125\) −702.767 + 1207.99i −0.502859 + 0.864369i
\(126\) 0 0
\(127\) 162.215i 0.113341i 0.998393 + 0.0566704i \(0.0180484\pi\)
−0.998393 + 0.0566704i \(0.981952\pi\)
\(128\) 1461.43i 1.00917i
\(129\) 0 0
\(130\) 397.075 144.028i 0.267890 0.0971701i
\(131\) 2239.21 1.49344 0.746720 0.665138i \(-0.231627\pi\)
0.746720 + 0.665138i \(0.231627\pi\)
\(132\) 0 0
\(133\) 1139.07i 0.742629i
\(134\) 604.014 0.389395
\(135\) 0 0
\(136\) 864.423 0.545027
\(137\) 1001.81i 0.624748i 0.949959 + 0.312374i \(0.101124\pi\)
−0.949959 + 0.312374i \(0.898876\pi\)
\(138\) 0 0
\(139\) 1793.56 1.09445 0.547224 0.836986i \(-0.315685\pi\)
0.547224 + 0.836986i \(0.315685\pi\)
\(140\) −822.643 2267.96i −0.496614 1.36913i
\(141\) 0 0
\(142\) 64.8431i 0.0383205i
\(143\) 731.812i 0.427952i
\(144\) 0 0
\(145\) 45.1074 16.3615i 0.0258343 0.00937069i
\(146\) −522.355 −0.296099
\(147\) 0 0
\(148\) 1062.80i 0.590279i
\(149\) 1986.20 1.09205 0.546027 0.837768i \(-0.316140\pi\)
0.546027 + 0.837768i \(0.316140\pi\)
\(150\) 0 0
\(151\) −1868.36 −1.00692 −0.503460 0.864018i \(-0.667940\pi\)
−0.503460 + 0.864018i \(0.667940\pi\)
\(152\) 608.923i 0.324935i
\(153\) 0 0
\(154\) 959.797 0.502225
\(155\) 2843.25 1031.31i 1.47339 0.534433i
\(156\) 0 0
\(157\) 1961.80i 0.997255i 0.866816 + 0.498627i \(0.166162\pi\)
−0.866816 + 0.498627i \(0.833838\pi\)
\(158\) 865.933i 0.436012i
\(159\) 0 0
\(160\) −682.299 1881.04i −0.337128 0.929435i
\(161\) 6021.81 2.94773
\(162\) 0 0
\(163\) 1586.28i 0.762254i 0.924523 + 0.381127i \(0.124464\pi\)
−0.924523 + 0.381127i \(0.875536\pi\)
\(164\) −48.1992 −0.0229495
\(165\) 0 0
\(166\) 297.307 0.139009
\(167\) 2442.69i 1.13186i −0.824452 0.565932i \(-0.808516\pi\)
0.824452 0.565932i \(-0.191484\pi\)
\(168\) 0 0
\(169\) 1241.61 0.565139
\(170\) −626.313 + 227.178i −0.282565 + 0.102493i
\(171\) 0 0
\(172\) 2463.40i 1.09205i
\(173\) 1520.90i 0.668391i 0.942504 + 0.334196i \(0.108465\pi\)
−0.942504 + 0.334196i \(0.891535\pi\)
\(174\) 0 0
\(175\) 2657.90 + 3181.77i 1.14810 + 1.37439i
\(176\) −719.212 −0.308027
\(177\) 0 0
\(178\) 682.437i 0.287364i
\(179\) 902.128 0.376694 0.188347 0.982103i \(-0.439687\pi\)
0.188347 + 0.982103i \(0.439687\pi\)
\(180\) 0 0
\(181\) −3472.27 −1.42592 −0.712962 0.701203i \(-0.752647\pi\)
−0.712962 + 0.701203i \(0.752647\pi\)
\(182\) 1253.03i 0.510333i
\(183\) 0 0
\(184\) 3219.14 1.28977
\(185\) 622.762 + 1716.91i 0.247494 + 0.682321i
\(186\) 0 0
\(187\) 1154.30i 0.451394i
\(188\) 1152.15i 0.446963i
\(189\) 0 0
\(190\) 160.031 + 441.192i 0.0611044 + 0.168460i
\(191\) −1160.63 −0.439688 −0.219844 0.975535i \(-0.570555\pi\)
−0.219844 + 0.975535i \(0.570555\pi\)
\(192\) 0 0
\(193\) 2061.38i 0.768815i 0.923164 + 0.384408i \(0.125594\pi\)
−0.923164 + 0.384408i \(0.874406\pi\)
\(194\) 575.837 0.213106
\(195\) 0 0
\(196\) −4925.31 −1.79494
\(197\) 743.457i 0.268879i 0.990922 + 0.134439i \(0.0429233\pi\)
−0.990922 + 0.134439i \(0.957077\pi\)
\(198\) 0 0
\(199\) −350.592 −0.124888 −0.0624442 0.998048i \(-0.519890\pi\)
−0.0624442 + 0.998048i \(0.519890\pi\)
\(200\) 1420.86 + 1700.91i 0.502350 + 0.601363i
\(201\) 0 0
\(202\) 1434.83i 0.499774i
\(203\) 142.343i 0.0492144i
\(204\) 0 0
\(205\) 77.8640 28.2431i 0.0265281 0.00962236i
\(206\) 1827.52 0.618103
\(207\) 0 0
\(208\) 938.942i 0.313000i
\(209\) 813.121 0.269114
\(210\) 0 0
\(211\) 151.733 0.0495059 0.0247529 0.999694i \(-0.492120\pi\)
0.0247529 + 0.999694i \(0.492120\pi\)
\(212\) 3820.90i 1.23783i
\(213\) 0 0
\(214\) −877.490 −0.280299
\(215\) −1443.47 3979.53i −0.457877 1.26233i
\(216\) 0 0
\(217\) 8972.30i 2.80682i
\(218\) 345.057i 0.107203i
\(219\) 0 0
\(220\) 1618.98 587.242i 0.496144 0.179963i
\(221\) 1506.95 0.458682
\(222\) 0 0
\(223\) 2528.95i 0.759423i 0.925105 + 0.379711i \(0.123977\pi\)
−0.925105 + 0.379711i \(0.876023\pi\)
\(224\) −5935.91 −1.77058
\(225\) 0 0
\(226\) −2846.16 −0.837715
\(227\) 4898.39i 1.43224i 0.697979 + 0.716118i \(0.254083\pi\)
−0.697979 + 0.716118i \(0.745917\pi\)
\(228\) 0 0
\(229\) 2865.32 0.826838 0.413419 0.910541i \(-0.364334\pi\)
0.413419 + 0.910541i \(0.364334\pi\)
\(230\) −2332.41 + 846.020i −0.668672 + 0.242543i
\(231\) 0 0
\(232\) 76.0939i 0.0215337i
\(233\) 4330.31i 1.21754i 0.793345 + 0.608772i \(0.208338\pi\)
−0.793345 + 0.608772i \(0.791662\pi\)
\(234\) 0 0
\(235\) −675.120 1861.25i −0.187404 0.516658i
\(236\) −5494.17 −1.51542
\(237\) 0 0
\(238\) 1976.42i 0.538288i
\(239\) 3760.32 1.01772 0.508860 0.860850i \(-0.330067\pi\)
0.508860 + 0.860850i \(0.330067\pi\)
\(240\) 0 0
\(241\) −3105.62 −0.830087 −0.415043 0.909802i \(-0.636234\pi\)
−0.415043 + 0.909802i \(0.636234\pi\)
\(242\) 941.692i 0.250142i
\(243\) 0 0
\(244\) 3841.06 1.00778
\(245\) 7956.66 2886.07i 2.07483 0.752588i
\(246\) 0 0
\(247\) 1061.54i 0.273458i
\(248\) 4796.41i 1.22812i
\(249\) 0 0
\(250\) −1476.49 858.970i −0.373526 0.217304i
\(251\) 2618.73 0.658536 0.329268 0.944236i \(-0.393198\pi\)
0.329268 + 0.944236i \(0.393198\pi\)
\(252\) 0 0
\(253\) 4298.65i 1.06820i
\(254\) −198.271 −0.0489788
\(255\) 0 0
\(256\) −1592.14 −0.388705
\(257\) 1144.76i 0.277853i 0.990303 + 0.138926i \(0.0443652\pi\)
−0.990303 + 0.138926i \(0.955635\pi\)
\(258\) 0 0
\(259\) 5417.95 1.29983
\(260\) −766.652 2113.60i −0.182868 0.504154i
\(261\) 0 0
\(262\) 2736.92i 0.645372i
\(263\) 2950.25i 0.691713i −0.938287 0.345856i \(-0.887588\pi\)
0.938287 0.345856i \(-0.112412\pi\)
\(264\) 0 0
\(265\) −2238.92 6172.51i −0.519002 1.43085i
\(266\) 1392.25 0.320918
\(267\) 0 0
\(268\) 3215.13i 0.732818i
\(269\) 3069.15 0.695647 0.347824 0.937560i \(-0.386921\pi\)
0.347824 + 0.937560i \(0.386921\pi\)
\(270\) 0 0
\(271\) −6181.73 −1.38566 −0.692829 0.721102i \(-0.743636\pi\)
−0.692829 + 0.721102i \(0.743636\pi\)
\(272\) 1481.01i 0.330145i
\(273\) 0 0
\(274\) −1224.48 −0.269977
\(275\) −2271.30 + 1897.33i −0.498052 + 0.416049i
\(276\) 0 0
\(277\) 5044.68i 1.09424i −0.837053 0.547122i \(-0.815724\pi\)
0.837053 0.547122i \(-0.184276\pi\)
\(278\) 2192.22i 0.472952i
\(279\) 0 0
\(280\) 6180.65 2241.87i 1.31916 0.478490i
\(281\) −6352.35 −1.34857 −0.674287 0.738469i \(-0.735549\pi\)
−0.674287 + 0.738469i \(0.735549\pi\)
\(282\) 0 0
\(283\) 1303.15i 0.273726i −0.990590 0.136863i \(-0.956298\pi\)
0.990590 0.136863i \(-0.0437020\pi\)
\(284\) −345.156 −0.0721169
\(285\) 0 0
\(286\) 894.472 0.184934
\(287\) 245.711i 0.0505362i
\(288\) 0 0
\(289\) 2536.05 0.516193
\(290\) 19.9982 + 55.1334i 0.00404943 + 0.0111640i
\(291\) 0 0
\(292\) 2780.46i 0.557240i
\(293\) 2433.97i 0.485303i −0.970113 0.242652i \(-0.921983\pi\)
0.970113 0.242652i \(-0.0780172\pi\)
\(294\) 0 0
\(295\) 8875.62 3219.40i 1.75172 0.635392i
\(296\) 2896.33 0.568736
\(297\) 0 0
\(298\) 2427.67i 0.471917i
\(299\) 5611.95 1.08544
\(300\) 0 0
\(301\) −12558.0 −2.40475
\(302\) 2283.64i 0.435128i
\(303\) 0 0
\(304\) −1043.26 −0.196827
\(305\) −6205.09 + 2250.73i −1.16493 + 0.422546i
\(306\) 0 0
\(307\) 5629.59i 1.04657i 0.852157 + 0.523286i \(0.175294\pi\)
−0.852157 + 0.523286i \(0.824706\pi\)
\(308\) 5108.93i 0.945157i
\(309\) 0 0
\(310\) 1260.54 + 3475.22i 0.230948 + 0.636707i
\(311\) −4607.52 −0.840092 −0.420046 0.907503i \(-0.637986\pi\)
−0.420046 + 0.907503i \(0.637986\pi\)
\(312\) 0 0
\(313\) 7214.85i 1.30290i 0.758692 + 0.651450i \(0.225839\pi\)
−0.758692 + 0.651450i \(0.774161\pi\)
\(314\) −2397.85 −0.430951
\(315\) 0 0
\(316\) 4609.30 0.820549
\(317\) 6183.53i 1.09559i −0.836613 0.547794i \(-0.815468\pi\)
0.836613 0.547794i \(-0.184532\pi\)
\(318\) 0 0
\(319\) 101.611 0.0178343
\(320\) −255.045 + 92.5106i −0.0445545 + 0.0161609i
\(321\) 0 0
\(322\) 7360.27i 1.27383i
\(323\) 1674.39i 0.288438i
\(324\) 0 0
\(325\) 2477.00 + 2965.21i 0.422766 + 0.506093i
\(326\) −1938.87 −0.329398
\(327\) 0 0
\(328\) 131.353i 0.0221120i
\(329\) −5873.46 −0.984238
\(330\) 0 0
\(331\) 1657.31 0.275208 0.137604 0.990487i \(-0.456060\pi\)
0.137604 + 0.990487i \(0.456060\pi\)
\(332\) 1582.54i 0.261607i
\(333\) 0 0
\(334\) 2985.63 0.489121
\(335\) 1883.95 + 5193.92i 0.307258 + 0.847086i
\(336\) 0 0
\(337\) 8802.58i 1.42287i −0.702752 0.711435i \(-0.748045\pi\)
0.702752 0.711435i \(-0.251955\pi\)
\(338\) 1517.58i 0.244218i
\(339\) 0 0
\(340\) 1209.25 + 3333.82i 0.192885 + 0.531770i
\(341\) 6404.86 1.01713
\(342\) 0 0
\(343\) 13732.2i 2.16172i
\(344\) −6713.26 −1.05219
\(345\) 0 0
\(346\) −1858.95 −0.288837
\(347\) 3024.89i 0.467967i 0.972241 + 0.233983i \(0.0751762\pi\)
−0.972241 + 0.233983i \(0.924824\pi\)
\(348\) 0 0
\(349\) 8247.55 1.26499 0.632494 0.774565i \(-0.282031\pi\)
0.632494 + 0.774565i \(0.282031\pi\)
\(350\) −3888.98 + 3248.67i −0.593927 + 0.496139i
\(351\) 0 0
\(352\) 4237.34i 0.641622i
\(353\) 10224.9i 1.54169i 0.637021 + 0.770847i \(0.280167\pi\)
−0.637021 + 0.770847i \(0.719833\pi\)
\(354\) 0 0
\(355\) 557.586 202.249i 0.0833622 0.0302374i
\(356\) −3632.56 −0.540802
\(357\) 0 0
\(358\) 1102.64i 0.162784i
\(359\) −9178.35 −1.34934 −0.674672 0.738118i \(-0.735715\pi\)
−0.674672 + 0.738118i \(0.735715\pi\)
\(360\) 0 0
\(361\) −5679.52 −0.828039
\(362\) 4244.05i 0.616195i
\(363\) 0 0
\(364\) −6669.78 −0.960416
\(365\) −1629.26 4491.73i −0.233641 0.644131i
\(366\) 0 0
\(367\) 640.156i 0.0910514i −0.998963 0.0455257i \(-0.985504\pi\)
0.998963 0.0455257i \(-0.0144963\pi\)
\(368\) 5515.33i 0.781268i
\(369\) 0 0
\(370\) −2098.52 + 761.183i −0.294857 + 0.106951i
\(371\) −19478.3 −2.72577
\(372\) 0 0
\(373\) 4807.89i 0.667408i −0.942678 0.333704i \(-0.891701\pi\)
0.942678 0.333704i \(-0.108299\pi\)
\(374\) −1410.87 −0.195065
\(375\) 0 0
\(376\) −3139.84 −0.430651
\(377\) 132.655i 0.0181222i
\(378\) 0 0
\(379\) −4449.52 −0.603051 −0.301526 0.953458i \(-0.597496\pi\)
−0.301526 + 0.953458i \(0.597496\pi\)
\(380\) 2348.43 851.832i 0.317032 0.114995i
\(381\) 0 0
\(382\) 1418.61i 0.190006i
\(383\) 6289.84i 0.839153i 0.907720 + 0.419577i \(0.137821\pi\)
−0.907720 + 0.419577i \(0.862179\pi\)
\(384\) 0 0
\(385\) 2993.66 + 8253.29i 0.396288 + 1.09254i
\(386\) −2519.56 −0.332234
\(387\) 0 0
\(388\) 3065.14i 0.401054i
\(389\) 5650.19 0.736442 0.368221 0.929738i \(-0.379967\pi\)
0.368221 + 0.929738i \(0.379967\pi\)
\(390\) 0 0
\(391\) −8851.83 −1.14490
\(392\) 13422.5i 1.72943i
\(393\) 0 0
\(394\) −908.705 −0.116193
\(395\) −7446.15 + 2700.89i −0.948498 + 0.344042i
\(396\) 0 0
\(397\) 11922.6i 1.50725i 0.657307 + 0.753623i \(0.271696\pi\)
−0.657307 + 0.753623i \(0.728304\pi\)
\(398\) 428.517i 0.0539689i
\(399\) 0 0
\(400\) 2914.16 2434.35i 0.364270 0.304294i
\(401\) 14042.9 1.74881 0.874403 0.485201i \(-0.161254\pi\)
0.874403 + 0.485201i \(0.161254\pi\)
\(402\) 0 0
\(403\) 8361.63i 1.03355i
\(404\) −7637.50 −0.940544
\(405\) 0 0
\(406\) 173.982 0.0212674
\(407\) 3867.59i 0.471031i
\(408\) 0 0
\(409\) −4015.80 −0.485498 −0.242749 0.970089i \(-0.578049\pi\)
−0.242749 + 0.970089i \(0.578049\pi\)
\(410\) 34.5207 + 95.1708i 0.00415818 + 0.0114638i
\(411\) 0 0
\(412\) 9727.75i 1.16323i
\(413\) 28008.4i 3.33705i
\(414\) 0 0
\(415\) 927.317 + 2556.54i 0.109687 + 0.302399i
\(416\) −5531.91 −0.651981
\(417\) 0 0
\(418\) 993.853i 0.116294i
\(419\) −15881.9 −1.85175 −0.925873 0.377835i \(-0.876669\pi\)
−0.925873 + 0.377835i \(0.876669\pi\)
\(420\) 0 0
\(421\) 3401.87 0.393817 0.196908 0.980422i \(-0.436910\pi\)
0.196908 + 0.980422i \(0.436910\pi\)
\(422\) 185.459i 0.0213934i
\(423\) 0 0
\(424\) −10412.7 −1.19266
\(425\) −3907.01 4677.08i −0.445924 0.533816i
\(426\) 0 0
\(427\) 19581.1i 2.21919i
\(428\) 4670.82i 0.527506i
\(429\) 0 0
\(430\) 4864.05 1764.31i 0.545501 0.197866i
\(431\) 6067.90 0.678145 0.339072 0.940760i \(-0.389887\pi\)
0.339072 + 0.940760i \(0.389887\pi\)
\(432\) 0 0
\(433\) 2368.69i 0.262891i −0.991323 0.131446i \(-0.958038\pi\)
0.991323 0.131446i \(-0.0419619\pi\)
\(434\) 10966.6 1.21293
\(435\) 0 0
\(436\) −1836.71 −0.201749
\(437\) 6235.47i 0.682570i
\(438\) 0 0
\(439\) 3731.54 0.405687 0.202844 0.979211i \(-0.434982\pi\)
0.202844 + 0.979211i \(0.434982\pi\)
\(440\) 1600.35 + 4412.05i 0.173395 + 0.478036i
\(441\) 0 0
\(442\) 1841.90i 0.198214i
\(443\) 15917.5i 1.70714i −0.520975 0.853572i \(-0.674431\pi\)
0.520975 0.853572i \(-0.325569\pi\)
\(444\) 0 0
\(445\) 5868.27 2128.56i 0.625129 0.226749i
\(446\) −3091.06 −0.328175
\(447\) 0 0
\(448\) 804.831i 0.0848766i
\(449\) 9088.41 0.955252 0.477626 0.878563i \(-0.341497\pi\)
0.477626 + 0.878563i \(0.341497\pi\)
\(450\) 0 0
\(451\) 175.401 0.0183133
\(452\) 15149.9i 1.57653i
\(453\) 0 0
\(454\) −5987.16 −0.618923
\(455\) 10774.8 3908.26i 1.11017 0.402686i
\(456\) 0 0
\(457\) 11877.8i 1.21580i 0.794013 + 0.607901i \(0.207988\pi\)
−0.794013 + 0.607901i \(0.792012\pi\)
\(458\) 3502.20i 0.357308i
\(459\) 0 0
\(460\) 4503.31 + 12415.3i 0.456452 + 1.25840i
\(461\) 7251.15 0.732581 0.366291 0.930501i \(-0.380628\pi\)
0.366291 + 0.930501i \(0.380628\pi\)
\(462\) 0 0
\(463\) 1778.78i 0.178547i 0.996007 + 0.0892733i \(0.0284545\pi\)
−0.996007 + 0.0892733i \(0.971546\pi\)
\(464\) −130.371 −0.0130438
\(465\) 0 0
\(466\) −5292.80 −0.526147
\(467\) 5153.79i 0.510683i 0.966851 + 0.255342i \(0.0821879\pi\)
−0.966851 + 0.255342i \(0.917812\pi\)
\(468\) 0 0
\(469\) 16390.2 1.61371
\(470\) 2274.95 825.178i 0.223267 0.0809843i
\(471\) 0 0
\(472\) 14972.7i 1.46012i
\(473\) 8964.49i 0.871433i
\(474\) 0 0
\(475\) −3294.66 + 2752.20i −0.318252 + 0.265852i
\(476\) 10520.4 1.01303
\(477\) 0 0
\(478\) 4596.13i 0.439795i
\(479\) −7850.07 −0.748808 −0.374404 0.927266i \(-0.622153\pi\)
−0.374404 + 0.927266i \(0.622153\pi\)
\(480\) 0 0
\(481\) 5049.20 0.478635
\(482\) 3795.91i 0.358712i
\(483\) 0 0
\(484\) −5012.56 −0.470751
\(485\) 1796.07 + 4951.61i 0.168155 + 0.463590i
\(486\) 0 0
\(487\) 8659.46i 0.805744i −0.915256 0.402872i \(-0.868012\pi\)
0.915256 0.402872i \(-0.131988\pi\)
\(488\) 10467.7i 0.971002i
\(489\) 0 0
\(490\) 3527.55 + 9725.18i 0.325221 + 0.896610i
\(491\) −1990.75 −0.182977 −0.0914883 0.995806i \(-0.529162\pi\)
−0.0914883 + 0.995806i \(0.529162\pi\)
\(492\) 0 0
\(493\) 209.239i 0.0191149i
\(494\) 1297.49 0.118172
\(495\) 0 0
\(496\) −8217.67 −0.743920
\(497\) 1759.54i 0.158806i
\(498\) 0 0
\(499\) 11262.0 1.01033 0.505166 0.863022i \(-0.331431\pi\)
0.505166 + 0.863022i \(0.331431\pi\)
\(500\) −4572.24 + 7859.26i −0.408954 + 0.702954i
\(501\) 0 0
\(502\) 3200.79i 0.284578i
\(503\) 9837.79i 0.872058i 0.899933 + 0.436029i \(0.143616\pi\)
−0.899933 + 0.436029i \(0.856384\pi\)
\(504\) 0 0
\(505\) 12338.1 4475.31i 1.08720 0.394354i
\(506\) −5254.11 −0.461608
\(507\) 0 0
\(508\) 1055.38i 0.0921753i
\(509\) 9403.17 0.818837 0.409419 0.912347i \(-0.365732\pi\)
0.409419 + 0.912347i \(0.365732\pi\)
\(510\) 0 0
\(511\) −14174.3 −1.22707
\(512\) 9745.45i 0.841195i
\(513\) 0 0
\(514\) −1399.21 −0.120071
\(515\) 5700.13 + 15714.8i 0.487723 + 1.34462i
\(516\) 0 0
\(517\) 4192.76i 0.356668i
\(518\) 6622.20i 0.561704i
\(519\) 0 0
\(520\) 5759.99 2089.28i 0.485754 0.176194i
\(521\) −6915.28 −0.581505 −0.290752 0.956798i \(-0.593906\pi\)
−0.290752 + 0.956798i \(0.593906\pi\)
\(522\) 0 0
\(523\) 9137.40i 0.763959i −0.924171 0.381980i \(-0.875242\pi\)
0.924171 0.381980i \(-0.124758\pi\)
\(524\) 14568.4 1.21455
\(525\) 0 0
\(526\) 3606.01 0.298915
\(527\) 13188.9i 1.09017i
\(528\) 0 0
\(529\) −20797.5 −1.70934
\(530\) 7544.48 2736.56i 0.618323 0.224280i
\(531\) 0 0
\(532\) 7410.83i 0.603948i
\(533\) 228.988i 0.0186089i
\(534\) 0 0
\(535\) −2736.94 7545.53i −0.221174 0.609760i
\(536\) 8761.87 0.706073
\(537\) 0 0
\(538\) 3751.32i 0.300615i
\(539\) 17923.6 1.43233
\(540\) 0 0
\(541\) 4862.56 0.386429 0.193214 0.981157i \(-0.438109\pi\)
0.193214 + 0.981157i \(0.438109\pi\)
\(542\) 7555.74i 0.598795i
\(543\) 0 0
\(544\) 8725.57 0.687695
\(545\) 2967.14 1076.25i 0.233208 0.0845900i
\(546\) 0 0
\(547\) 1037.26i 0.0810791i −0.999178 0.0405395i \(-0.987092\pi\)
0.999178 0.0405395i \(-0.0129077\pi\)
\(548\) 6517.84i 0.508081i
\(549\) 0 0
\(550\) −2319.05 2776.14i −0.179791 0.215227i
\(551\) 147.394 0.0113960
\(552\) 0 0
\(553\) 23497.4i 1.80689i
\(554\) 6165.96 0.472864
\(555\) 0 0
\(556\) 11669.0 0.890067
\(557\) 86.7829i 0.00660164i −0.999995 0.00330082i \(-0.998949\pi\)
0.999995 0.00330082i \(-0.00105068\pi\)
\(558\) 0 0
\(559\) −11703.3 −0.885502
\(560\) −3840.98 10589.3i −0.289841 0.799069i
\(561\) 0 0
\(562\) 7764.28i 0.582770i
\(563\) 15914.5i 1.19133i −0.803234 0.595664i \(-0.796889\pi\)
0.803234 0.595664i \(-0.203111\pi\)
\(564\) 0 0
\(565\) −8877.33 24474.1i −0.661012 1.82236i
\(566\) 1592.81 0.118287
\(567\) 0 0
\(568\) 940.618i 0.0694850i
\(569\) 14177.4 1.04454 0.522272 0.852779i \(-0.325084\pi\)
0.522272 + 0.852779i \(0.325084\pi\)
\(570\) 0 0
\(571\) 21676.4 1.58867 0.794333 0.607483i \(-0.207821\pi\)
0.794333 + 0.607483i \(0.207821\pi\)
\(572\) 4761.21i 0.348035i
\(573\) 0 0
\(574\) 300.326 0.0218386
\(575\) −14549.8 17417.6i −1.05525 1.26324i
\(576\) 0 0
\(577\) 6083.49i 0.438924i 0.975621 + 0.219462i \(0.0704302\pi\)
−0.975621 + 0.219462i \(0.929570\pi\)
\(578\) 3099.74i 0.223066i
\(579\) 0 0
\(580\) 293.471 106.449i 0.0210099 0.00762078i
\(581\) 8067.54 0.576072
\(582\) 0 0
\(583\) 13904.5i 0.987765i
\(584\) −7577.32 −0.536903
\(585\) 0 0
\(586\) 2974.96 0.209718
\(587\) 8266.51i 0.581253i −0.956837 0.290626i \(-0.906136\pi\)
0.956837 0.290626i \(-0.0938636\pi\)
\(588\) 0 0
\(589\) 9290.65 0.649940
\(590\) 3934.97 + 10848.4i 0.274577 + 0.756986i
\(591\) 0 0
\(592\) 4962.27i 0.344507i
\(593\) 18155.4i 1.25725i 0.777707 + 0.628627i \(0.216383\pi\)
−0.777707 + 0.628627i \(0.783617\pi\)
\(594\) 0 0
\(595\) −16995.3 + 6164.57i −1.17099 + 0.424744i
\(596\) 12922.3 0.888120
\(597\) 0 0
\(598\) 6859.32i 0.469061i
\(599\) −6899.65 −0.470637 −0.235319 0.971918i \(-0.575613\pi\)
−0.235319 + 0.971918i \(0.575613\pi\)
\(600\) 0 0
\(601\) −8402.89 −0.570318 −0.285159 0.958480i \(-0.592046\pi\)
−0.285159 + 0.958480i \(0.592046\pi\)
\(602\) 15349.2i 1.03918i
\(603\) 0 0
\(604\) −12155.7 −0.818886
\(605\) 8097.60 2937.19i 0.544156 0.197378i
\(606\) 0 0
\(607\) 16342.9i 1.09281i 0.837520 + 0.546407i \(0.184005\pi\)
−0.837520 + 0.546407i \(0.815995\pi\)
\(608\) 6146.53i 0.409992i
\(609\) 0 0
\(610\) −2751.00 7584.30i −0.182598 0.503409i
\(611\) −5473.70 −0.362426
\(612\) 0 0
\(613\) 15671.0i 1.03254i 0.856427 + 0.516268i \(0.172679\pi\)
−0.856427 + 0.516268i \(0.827321\pi\)
\(614\) −6880.87 −0.452263
\(615\) 0 0
\(616\) 13922.9 0.910663
\(617\) 30226.8i 1.97226i 0.165962 + 0.986132i \(0.446927\pi\)
−0.165962 + 0.986132i \(0.553073\pi\)
\(618\) 0 0
\(619\) −4890.59 −0.317560 −0.158780 0.987314i \(-0.550756\pi\)
−0.158780 + 0.987314i \(0.550756\pi\)
\(620\) 18498.3 6709.78i 1.19824 0.434631i
\(621\) 0 0
\(622\) 5631.64i 0.363035i
\(623\) 18518.2i 1.19088i
\(624\) 0 0
\(625\) 2781.02 15375.5i 0.177985 0.984033i
\(626\) −8818.49 −0.563032
\(627\) 0 0
\(628\) 12763.6i 0.811025i
\(629\) −7964.19 −0.504854
\(630\) 0 0
\(631\) −18164.8 −1.14600 −0.573001 0.819554i \(-0.694221\pi\)
−0.573001 + 0.819554i \(0.694221\pi\)
\(632\) 12561.3i 0.790602i
\(633\) 0 0
\(634\) 7557.94 0.473445
\(635\) −618.418 1704.93i −0.0386475 0.106548i
\(636\) 0 0
\(637\) 23399.5i 1.45545i
\(638\) 124.197i 0.00770688i
\(639\) 0 0
\(640\) −5571.46 15360.1i −0.344112 0.948689i
\(641\) 17122.9 1.05509 0.527546 0.849526i \(-0.323112\pi\)
0.527546 + 0.849526i \(0.323112\pi\)
\(642\) 0 0
\(643\) 17652.2i 1.08263i −0.840819 0.541317i \(-0.817926\pi\)
0.840819 0.541317i \(-0.182074\pi\)
\(644\) 39178.2 2.39726
\(645\) 0 0
\(646\) −2046.55 −0.124645
\(647\) 6134.20i 0.372736i −0.982480 0.186368i \(-0.940328\pi\)
0.982480 0.186368i \(-0.0596717\pi\)
\(648\) 0 0
\(649\) 19993.7 1.20928
\(650\) −3624.29 + 3027.56i −0.218702 + 0.182693i
\(651\) 0 0
\(652\) 10320.5i 0.619908i
\(653\) 12879.6i 0.771850i −0.922530 0.385925i \(-0.873882\pi\)
0.922530 0.385925i \(-0.126118\pi\)
\(654\) 0 0
\(655\) −23534.8 + 8536.60i −1.40394 + 0.509241i
\(656\) −225.045 −0.0133941
\(657\) 0 0
\(658\) 7178.95i 0.425326i
\(659\) −28522.0 −1.68598 −0.842990 0.537929i \(-0.819207\pi\)
−0.842990 + 0.537929i \(0.819207\pi\)
\(660\) 0 0
\(661\) −3738.93 −0.220011 −0.110006 0.993931i \(-0.535087\pi\)
−0.110006 + 0.993931i \(0.535087\pi\)
\(662\) 2025.67i 0.118928i
\(663\) 0 0
\(664\) 4312.75 0.252059
\(665\) 4342.50 + 11971.9i 0.253225 + 0.698122i
\(666\) 0 0
\(667\) 779.214i 0.0452343i
\(668\) 15892.3i 0.920497i
\(669\) 0 0
\(670\) −6348.37 + 2302.70i −0.366058 + 0.132778i
\(671\) −13977.9 −0.804190
\(672\) 0 0
\(673\) 22142.8i 1.26827i 0.773224 + 0.634133i \(0.218643\pi\)
−0.773224 + 0.634133i \(0.781357\pi\)
\(674\) 10759.1 0.614876
\(675\) 0 0
\(676\) 8077.98 0.459603
\(677\) 11631.7i 0.660329i 0.943923 + 0.330164i \(0.107104\pi\)
−0.943923 + 0.330164i \(0.892896\pi\)
\(678\) 0 0
\(679\) 15625.6 0.883143
\(680\) −9085.33 + 3295.46i −0.512362 + 0.185846i
\(681\) 0 0
\(682\) 7828.46i 0.439541i
\(683\) 28361.6i 1.58891i 0.607321 + 0.794456i \(0.292244\pi\)
−0.607321 + 0.794456i \(0.707756\pi\)
\(684\) 0 0
\(685\) −3819.23 10529.3i −0.213030 0.587306i
\(686\) 16784.5 0.934160
\(687\) 0 0
\(688\) 11501.8i 0.637356i
\(689\) −18152.6 −1.00371
\(690\) 0 0
\(691\) −8292.49 −0.456529 −0.228264 0.973599i \(-0.573305\pi\)
−0.228264 + 0.973599i \(0.573305\pi\)
\(692\) 9895.05i 0.543574i
\(693\) 0 0
\(694\) −3697.23 −0.202226
\(695\) −18850.9 + 6837.66i −1.02886 + 0.373190i
\(696\) 0 0
\(697\) 361.187i 0.0196283i
\(698\) 10080.7i 0.546649i
\(699\) 0 0
\(700\) 17292.4 + 20700.8i 0.933703 + 1.11774i
\(701\) 586.036 0.0315753 0.0157876 0.999875i \(-0.494974\pi\)
0.0157876 + 0.999875i \(0.494974\pi\)
\(702\) 0 0
\(703\) 5610.19i 0.300985i
\(704\) −574.527 −0.0307575
\(705\) 0 0
\(706\) −12497.6 −0.666224
\(707\) 38934.7i 2.07113i
\(708\) 0 0
\(709\) 17673.2 0.936149 0.468075 0.883689i \(-0.344948\pi\)
0.468075 + 0.883689i \(0.344948\pi\)
\(710\) 247.203 + 681.520i 0.0130667 + 0.0360239i
\(711\) 0 0
\(712\) 9899.46i 0.521065i
\(713\) 49116.1i 2.57982i
\(714\) 0 0
\(715\) 2789.91 + 7691.55i 0.145925 + 0.402305i
\(716\) 5869.30 0.306349
\(717\) 0 0
\(718\) 11218.4i 0.583102i
\(719\) 2714.68 0.140807 0.0704037 0.997519i \(-0.477571\pi\)
0.0704037 + 0.997519i \(0.477571\pi\)
\(720\) 0 0
\(721\) 49590.4 2.56150
\(722\) 6941.90i 0.357827i
\(723\) 0 0
\(724\) −22590.8 −1.15964
\(725\) −411.717 + 343.929i −0.0210907 + 0.0176182i
\(726\) 0 0
\(727\) 2595.19i 0.132394i 0.997807 + 0.0661969i \(0.0210865\pi\)
−0.997807 + 0.0661969i \(0.978913\pi\)
\(728\) 18176.5i 0.925365i
\(729\) 0 0
\(730\) 5490.11 1991.39i 0.278353 0.100965i
\(731\) 18459.8 0.934007
\(732\) 0 0
\(733\) 8334.71i 0.419986i −0.977703 0.209993i \(-0.932656\pi\)
0.977703 0.209993i \(-0.0673441\pi\)
\(734\) 782.443 0.0393467
\(735\) 0 0
\(736\) 32494.3 1.62739
\(737\) 11700.1i 0.584774i
\(738\) 0 0
\(739\) 18970.8 0.944317 0.472159 0.881514i \(-0.343475\pi\)
0.472159 + 0.881514i \(0.343475\pi\)
\(740\) 4051.73 + 11170.3i 0.201276 + 0.554903i
\(741\) 0 0
\(742\) 23807.7i 1.17791i
\(743\) 15043.1i 0.742770i 0.928479 + 0.371385i \(0.121117\pi\)
−0.928479 + 0.371385i \(0.878883\pi\)
\(744\) 0 0
\(745\) −20875.5 + 7572.05i −1.02661 + 0.372374i
\(746\) 5876.54 0.288412
\(747\) 0 0
\(748\) 7509.94i 0.367100i
\(749\) −23811.0 −1.16160
\(750\) 0 0
\(751\) 7098.11 0.344892 0.172446 0.985019i \(-0.444833\pi\)
0.172446 + 0.985019i \(0.444833\pi\)
\(752\) 5379.46i 0.260863i
\(753\) 0 0
\(754\) 162.140 0.00783130
\(755\) 19637.0 7122.80i 0.946575 0.343345i
\(756\) 0 0
\(757\) 25376.1i 1.21837i 0.793027 + 0.609187i \(0.208504\pi\)
−0.793027 + 0.609187i \(0.791496\pi\)
\(758\) 5438.51i 0.260601i
\(759\) 0 0
\(760\) 2321.41 + 6399.96i 0.110798 + 0.305462i
\(761\) −7489.36 −0.356753 −0.178377 0.983962i \(-0.557085\pi\)
−0.178377 + 0.983962i \(0.557085\pi\)
\(762\) 0 0
\(763\) 9363.25i 0.444263i
\(764\) −7551.14 −0.357580
\(765\) 0 0
\(766\) −7687.88 −0.362630
\(767\) 26102.1i 1.22880i
\(768\) 0 0
\(769\) −35506.8 −1.66503 −0.832515 0.554002i \(-0.813100\pi\)
−0.832515 + 0.554002i \(0.813100\pi\)
\(770\) −10087.7 + 3659.06i −0.472126 + 0.171251i
\(771\) 0 0
\(772\) 13411.4i 0.625244i
\(773\) 37535.4i 1.74651i −0.487259 0.873257i \(-0.662003\pi\)
0.487259 0.873257i \(-0.337997\pi\)
\(774\) 0 0
\(775\) −25951.7 + 21678.8i −1.20285 + 1.00481i
\(776\) 8353.12 0.386417
\(777\) 0 0
\(778\) 6906.05i 0.318244i
\(779\) 254.430 0.0117020
\(780\) 0 0
\(781\) 1256.05 0.0575479
\(782\) 10819.3i 0.494755i
\(783\) 0 0
\(784\) −22996.6 −1.04759
\(785\) −7479.04 20619.1i −0.340049 0.937488i
\(786\) 0 0
\(787\) 2496.63i 0.113082i −0.998400 0.0565408i \(-0.981993\pi\)
0.998400 0.0565408i \(-0.0180071\pi\)
\(788\) 4836.97i 0.218668i
\(789\) 0 0
\(790\) −3301.22 9101.21i −0.148674 0.409882i
\(791\) −77231.7 −3.47161
\(792\) 0 0
\(793\) 18248.4i 0.817174i
\(794\) −14572.6 −0.651338
\(795\) 0 0
\(796\) −2280.97 −0.101566
\(797\) 31119.0i 1.38305i −0.722352 0.691526i \(-0.756939\pi\)
0.722352 0.691526i \(-0.243061\pi\)
\(798\) 0 0
\(799\) 8633.77 0.382279
\(800\) 14342.3 + 17169.2i 0.633847 + 0.758777i
\(801\) 0 0
\(802\) 17164.3i 0.755724i
\(803\) 10118.3i 0.444667i
\(804\) 0 0
\(805\) −63290.9 + 22957.1i −2.77107 + 1.00513i
\(806\) 10220.2 0.446638
\(807\) 0 0
\(808\) 20813.7i 0.906218i
\(809\) 26410.8 1.14778 0.573890 0.818932i \(-0.305434\pi\)
0.573890 + 0.818932i \(0.305434\pi\)
\(810\) 0 0
\(811\) 2617.02 0.113312 0.0566559 0.998394i \(-0.481956\pi\)
0.0566559 + 0.998394i \(0.481956\pi\)
\(812\) 926.093i 0.0400240i
\(813\) 0 0
\(814\) −4727.24 −0.203550
\(815\) −6047.43 16672.3i −0.259917 0.716571i
\(816\) 0 0
\(817\) 13003.6i 0.556839i
\(818\) 4908.40i 0.209802i
\(819\) 0 0
\(820\) 506.588 183.751i 0.0215742 0.00782545i
\(821\) 11728.9 0.498589 0.249295 0.968428i \(-0.419801\pi\)
0.249295 + 0.968428i \(0.419801\pi\)
\(822\) 0 0
\(823\) 33171.7i 1.40497i −0.711698 0.702486i \(-0.752074\pi\)
0.711698 0.702486i \(-0.247926\pi\)
\(824\) 26510.1 1.12078
\(825\) 0 0
\(826\) 34233.8 1.44206
\(827\) 37989.2i 1.59736i −0.601757 0.798679i \(-0.705532\pi\)
0.601757 0.798679i \(-0.294468\pi\)
\(828\) 0 0
\(829\) 9051.33 0.379211 0.189605 0.981860i \(-0.439279\pi\)
0.189605 + 0.981860i \(0.439279\pi\)
\(830\) −3124.78 + 1133.43i −0.130678 + 0.0474000i
\(831\) 0 0
\(832\) 750.053i 0.0312541i
\(833\) 36908.4i 1.53518i
\(834\) 0 0
\(835\) 9312.35 + 25673.4i 0.385949 + 1.06403i
\(836\) 5290.21 0.218858
\(837\) 0 0
\(838\) 19412.0i 0.800209i
\(839\) −29458.7 −1.21219 −0.606094 0.795393i \(-0.707265\pi\)
−0.606094 + 0.795393i \(0.707265\pi\)
\(840\) 0 0
\(841\) −24370.6 −0.999245
\(842\) 4158.00i 0.170183i
\(843\) 0 0
\(844\) 987.185 0.0402610
\(845\) −13049.7 + 4733.42i −0.531269 + 0.192704i
\(846\) 0 0
\(847\) 25553.2i 1.03662i
\(848\) 17840.0i 0.722440i
\(849\) 0 0
\(850\) 5716.65 4775.42i 0.230682 0.192701i
\(851\) −29658.9 −1.19471
\(852\) 0 0
\(853\) 10163.5i 0.407960i 0.978975 + 0.203980i \(0.0653878\pi\)
−0.978975 + 0.203980i \(0.934612\pi\)
\(854\) −23933.4 −0.958997
\(855\) 0 0
\(856\) −12728.9 −0.508254
\(857\) 19520.2i 0.778059i 0.921225 + 0.389030i \(0.127190\pi\)
−0.921225 + 0.389030i \(0.872810\pi\)
\(858\) 0 0
\(859\) 23043.9 0.915308 0.457654 0.889130i \(-0.348690\pi\)
0.457654 + 0.889130i \(0.348690\pi\)
\(860\) −9391.28 25891.0i −0.372372 1.02660i
\(861\) 0 0
\(862\) 7416.61i 0.293052i
\(863\) 32489.6i 1.28153i −0.767738 0.640764i \(-0.778618\pi\)
0.767738 0.640764i \(-0.221382\pi\)
\(864\) 0 0
\(865\) −5798.16 15985.1i −0.227911 0.628334i
\(866\) 2895.18 0.113605
\(867\) 0 0
\(868\) 58374.3i 2.28266i
\(869\) −16773.6 −0.654782
\(870\) 0 0
\(871\) 15274.6 0.594215
\(872\) 5005.41i 0.194386i
\(873\) 0 0
\(874\) −7621.43 −0.294964
\(875\) −40065.2 23308.5i −1.54794 0.900539i
\(876\) 0 0
\(877\) 40252.9i 1.54988i 0.632036 + 0.774939i \(0.282220\pi\)
−0.632036 + 0.774939i \(0.717780\pi\)
\(878\) 4560.95i 0.175313i
\(879\) 0 0
\(880\) 7559.13 2741.87i 0.289566 0.105032i
\(881\) −49327.8 −1.88637 −0.943187 0.332263i \(-0.892188\pi\)
−0.943187 + 0.332263i \(0.892188\pi\)
\(882\) 0 0
\(883\) 31936.4i 1.21715i −0.793495 0.608577i \(-0.791741\pi\)
0.793495 0.608577i \(-0.208259\pi\)
\(884\) 9804.33 0.373026
\(885\) 0 0
\(886\) 19455.5 0.737721
\(887\) 3174.52i 0.120169i −0.998193 0.0600845i \(-0.980863\pi\)
0.998193 0.0600845i \(-0.0191370\pi\)
\(888\) 0 0
\(889\) −5380.16 −0.202975
\(890\) 2601.67 + 7172.61i 0.0979868 + 0.270142i
\(891\) 0 0
\(892\) 16453.5i 0.617606i
\(893\) 6081.86i 0.227908i
\(894\) 0 0
\(895\) −9481.63 + 3439.21i −0.354118 + 0.128447i
\(896\) −48471.0 −1.80726
\(897\) 0 0
\(898\) 11108.5i 0.412801i
\(899\) 1161.00 0.0430719
\(900\) 0 0
\(901\) 28632.4 1.05869
\(902\) 214.387i 0.00791386i
\(903\) 0 0
\(904\) −41286.5 −1.51899
\(905\) 36494.6 13237.4i 1.34047 0.486218i
\(906\) 0 0
\(907\) 27550.1i 1.00858i 0.863533 + 0.504292i \(0.168246\pi\)
−0.863533 + 0.504292i \(0.831754\pi\)
\(908\) 31869.2i 1.16478i
\(909\) 0 0
\(910\) 4776.95 + 13169.7i 0.174016 + 0.479748i
\(911\) 5634.64 0.204922 0.102461 0.994737i \(-0.467328\pi\)
0.102461 + 0.994737i \(0.467328\pi\)
\(912\) 0 0
\(913\) 5759.00i 0.208757i
\(914\) −14517.9 −0.525394
\(915\) 0 0
\(916\) 18642.0 0.672432
\(917\) 74267.4i 2.67451i
\(918\) 0 0
\(919\) −8518.91 −0.305781 −0.152891 0.988243i \(-0.548858\pi\)
−0.152891 + 0.988243i \(0.548858\pi\)
\(920\) −33834.1 + 12272.4i −1.21248 + 0.439793i
\(921\) 0 0
\(922\) 8862.87i 0.316576i
\(923\) 1639.79i 0.0584770i
\(924\) 0 0
\(925\) −13090.8 15671.0i −0.465323 0.557037i
\(926\) −2174.15 −0.0771567
\(927\) 0 0
\(928\) 768.100i 0.0271704i
\(929\) −6640.06 −0.234503 −0.117252 0.993102i \(-0.537408\pi\)
−0.117252 + 0.993102i \(0.537408\pi\)
\(930\) 0 0
\(931\) 25999.3 0.915245
\(932\) 28173.2i 0.990176i
\(933\) 0 0
\(934\) −6299.32 −0.220685
\(935\) −4400.57 12132.0i −0.153919 0.424342i
\(936\) 0 0
\(937\) 44972.1i 1.56795i −0.620789 0.783977i \(-0.713188\pi\)
0.620789 0.783977i \(-0.286812\pi\)
\(938\) 20033.2i 0.697343i
\(939\) 0 0
\(940\) −4392.37 12109.4i −0.152408 0.420176i
\(941\) 6264.93 0.217036 0.108518 0.994094i \(-0.465389\pi\)
0.108518 + 0.994094i \(0.465389\pi\)
\(942\) 0 0
\(943\) 1345.07i 0.0464492i
\(944\) −25652.7 −0.884452
\(945\) 0 0
\(946\) 10957.0 0.376579
\(947\) 9672.34i 0.331899i 0.986134 + 0.165950i \(0.0530689\pi\)
−0.986134 + 0.165950i \(0.946931\pi\)
\(948\) 0 0
\(949\) −13209.6 −0.451846
\(950\) −3363.94 4026.97i −0.114885 0.137528i
\(951\) 0 0
\(952\) 28670.1i 0.976054i
\(953\) 14173.3i 0.481761i −0.970555 0.240880i \(-0.922564\pi\)
0.970555 0.240880i \(-0.0774362\pi\)
\(954\) 0 0
\(955\) 12198.6 4424.71i 0.413337 0.149927i
\(956\) 24464.9 0.827667
\(957\) 0 0
\(958\) 9594.91i 0.323588i
\(959\) −33226.8 −1.11882
\(960\) 0 0
\(961\) 43390.4 1.45649
\(962\) 6171.48i 0.206836i
\(963\) 0 0
\(964\) −20205.4 −0.675074
\(965\) −7858.65 21665.7i −0.262154 0.722739i
\(966\) 0 0
\(967\) 43588.7i 1.44955i −0.688984 0.724776i \(-0.741943\pi\)
0.688984 0.724776i \(-0.258057\pi\)
\(968\) 13660.2i 0.453571i
\(969\) 0 0
\(970\) −6052.21 + 2195.28i −0.200335 + 0.0726661i
\(971\) −20974.8 −0.693216 −0.346608 0.938010i \(-0.612667\pi\)
−0.346608 + 0.938010i \(0.612667\pi\)
\(972\) 0 0
\(973\) 59486.8i 1.95998i
\(974\) 10584.2 0.348192
\(975\) 0 0
\(976\) 17934.2 0.588176
\(977\) 8765.10i 0.287022i 0.989649 + 0.143511i \(0.0458392\pi\)
−0.989649 + 0.143511i \(0.954161\pi\)
\(978\) 0 0
\(979\) 13219.2 0.431549
\(980\) 51766.5 18776.9i 1.68737 0.612047i
\(981\) 0 0
\(982\) 2433.24i 0.0790710i
\(983\) 39341.3i 1.27649i −0.769832 0.638247i \(-0.779660\pi\)
0.769832 0.638247i \(-0.220340\pi\)
\(984\) 0 0
\(985\) −2834.30 7813.95i −0.0916836 0.252764i
\(986\) −255.747 −0.00826028
\(987\) 0 0
\(988\) 6906.44i 0.222392i
\(989\) 68744.9 2.21027
\(990\) 0 0
\(991\) 5063.64 0.162313 0.0811563 0.996701i \(-0.474139\pi\)
0.0811563 + 0.996701i \(0.474139\pi\)
\(992\) 48415.5i 1.54959i
\(993\) 0 0
\(994\) 2150.64 0.0686258
\(995\) 3684.82 1336.57i 0.117404 0.0425850i
\(996\) 0 0
\(997\) 29030.8i 0.922181i −0.887353 0.461090i \(-0.847458\pi\)
0.887353 0.461090i \(-0.152542\pi\)
\(998\) 13765.2i 0.436603i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.4.b.b.244.5 yes 8
3.2 odd 2 405.4.b.c.244.4 yes 8
5.2 odd 4 2025.4.a.bc.1.4 8
5.3 odd 4 2025.4.a.bc.1.5 8
5.4 even 2 inner 405.4.b.b.244.4 8
15.2 even 4 2025.4.a.bd.1.5 8
15.8 even 4 2025.4.a.bd.1.4 8
15.14 odd 2 405.4.b.c.244.5 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.4.b.b.244.4 8 5.4 even 2 inner
405.4.b.b.244.5 yes 8 1.1 even 1 trivial
405.4.b.c.244.4 yes 8 3.2 odd 2
405.4.b.c.244.5 yes 8 15.14 odd 2
2025.4.a.bc.1.4 8 5.2 odd 4
2025.4.a.bc.1.5 8 5.3 odd 4
2025.4.a.bd.1.4 8 15.8 even 4
2025.4.a.bd.1.5 8 15.2 even 4