Properties

Label 2025.4.a.bd.1.5
Level $2025$
Weight $4$
Character 2025.1
Self dual yes
Analytic conductor $119.479$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2025,4,Mod(1,2025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2025.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,24,0,0,0,0,0,0,0,0,0,42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.478867762\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 44x^{6} + 567x^{4} - 2024x^{2} + 1900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 405)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.22227\) of defining polynomial
Character \(\chi\) \(=\) 2025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.22227 q^{2} -6.50606 q^{4} -33.1668 q^{7} -17.7303 q^{8} +23.6760 q^{11} +30.9094 q^{13} -40.5387 q^{14} +30.3772 q^{16} -48.7539 q^{17} +34.3436 q^{19} +28.9385 q^{22} +181.561 q^{23} +37.7796 q^{26} +215.785 q^{28} -4.29174 q^{29} -270.521 q^{31} +178.972 q^{32} -59.5905 q^{34} +163.355 q^{37} +41.9772 q^{38} +7.40836 q^{41} +378.631 q^{43} -154.038 q^{44} +221.917 q^{46} +177.089 q^{47} +757.035 q^{49} -201.098 q^{52} -587.283 q^{53} +588.057 q^{56} -5.24566 q^{58} -844.470 q^{59} +590.383 q^{61} -330.649 q^{62} -24.2662 q^{64} +494.174 q^{67} +317.196 q^{68} +53.0514 q^{71} +427.365 q^{73} +199.664 q^{74} -223.441 q^{76} -785.258 q^{77} -708.463 q^{79} +9.05501 q^{82} +243.242 q^{83} +462.790 q^{86} -419.784 q^{88} -558.336 q^{89} -1025.17 q^{91} -1181.25 q^{92} +216.450 q^{94} +471.121 q^{97} +925.301 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{4} + 42 q^{14} + 4 q^{16} - 118 q^{19} - 36 q^{26} - 318 q^{29} - 416 q^{31} - 638 q^{34} + 486 q^{41} - 852 q^{44} - 598 q^{46} - 350 q^{49} + 1530 q^{56} + 1146 q^{59} - 398 q^{61} - 1640 q^{64}+ \cdots - 1238 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22227 0.432138 0.216069 0.976378i \(-0.430676\pi\)
0.216069 + 0.976378i \(0.430676\pi\)
\(3\) 0 0
\(4\) −6.50606 −0.813257
\(5\) 0 0
\(6\) 0 0
\(7\) −33.1668 −1.79084 −0.895419 0.445225i \(-0.853124\pi\)
−0.895419 + 0.445225i \(0.853124\pi\)
\(8\) −17.7303 −0.783577
\(9\) 0 0
\(10\) 0 0
\(11\) 23.6760 0.648963 0.324482 0.945892i \(-0.394810\pi\)
0.324482 + 0.945892i \(0.394810\pi\)
\(12\) 0 0
\(13\) 30.9094 0.659440 0.329720 0.944079i \(-0.393046\pi\)
0.329720 + 0.944079i \(0.393046\pi\)
\(14\) −40.5387 −0.773888
\(15\) 0 0
\(16\) 30.3772 0.474644
\(17\) −48.7539 −0.695563 −0.347781 0.937576i \(-0.613065\pi\)
−0.347781 + 0.937576i \(0.613065\pi\)
\(18\) 0 0
\(19\) 34.3436 0.414682 0.207341 0.978269i \(-0.433519\pi\)
0.207341 + 0.978269i \(0.433519\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 28.9385 0.280441
\(23\) 181.561 1.64601 0.823004 0.568036i \(-0.192297\pi\)
0.823004 + 0.568036i \(0.192297\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 37.7796 0.284969
\(27\) 0 0
\(28\) 215.785 1.45641
\(29\) −4.29174 −0.0274812 −0.0137406 0.999906i \(-0.504374\pi\)
−0.0137406 + 0.999906i \(0.504374\pi\)
\(30\) 0 0
\(31\) −270.521 −1.56732 −0.783660 0.621190i \(-0.786650\pi\)
−0.783660 + 0.621190i \(0.786650\pi\)
\(32\) 178.972 0.988688
\(33\) 0 0
\(34\) −59.5905 −0.300579
\(35\) 0 0
\(36\) 0 0
\(37\) 163.355 0.725821 0.362910 0.931824i \(-0.381783\pi\)
0.362910 + 0.931824i \(0.381783\pi\)
\(38\) 41.9772 0.179200
\(39\) 0 0
\(40\) 0 0
\(41\) 7.40836 0.0282193 0.0141097 0.999900i \(-0.495509\pi\)
0.0141097 + 0.999900i \(0.495509\pi\)
\(42\) 0 0
\(43\) 378.631 1.34281 0.671404 0.741091i \(-0.265691\pi\)
0.671404 + 0.741091i \(0.265691\pi\)
\(44\) −154.038 −0.527774
\(45\) 0 0
\(46\) 221.917 0.711302
\(47\) 177.089 0.549596 0.274798 0.961502i \(-0.411389\pi\)
0.274798 + 0.961502i \(0.411389\pi\)
\(48\) 0 0
\(49\) 757.035 2.20710
\(50\) 0 0
\(51\) 0 0
\(52\) −201.098 −0.536294
\(53\) −587.283 −1.52207 −0.761033 0.648713i \(-0.775308\pi\)
−0.761033 + 0.648713i \(0.775308\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 588.057 1.40326
\(57\) 0 0
\(58\) −5.24566 −0.0118757
\(59\) −844.470 −1.86340 −0.931700 0.363228i \(-0.881675\pi\)
−0.931700 + 0.363228i \(0.881675\pi\)
\(60\) 0 0
\(61\) 590.383 1.23919 0.619596 0.784921i \(-0.287296\pi\)
0.619596 + 0.784921i \(0.287296\pi\)
\(62\) −330.649 −0.677298
\(63\) 0 0
\(64\) −24.2662 −0.0473949
\(65\) 0 0
\(66\) 0 0
\(67\) 494.174 0.901090 0.450545 0.892754i \(-0.351230\pi\)
0.450545 + 0.892754i \(0.351230\pi\)
\(68\) 317.196 0.565671
\(69\) 0 0
\(70\) 0 0
\(71\) 53.0514 0.0886767 0.0443383 0.999017i \(-0.485882\pi\)
0.0443383 + 0.999017i \(0.485882\pi\)
\(72\) 0 0
\(73\) 427.365 0.685196 0.342598 0.939482i \(-0.388693\pi\)
0.342598 + 0.939482i \(0.388693\pi\)
\(74\) 199.664 0.313654
\(75\) 0 0
\(76\) −223.441 −0.337243
\(77\) −785.258 −1.16219
\(78\) 0 0
\(79\) −708.463 −1.00897 −0.504483 0.863422i \(-0.668317\pi\)
−0.504483 + 0.863422i \(0.668317\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 9.05501 0.0121946
\(83\) 243.242 0.321678 0.160839 0.986981i \(-0.448580\pi\)
0.160839 + 0.986981i \(0.448580\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 462.790 0.580278
\(87\) 0 0
\(88\) −419.784 −0.508512
\(89\) −558.336 −0.664983 −0.332491 0.943106i \(-0.607889\pi\)
−0.332491 + 0.943106i \(0.607889\pi\)
\(90\) 0 0
\(91\) −1025.17 −1.18095
\(92\) −1181.25 −1.33863
\(93\) 0 0
\(94\) 216.450 0.237501
\(95\) 0 0
\(96\) 0 0
\(97\) 471.121 0.493145 0.246572 0.969124i \(-0.420696\pi\)
0.246572 + 0.969124i \(0.420696\pi\)
\(98\) 925.301 0.953771
\(99\) 0 0
\(100\) 0 0
\(101\) 1173.91 1.15652 0.578258 0.815854i \(-0.303733\pi\)
0.578258 + 0.815854i \(0.303733\pi\)
\(102\) 0 0
\(103\) −1495.18 −1.43034 −0.715169 0.698952i \(-0.753650\pi\)
−0.715169 + 0.698952i \(0.753650\pi\)
\(104\) −548.033 −0.516722
\(105\) 0 0
\(106\) −717.818 −0.657742
\(107\) 717.918 0.648633 0.324317 0.945949i \(-0.394866\pi\)
0.324317 + 0.945949i \(0.394866\pi\)
\(108\) 0 0
\(109\) 282.308 0.248075 0.124038 0.992278i \(-0.460416\pi\)
0.124038 + 0.992278i \(0.460416\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1007.51 −0.850011
\(113\) −2328.58 −1.93854 −0.969269 0.246002i \(-0.920883\pi\)
−0.969269 + 0.246002i \(0.920883\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 27.9223 0.0223493
\(117\) 0 0
\(118\) −1032.17 −0.805246
\(119\) 1617.01 1.24564
\(120\) 0 0
\(121\) −770.445 −0.578847
\(122\) 721.607 0.535502
\(123\) 0 0
\(124\) 1760.02 1.27463
\(125\) 0 0
\(126\) 0 0
\(127\) −162.215 −0.113341 −0.0566704 0.998393i \(-0.518048\pi\)
−0.0566704 + 0.998393i \(0.518048\pi\)
\(128\) −1461.43 −1.00917
\(129\) 0 0
\(130\) 0 0
\(131\) −2239.21 −1.49344 −0.746720 0.665138i \(-0.768373\pi\)
−0.746720 + 0.665138i \(0.768373\pi\)
\(132\) 0 0
\(133\) −1139.07 −0.742629
\(134\) 604.014 0.389395
\(135\) 0 0
\(136\) 864.423 0.545027
\(137\) 1001.81 0.624748 0.312374 0.949959i \(-0.398876\pi\)
0.312374 + 0.949959i \(0.398876\pi\)
\(138\) 0 0
\(139\) −1793.56 −1.09445 −0.547224 0.836986i \(-0.684315\pi\)
−0.547224 + 0.836986i \(0.684315\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 64.8431 0.0383205
\(143\) 731.812 0.427952
\(144\) 0 0
\(145\) 0 0
\(146\) 522.355 0.296099
\(147\) 0 0
\(148\) −1062.80 −0.590279
\(149\) 1986.20 1.09205 0.546027 0.837768i \(-0.316140\pi\)
0.546027 + 0.837768i \(0.316140\pi\)
\(150\) 0 0
\(151\) −1868.36 −1.00692 −0.503460 0.864018i \(-0.667940\pi\)
−0.503460 + 0.864018i \(0.667940\pi\)
\(152\) −608.923 −0.324935
\(153\) 0 0
\(154\) −959.797 −0.502225
\(155\) 0 0
\(156\) 0 0
\(157\) −1961.80 −0.997255 −0.498627 0.866816i \(-0.666162\pi\)
−0.498627 + 0.866816i \(0.666162\pi\)
\(158\) −865.933 −0.436012
\(159\) 0 0
\(160\) 0 0
\(161\) −6021.81 −2.94773
\(162\) 0 0
\(163\) 1586.28 0.762254 0.381127 0.924523i \(-0.375536\pi\)
0.381127 + 0.924523i \(0.375536\pi\)
\(164\) −48.1992 −0.0229495
\(165\) 0 0
\(166\) 297.307 0.139009
\(167\) −2442.69 −1.13186 −0.565932 0.824452i \(-0.691484\pi\)
−0.565932 + 0.824452i \(0.691484\pi\)
\(168\) 0 0
\(169\) −1241.61 −0.565139
\(170\) 0 0
\(171\) 0 0
\(172\) −2463.40 −1.09205
\(173\) −1520.90 −0.668391 −0.334196 0.942504i \(-0.608465\pi\)
−0.334196 + 0.942504i \(0.608465\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 719.212 0.308027
\(177\) 0 0
\(178\) −682.437 −0.287364
\(179\) 902.128 0.376694 0.188347 0.982103i \(-0.439687\pi\)
0.188347 + 0.982103i \(0.439687\pi\)
\(180\) 0 0
\(181\) −3472.27 −1.42592 −0.712962 0.701203i \(-0.752647\pi\)
−0.712962 + 0.701203i \(0.752647\pi\)
\(182\) −1253.03 −0.510333
\(183\) 0 0
\(184\) −3219.14 −1.28977
\(185\) 0 0
\(186\) 0 0
\(187\) −1154.30 −0.451394
\(188\) −1152.15 −0.446963
\(189\) 0 0
\(190\) 0 0
\(191\) 1160.63 0.439688 0.219844 0.975535i \(-0.429445\pi\)
0.219844 + 0.975535i \(0.429445\pi\)
\(192\) 0 0
\(193\) 2061.38 0.768815 0.384408 0.923164i \(-0.374406\pi\)
0.384408 + 0.923164i \(0.374406\pi\)
\(194\) 575.837 0.213106
\(195\) 0 0
\(196\) −4925.31 −1.79494
\(197\) 743.457 0.268879 0.134439 0.990922i \(-0.457077\pi\)
0.134439 + 0.990922i \(0.457077\pi\)
\(198\) 0 0
\(199\) 350.592 0.124888 0.0624442 0.998048i \(-0.480110\pi\)
0.0624442 + 0.998048i \(0.480110\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1434.83 0.499774
\(203\) 142.343 0.0492144
\(204\) 0 0
\(205\) 0 0
\(206\) −1827.52 −0.618103
\(207\) 0 0
\(208\) 938.942 0.313000
\(209\) 813.121 0.269114
\(210\) 0 0
\(211\) 151.733 0.0495059 0.0247529 0.999694i \(-0.492120\pi\)
0.0247529 + 0.999694i \(0.492120\pi\)
\(212\) 3820.90 1.23783
\(213\) 0 0
\(214\) 877.490 0.280299
\(215\) 0 0
\(216\) 0 0
\(217\) 8972.30 2.80682
\(218\) 345.057 0.107203
\(219\) 0 0
\(220\) 0 0
\(221\) −1506.95 −0.458682
\(222\) 0 0
\(223\) 2528.95 0.759423 0.379711 0.925105i \(-0.376023\pi\)
0.379711 + 0.925105i \(0.376023\pi\)
\(224\) −5935.91 −1.77058
\(225\) 0 0
\(226\) −2846.16 −0.837715
\(227\) 4898.39 1.43224 0.716118 0.697979i \(-0.245917\pi\)
0.716118 + 0.697979i \(0.245917\pi\)
\(228\) 0 0
\(229\) −2865.32 −0.826838 −0.413419 0.910541i \(-0.635666\pi\)
−0.413419 + 0.910541i \(0.635666\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 76.0939 0.0215337
\(233\) −4330.31 −1.21754 −0.608772 0.793345i \(-0.708338\pi\)
−0.608772 + 0.793345i \(0.708338\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 5494.17 1.51542
\(237\) 0 0
\(238\) 1976.42 0.538288
\(239\) 3760.32 1.01772 0.508860 0.860850i \(-0.330067\pi\)
0.508860 + 0.860850i \(0.330067\pi\)
\(240\) 0 0
\(241\) −3105.62 −0.830087 −0.415043 0.909802i \(-0.636234\pi\)
−0.415043 + 0.909802i \(0.636234\pi\)
\(242\) −941.692 −0.250142
\(243\) 0 0
\(244\) −3841.06 −1.00778
\(245\) 0 0
\(246\) 0 0
\(247\) 1061.54 0.273458
\(248\) 4796.41 1.22812
\(249\) 0 0
\(250\) 0 0
\(251\) −2618.73 −0.658536 −0.329268 0.944236i \(-0.606802\pi\)
−0.329268 + 0.944236i \(0.606802\pi\)
\(252\) 0 0
\(253\) 4298.65 1.06820
\(254\) −198.271 −0.0489788
\(255\) 0 0
\(256\) −1592.14 −0.388705
\(257\) 1144.76 0.277853 0.138926 0.990303i \(-0.455635\pi\)
0.138926 + 0.990303i \(0.455635\pi\)
\(258\) 0 0
\(259\) −5417.95 −1.29983
\(260\) 0 0
\(261\) 0 0
\(262\) −2736.92 −0.645372
\(263\) 2950.25 0.691713 0.345856 0.938287i \(-0.387588\pi\)
0.345856 + 0.938287i \(0.387588\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1392.25 −0.320918
\(267\) 0 0
\(268\) −3215.13 −0.732818
\(269\) 3069.15 0.695647 0.347824 0.937560i \(-0.386921\pi\)
0.347824 + 0.937560i \(0.386921\pi\)
\(270\) 0 0
\(271\) −6181.73 −1.38566 −0.692829 0.721102i \(-0.743636\pi\)
−0.692829 + 0.721102i \(0.743636\pi\)
\(272\) −1481.01 −0.330145
\(273\) 0 0
\(274\) 1224.48 0.269977
\(275\) 0 0
\(276\) 0 0
\(277\) 5044.68 1.09424 0.547122 0.837053i \(-0.315724\pi\)
0.547122 + 0.837053i \(0.315724\pi\)
\(278\) −2192.22 −0.472952
\(279\) 0 0
\(280\) 0 0
\(281\) 6352.35 1.34857 0.674287 0.738469i \(-0.264451\pi\)
0.674287 + 0.738469i \(0.264451\pi\)
\(282\) 0 0
\(283\) −1303.15 −0.273726 −0.136863 0.990590i \(-0.543702\pi\)
−0.136863 + 0.990590i \(0.543702\pi\)
\(284\) −345.156 −0.0721169
\(285\) 0 0
\(286\) 894.472 0.184934
\(287\) −245.711 −0.0505362
\(288\) 0 0
\(289\) −2536.05 −0.516193
\(290\) 0 0
\(291\) 0 0
\(292\) −2780.46 −0.557240
\(293\) 2433.97 0.485303 0.242652 0.970113i \(-0.421983\pi\)
0.242652 + 0.970113i \(0.421983\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2896.33 −0.568736
\(297\) 0 0
\(298\) 2427.67 0.471917
\(299\) 5611.95 1.08544
\(300\) 0 0
\(301\) −12558.0 −2.40475
\(302\) −2283.64 −0.435128
\(303\) 0 0
\(304\) 1043.26 0.196827
\(305\) 0 0
\(306\) 0 0
\(307\) −5629.59 −1.04657 −0.523286 0.852157i \(-0.675294\pi\)
−0.523286 + 0.852157i \(0.675294\pi\)
\(308\) 5108.93 0.945157
\(309\) 0 0
\(310\) 0 0
\(311\) 4607.52 0.840092 0.420046 0.907503i \(-0.362014\pi\)
0.420046 + 0.907503i \(0.362014\pi\)
\(312\) 0 0
\(313\) 7214.85 1.30290 0.651450 0.758692i \(-0.274161\pi\)
0.651450 + 0.758692i \(0.274161\pi\)
\(314\) −2397.85 −0.430951
\(315\) 0 0
\(316\) 4609.30 0.820549
\(317\) −6183.53 −1.09559 −0.547794 0.836613i \(-0.684532\pi\)
−0.547794 + 0.836613i \(0.684532\pi\)
\(318\) 0 0
\(319\) −101.611 −0.0178343
\(320\) 0 0
\(321\) 0 0
\(322\) −7360.27 −1.27383
\(323\) −1674.39 −0.288438
\(324\) 0 0
\(325\) 0 0
\(326\) 1938.87 0.329398
\(327\) 0 0
\(328\) −131.353 −0.0221120
\(329\) −5873.46 −0.984238
\(330\) 0 0
\(331\) 1657.31 0.275208 0.137604 0.990487i \(-0.456060\pi\)
0.137604 + 0.990487i \(0.456060\pi\)
\(332\) −1582.54 −0.261607
\(333\) 0 0
\(334\) −2985.63 −0.489121
\(335\) 0 0
\(336\) 0 0
\(337\) 8802.58 1.42287 0.711435 0.702752i \(-0.248045\pi\)
0.711435 + 0.702752i \(0.248045\pi\)
\(338\) −1517.58 −0.244218
\(339\) 0 0
\(340\) 0 0
\(341\) −6404.86 −1.01713
\(342\) 0 0
\(343\) −13732.2 −2.16172
\(344\) −6713.26 −1.05219
\(345\) 0 0
\(346\) −1858.95 −0.288837
\(347\) 3024.89 0.467967 0.233983 0.972241i \(-0.424824\pi\)
0.233983 + 0.972241i \(0.424824\pi\)
\(348\) 0 0
\(349\) −8247.55 −1.26499 −0.632494 0.774565i \(-0.717969\pi\)
−0.632494 + 0.774565i \(0.717969\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4237.34 0.641622
\(353\) −10224.9 −1.54169 −0.770847 0.637021i \(-0.780167\pi\)
−0.770847 + 0.637021i \(0.780167\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 3632.56 0.540802
\(357\) 0 0
\(358\) 1102.64 0.162784
\(359\) −9178.35 −1.34934 −0.674672 0.738118i \(-0.735715\pi\)
−0.674672 + 0.738118i \(0.735715\pi\)
\(360\) 0 0
\(361\) −5679.52 −0.828039
\(362\) −4244.05 −0.616195
\(363\) 0 0
\(364\) 6669.78 0.960416
\(365\) 0 0
\(366\) 0 0
\(367\) 640.156 0.0910514 0.0455257 0.998963i \(-0.485504\pi\)
0.0455257 + 0.998963i \(0.485504\pi\)
\(368\) 5515.33 0.781268
\(369\) 0 0
\(370\) 0 0
\(371\) 19478.3 2.72577
\(372\) 0 0
\(373\) −4807.89 −0.667408 −0.333704 0.942678i \(-0.608299\pi\)
−0.333704 + 0.942678i \(0.608299\pi\)
\(374\) −1410.87 −0.195065
\(375\) 0 0
\(376\) −3139.84 −0.430651
\(377\) −132.655 −0.0181222
\(378\) 0 0
\(379\) 4449.52 0.603051 0.301526 0.953458i \(-0.402504\pi\)
0.301526 + 0.953458i \(0.402504\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1418.61 0.190006
\(383\) −6289.84 −0.839153 −0.419577 0.907720i \(-0.637821\pi\)
−0.419577 + 0.907720i \(0.637821\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2519.56 0.332234
\(387\) 0 0
\(388\) −3065.14 −0.401054
\(389\) 5650.19 0.736442 0.368221 0.929738i \(-0.379967\pi\)
0.368221 + 0.929738i \(0.379967\pi\)
\(390\) 0 0
\(391\) −8851.83 −1.14490
\(392\) −13422.5 −1.72943
\(393\) 0 0
\(394\) 908.705 0.116193
\(395\) 0 0
\(396\) 0 0
\(397\) −11922.6 −1.50725 −0.753623 0.657307i \(-0.771696\pi\)
−0.753623 + 0.657307i \(0.771696\pi\)
\(398\) 428.517 0.0539689
\(399\) 0 0
\(400\) 0 0
\(401\) −14042.9 −1.74881 −0.874403 0.485201i \(-0.838746\pi\)
−0.874403 + 0.485201i \(0.838746\pi\)
\(402\) 0 0
\(403\) −8361.63 −1.03355
\(404\) −7637.50 −0.940544
\(405\) 0 0
\(406\) 173.982 0.0212674
\(407\) 3867.59 0.471031
\(408\) 0 0
\(409\) 4015.80 0.485498 0.242749 0.970089i \(-0.421951\pi\)
0.242749 + 0.970089i \(0.421951\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 9727.75 1.16323
\(413\) 28008.4 3.33705
\(414\) 0 0
\(415\) 0 0
\(416\) 5531.91 0.651981
\(417\) 0 0
\(418\) 993.853 0.116294
\(419\) −15881.9 −1.85175 −0.925873 0.377835i \(-0.876669\pi\)
−0.925873 + 0.377835i \(0.876669\pi\)
\(420\) 0 0
\(421\) 3401.87 0.393817 0.196908 0.980422i \(-0.436910\pi\)
0.196908 + 0.980422i \(0.436910\pi\)
\(422\) 185.459 0.0213934
\(423\) 0 0
\(424\) 10412.7 1.19266
\(425\) 0 0
\(426\) 0 0
\(427\) −19581.1 −2.21919
\(428\) −4670.82 −0.527506
\(429\) 0 0
\(430\) 0 0
\(431\) −6067.90 −0.678145 −0.339072 0.940760i \(-0.610113\pi\)
−0.339072 + 0.940760i \(0.610113\pi\)
\(432\) 0 0
\(433\) −2368.69 −0.262891 −0.131446 0.991323i \(-0.541962\pi\)
−0.131446 + 0.991323i \(0.541962\pi\)
\(434\) 10966.6 1.21293
\(435\) 0 0
\(436\) −1836.71 −0.201749
\(437\) 6235.47 0.682570
\(438\) 0 0
\(439\) −3731.54 −0.405687 −0.202844 0.979211i \(-0.565018\pi\)
−0.202844 + 0.979211i \(0.565018\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −1841.90 −0.198214
\(443\) 15917.5 1.70714 0.853572 0.520975i \(-0.174431\pi\)
0.853572 + 0.520975i \(0.174431\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 3091.06 0.328175
\(447\) 0 0
\(448\) 804.831 0.0848766
\(449\) 9088.41 0.955252 0.477626 0.878563i \(-0.341497\pi\)
0.477626 + 0.878563i \(0.341497\pi\)
\(450\) 0 0
\(451\) 175.401 0.0183133
\(452\) 15149.9 1.57653
\(453\) 0 0
\(454\) 5987.16 0.618923
\(455\) 0 0
\(456\) 0 0
\(457\) −11877.8 −1.21580 −0.607901 0.794013i \(-0.707988\pi\)
−0.607901 + 0.794013i \(0.707988\pi\)
\(458\) −3502.20 −0.357308
\(459\) 0 0
\(460\) 0 0
\(461\) −7251.15 −0.732581 −0.366291 0.930501i \(-0.619372\pi\)
−0.366291 + 0.930501i \(0.619372\pi\)
\(462\) 0 0
\(463\) 1778.78 0.178547 0.0892733 0.996007i \(-0.471546\pi\)
0.0892733 + 0.996007i \(0.471546\pi\)
\(464\) −130.371 −0.0130438
\(465\) 0 0
\(466\) −5292.80 −0.526147
\(467\) 5153.79 0.510683 0.255342 0.966851i \(-0.417812\pi\)
0.255342 + 0.966851i \(0.417812\pi\)
\(468\) 0 0
\(469\) −16390.2 −1.61371
\(470\) 0 0
\(471\) 0 0
\(472\) 14972.7 1.46012
\(473\) 8964.49 0.871433
\(474\) 0 0
\(475\) 0 0
\(476\) −10520.4 −1.01303
\(477\) 0 0
\(478\) 4596.13 0.439795
\(479\) −7850.07 −0.748808 −0.374404 0.927266i \(-0.622153\pi\)
−0.374404 + 0.927266i \(0.622153\pi\)
\(480\) 0 0
\(481\) 5049.20 0.478635
\(482\) −3795.91 −0.358712
\(483\) 0 0
\(484\) 5012.56 0.470751
\(485\) 0 0
\(486\) 0 0
\(487\) 8659.46 0.805744 0.402872 0.915256i \(-0.368012\pi\)
0.402872 + 0.915256i \(0.368012\pi\)
\(488\) −10467.7 −0.971002
\(489\) 0 0
\(490\) 0 0
\(491\) 1990.75 0.182977 0.0914883 0.995806i \(-0.470838\pi\)
0.0914883 + 0.995806i \(0.470838\pi\)
\(492\) 0 0
\(493\) 209.239 0.0191149
\(494\) 1297.49 0.118172
\(495\) 0 0
\(496\) −8217.67 −0.743920
\(497\) −1759.54 −0.158806
\(498\) 0 0
\(499\) −11262.0 −1.01033 −0.505166 0.863022i \(-0.668569\pi\)
−0.505166 + 0.863022i \(0.668569\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −3200.79 −0.284578
\(503\) −9837.79 −0.872058 −0.436029 0.899933i \(-0.643616\pi\)
−0.436029 + 0.899933i \(0.643616\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 5254.11 0.461608
\(507\) 0 0
\(508\) 1055.38 0.0921753
\(509\) 9403.17 0.818837 0.409419 0.912347i \(-0.365732\pi\)
0.409419 + 0.912347i \(0.365732\pi\)
\(510\) 0 0
\(511\) −14174.3 −1.22707
\(512\) 9745.45 0.841195
\(513\) 0 0
\(514\) 1399.21 0.120071
\(515\) 0 0
\(516\) 0 0
\(517\) 4192.76 0.356668
\(518\) −6622.20 −0.561704
\(519\) 0 0
\(520\) 0 0
\(521\) 6915.28 0.581505 0.290752 0.956798i \(-0.406094\pi\)
0.290752 + 0.956798i \(0.406094\pi\)
\(522\) 0 0
\(523\) −9137.40 −0.763959 −0.381980 0.924171i \(-0.624758\pi\)
−0.381980 + 0.924171i \(0.624758\pi\)
\(524\) 14568.4 1.21455
\(525\) 0 0
\(526\) 3606.01 0.298915
\(527\) 13188.9 1.09017
\(528\) 0 0
\(529\) 20797.5 1.70934
\(530\) 0 0
\(531\) 0 0
\(532\) 7410.83 0.603948
\(533\) 228.988 0.0186089
\(534\) 0 0
\(535\) 0 0
\(536\) −8761.87 −0.706073
\(537\) 0 0
\(538\) 3751.32 0.300615
\(539\) 17923.6 1.43233
\(540\) 0 0
\(541\) 4862.56 0.386429 0.193214 0.981157i \(-0.438109\pi\)
0.193214 + 0.981157i \(0.438109\pi\)
\(542\) −7555.74 −0.598795
\(543\) 0 0
\(544\) −8725.57 −0.687695
\(545\) 0 0
\(546\) 0 0
\(547\) 1037.26 0.0810791 0.0405395 0.999178i \(-0.487092\pi\)
0.0405395 + 0.999178i \(0.487092\pi\)
\(548\) −6517.84 −0.508081
\(549\) 0 0
\(550\) 0 0
\(551\) −147.394 −0.0113960
\(552\) 0 0
\(553\) 23497.4 1.80689
\(554\) 6165.96 0.472864
\(555\) 0 0
\(556\) 11669.0 0.890067
\(557\) −86.7829 −0.00660164 −0.00330082 0.999995i \(-0.501051\pi\)
−0.00330082 + 0.999995i \(0.501051\pi\)
\(558\) 0 0
\(559\) 11703.3 0.885502
\(560\) 0 0
\(561\) 0 0
\(562\) 7764.28 0.582770
\(563\) 15914.5 1.19133 0.595664 0.803234i \(-0.296889\pi\)
0.595664 + 0.803234i \(0.296889\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1592.81 −0.118287
\(567\) 0 0
\(568\) −940.618 −0.0694850
\(569\) 14177.4 1.04454 0.522272 0.852779i \(-0.325084\pi\)
0.522272 + 0.852779i \(0.325084\pi\)
\(570\) 0 0
\(571\) 21676.4 1.58867 0.794333 0.607483i \(-0.207821\pi\)
0.794333 + 0.607483i \(0.207821\pi\)
\(572\) −4761.21 −0.348035
\(573\) 0 0
\(574\) −300.326 −0.0218386
\(575\) 0 0
\(576\) 0 0
\(577\) −6083.49 −0.438924 −0.219462 0.975621i \(-0.570430\pi\)
−0.219462 + 0.975621i \(0.570430\pi\)
\(578\) −3099.74 −0.223066
\(579\) 0 0
\(580\) 0 0
\(581\) −8067.54 −0.576072
\(582\) 0 0
\(583\) −13904.5 −0.987765
\(584\) −7577.32 −0.536903
\(585\) 0 0
\(586\) 2974.96 0.209718
\(587\) −8266.51 −0.581253 −0.290626 0.956837i \(-0.593864\pi\)
−0.290626 + 0.956837i \(0.593864\pi\)
\(588\) 0 0
\(589\) −9290.65 −0.649940
\(590\) 0 0
\(591\) 0 0
\(592\) 4962.27 0.344507
\(593\) −18155.4 −1.25725 −0.628627 0.777707i \(-0.716383\pi\)
−0.628627 + 0.777707i \(0.716383\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −12922.3 −0.888120
\(597\) 0 0
\(598\) 6859.32 0.469061
\(599\) −6899.65 −0.470637 −0.235319 0.971918i \(-0.575613\pi\)
−0.235319 + 0.971918i \(0.575613\pi\)
\(600\) 0 0
\(601\) −8402.89 −0.570318 −0.285159 0.958480i \(-0.592046\pi\)
−0.285159 + 0.958480i \(0.592046\pi\)
\(602\) −15349.2 −1.03918
\(603\) 0 0
\(604\) 12155.7 0.818886
\(605\) 0 0
\(606\) 0 0
\(607\) −16342.9 −1.09281 −0.546407 0.837520i \(-0.684005\pi\)
−0.546407 + 0.837520i \(0.684005\pi\)
\(608\) 6146.53 0.409992
\(609\) 0 0
\(610\) 0 0
\(611\) 5473.70 0.362426
\(612\) 0 0
\(613\) 15671.0 1.03254 0.516268 0.856427i \(-0.327321\pi\)
0.516268 + 0.856427i \(0.327321\pi\)
\(614\) −6880.87 −0.452263
\(615\) 0 0
\(616\) 13922.9 0.910663
\(617\) 30226.8 1.97226 0.986132 0.165962i \(-0.0530728\pi\)
0.986132 + 0.165962i \(0.0530728\pi\)
\(618\) 0 0
\(619\) 4890.59 0.317560 0.158780 0.987314i \(-0.449244\pi\)
0.158780 + 0.987314i \(0.449244\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 5631.64 0.363035
\(623\) 18518.2 1.19088
\(624\) 0 0
\(625\) 0 0
\(626\) 8818.49 0.563032
\(627\) 0 0
\(628\) 12763.6 0.811025
\(629\) −7964.19 −0.504854
\(630\) 0 0
\(631\) −18164.8 −1.14600 −0.573001 0.819554i \(-0.694221\pi\)
−0.573001 + 0.819554i \(0.694221\pi\)
\(632\) 12561.3 0.790602
\(633\) 0 0
\(634\) −7557.94 −0.473445
\(635\) 0 0
\(636\) 0 0
\(637\) 23399.5 1.45545
\(638\) −124.197 −0.00770688
\(639\) 0 0
\(640\) 0 0
\(641\) −17122.9 −1.05509 −0.527546 0.849526i \(-0.676888\pi\)
−0.527546 + 0.849526i \(0.676888\pi\)
\(642\) 0 0
\(643\) −17652.2 −1.08263 −0.541317 0.840819i \(-0.682074\pi\)
−0.541317 + 0.840819i \(0.682074\pi\)
\(644\) 39178.2 2.39726
\(645\) 0 0
\(646\) −2046.55 −0.124645
\(647\) −6134.20 −0.372736 −0.186368 0.982480i \(-0.559672\pi\)
−0.186368 + 0.982480i \(0.559672\pi\)
\(648\) 0 0
\(649\) −19993.7 −1.20928
\(650\) 0 0
\(651\) 0 0
\(652\) −10320.5 −0.619908
\(653\) 12879.6 0.771850 0.385925 0.922530i \(-0.373882\pi\)
0.385925 + 0.922530i \(0.373882\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 225.045 0.0133941
\(657\) 0 0
\(658\) −7178.95 −0.425326
\(659\) −28522.0 −1.68598 −0.842990 0.537929i \(-0.819207\pi\)
−0.842990 + 0.537929i \(0.819207\pi\)
\(660\) 0 0
\(661\) −3738.93 −0.220011 −0.110006 0.993931i \(-0.535087\pi\)
−0.110006 + 0.993931i \(0.535087\pi\)
\(662\) 2025.67 0.118928
\(663\) 0 0
\(664\) −4312.75 −0.252059
\(665\) 0 0
\(666\) 0 0
\(667\) −779.214 −0.0452343
\(668\) 15892.3 0.920497
\(669\) 0 0
\(670\) 0 0
\(671\) 13977.9 0.804190
\(672\) 0 0
\(673\) 22142.8 1.26827 0.634133 0.773224i \(-0.281357\pi\)
0.634133 + 0.773224i \(0.281357\pi\)
\(674\) 10759.1 0.614876
\(675\) 0 0
\(676\) 8077.98 0.459603
\(677\) 11631.7 0.660329 0.330164 0.943923i \(-0.392896\pi\)
0.330164 + 0.943923i \(0.392896\pi\)
\(678\) 0 0
\(679\) −15625.6 −0.883143
\(680\) 0 0
\(681\) 0 0
\(682\) −7828.46 −0.439541
\(683\) −28361.6 −1.58891 −0.794456 0.607321i \(-0.792244\pi\)
−0.794456 + 0.607321i \(0.792244\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −16784.5 −0.934160
\(687\) 0 0
\(688\) 11501.8 0.637356
\(689\) −18152.6 −1.00371
\(690\) 0 0
\(691\) −8292.49 −0.456529 −0.228264 0.973599i \(-0.573305\pi\)
−0.228264 + 0.973599i \(0.573305\pi\)
\(692\) 9895.05 0.543574
\(693\) 0 0
\(694\) 3697.23 0.202226
\(695\) 0 0
\(696\) 0 0
\(697\) −361.187 −0.0196283
\(698\) −10080.7 −0.546649
\(699\) 0 0
\(700\) 0 0
\(701\) −586.036 −0.0315753 −0.0157876 0.999875i \(-0.505026\pi\)
−0.0157876 + 0.999875i \(0.505026\pi\)
\(702\) 0 0
\(703\) 5610.19 0.300985
\(704\) −574.527 −0.0307575
\(705\) 0 0
\(706\) −12497.6 −0.666224
\(707\) −38934.7 −2.07113
\(708\) 0 0
\(709\) −17673.2 −0.936149 −0.468075 0.883689i \(-0.655052\pi\)
−0.468075 + 0.883689i \(0.655052\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 9899.46 0.521065
\(713\) −49116.1 −2.57982
\(714\) 0 0
\(715\) 0 0
\(716\) −5869.30 −0.306349
\(717\) 0 0
\(718\) −11218.4 −0.583102
\(719\) 2714.68 0.140807 0.0704037 0.997519i \(-0.477571\pi\)
0.0704037 + 0.997519i \(0.477571\pi\)
\(720\) 0 0
\(721\) 49590.4 2.56150
\(722\) −6941.90 −0.357827
\(723\) 0 0
\(724\) 22590.8 1.15964
\(725\) 0 0
\(726\) 0 0
\(727\) −2595.19 −0.132394 −0.0661969 0.997807i \(-0.521087\pi\)
−0.0661969 + 0.997807i \(0.521087\pi\)
\(728\) 18176.5 0.925365
\(729\) 0 0
\(730\) 0 0
\(731\) −18459.8 −0.934007
\(732\) 0 0
\(733\) −8334.71 −0.419986 −0.209993 0.977703i \(-0.567344\pi\)
−0.209993 + 0.977703i \(0.567344\pi\)
\(734\) 782.443 0.0393467
\(735\) 0 0
\(736\) 32494.3 1.62739
\(737\) 11700.1 0.584774
\(738\) 0 0
\(739\) −18970.8 −0.944317 −0.472159 0.881514i \(-0.656525\pi\)
−0.472159 + 0.881514i \(0.656525\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 23807.7 1.17791
\(743\) −15043.1 −0.742770 −0.371385 0.928479i \(-0.621117\pi\)
−0.371385 + 0.928479i \(0.621117\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −5876.54 −0.288412
\(747\) 0 0
\(748\) 7509.94 0.367100
\(749\) −23811.0 −1.16160
\(750\) 0 0
\(751\) 7098.11 0.344892 0.172446 0.985019i \(-0.444833\pi\)
0.172446 + 0.985019i \(0.444833\pi\)
\(752\) 5379.46 0.260863
\(753\) 0 0
\(754\) −162.140 −0.00783130
\(755\) 0 0
\(756\) 0 0
\(757\) −25376.1 −1.21837 −0.609187 0.793027i \(-0.708504\pi\)
−0.609187 + 0.793027i \(0.708504\pi\)
\(758\) 5438.51 0.260601
\(759\) 0 0
\(760\) 0 0
\(761\) 7489.36 0.356753 0.178377 0.983962i \(-0.442915\pi\)
0.178377 + 0.983962i \(0.442915\pi\)
\(762\) 0 0
\(763\) −9363.25 −0.444263
\(764\) −7551.14 −0.357580
\(765\) 0 0
\(766\) −7687.88 −0.362630
\(767\) −26102.1 −1.22880
\(768\) 0 0
\(769\) 35506.8 1.66503 0.832515 0.554002i \(-0.186900\pi\)
0.832515 + 0.554002i \(0.186900\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −13411.4 −0.625244
\(773\) 37535.4 1.74651 0.873257 0.487259i \(-0.162003\pi\)
0.873257 + 0.487259i \(0.162003\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −8353.12 −0.386417
\(777\) 0 0
\(778\) 6906.05 0.318244
\(779\) 254.430 0.0117020
\(780\) 0 0
\(781\) 1256.05 0.0575479
\(782\) −10819.3 −0.494755
\(783\) 0 0
\(784\) 22996.6 1.04759
\(785\) 0 0
\(786\) 0 0
\(787\) 2496.63 0.113082 0.0565408 0.998400i \(-0.481993\pi\)
0.0565408 + 0.998400i \(0.481993\pi\)
\(788\) −4836.97 −0.218668
\(789\) 0 0
\(790\) 0 0
\(791\) 77231.7 3.47161
\(792\) 0 0
\(793\) 18248.4 0.817174
\(794\) −14572.6 −0.651338
\(795\) 0 0
\(796\) −2280.97 −0.101566
\(797\) −31119.0 −1.38305 −0.691526 0.722352i \(-0.743061\pi\)
−0.691526 + 0.722352i \(0.743061\pi\)
\(798\) 0 0
\(799\) −8633.77 −0.382279
\(800\) 0 0
\(801\) 0 0
\(802\) −17164.3 −0.755724
\(803\) 10118.3 0.444667
\(804\) 0 0
\(805\) 0 0
\(806\) −10220.2 −0.446638
\(807\) 0 0
\(808\) −20813.7 −0.906218
\(809\) 26410.8 1.14778 0.573890 0.818932i \(-0.305434\pi\)
0.573890 + 0.818932i \(0.305434\pi\)
\(810\) 0 0
\(811\) 2617.02 0.113312 0.0566559 0.998394i \(-0.481956\pi\)
0.0566559 + 0.998394i \(0.481956\pi\)
\(812\) −926.093 −0.0400240
\(813\) 0 0
\(814\) 4727.24 0.203550
\(815\) 0 0
\(816\) 0 0
\(817\) 13003.6 0.556839
\(818\) 4908.40 0.209802
\(819\) 0 0
\(820\) 0 0
\(821\) −11728.9 −0.498589 −0.249295 0.968428i \(-0.580199\pi\)
−0.249295 + 0.968428i \(0.580199\pi\)
\(822\) 0 0
\(823\) −33171.7 −1.40497 −0.702486 0.711698i \(-0.747926\pi\)
−0.702486 + 0.711698i \(0.747926\pi\)
\(824\) 26510.1 1.12078
\(825\) 0 0
\(826\) 34233.8 1.44206
\(827\) −37989.2 −1.59736 −0.798679 0.601757i \(-0.794468\pi\)
−0.798679 + 0.601757i \(0.794468\pi\)
\(828\) 0 0
\(829\) −9051.33 −0.379211 −0.189605 0.981860i \(-0.560721\pi\)
−0.189605 + 0.981860i \(0.560721\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −750.053 −0.0312541
\(833\) −36908.4 −1.53518
\(834\) 0 0
\(835\) 0 0
\(836\) −5290.21 −0.218858
\(837\) 0 0
\(838\) −19412.0 −0.800209
\(839\) −29458.7 −1.21219 −0.606094 0.795393i \(-0.707265\pi\)
−0.606094 + 0.795393i \(0.707265\pi\)
\(840\) 0 0
\(841\) −24370.6 −0.999245
\(842\) 4158.00 0.170183
\(843\) 0 0
\(844\) −987.185 −0.0402610
\(845\) 0 0
\(846\) 0 0
\(847\) 25553.2 1.03662
\(848\) −17840.0 −0.722440
\(849\) 0 0
\(850\) 0 0
\(851\) 29658.9 1.19471
\(852\) 0 0
\(853\) 10163.5 0.407960 0.203980 0.978975i \(-0.434612\pi\)
0.203980 + 0.978975i \(0.434612\pi\)
\(854\) −23933.4 −0.958997
\(855\) 0 0
\(856\) −12728.9 −0.508254
\(857\) 19520.2 0.778059 0.389030 0.921225i \(-0.372810\pi\)
0.389030 + 0.921225i \(0.372810\pi\)
\(858\) 0 0
\(859\) −23043.9 −0.915308 −0.457654 0.889130i \(-0.651310\pi\)
−0.457654 + 0.889130i \(0.651310\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −7416.61 −0.293052
\(863\) 32489.6 1.28153 0.640764 0.767738i \(-0.278618\pi\)
0.640764 + 0.767738i \(0.278618\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −2895.18 −0.113605
\(867\) 0 0
\(868\) −58374.3 −2.28266
\(869\) −16773.6 −0.654782
\(870\) 0 0
\(871\) 15274.6 0.594215
\(872\) −5005.41 −0.194386
\(873\) 0 0
\(874\) 7621.43 0.294964
\(875\) 0 0
\(876\) 0 0
\(877\) −40252.9 −1.54988 −0.774939 0.632036i \(-0.782220\pi\)
−0.774939 + 0.632036i \(0.782220\pi\)
\(878\) −4560.95 −0.175313
\(879\) 0 0
\(880\) 0 0
\(881\) 49327.8 1.88637 0.943187 0.332263i \(-0.107812\pi\)
0.943187 + 0.332263i \(0.107812\pi\)
\(882\) 0 0
\(883\) −31936.4 −1.21715 −0.608577 0.793495i \(-0.708259\pi\)
−0.608577 + 0.793495i \(0.708259\pi\)
\(884\) 9804.33 0.373026
\(885\) 0 0
\(886\) 19455.5 0.737721
\(887\) −3174.52 −0.120169 −0.0600845 0.998193i \(-0.519137\pi\)
−0.0600845 + 0.998193i \(0.519137\pi\)
\(888\) 0 0
\(889\) 5380.16 0.202975
\(890\) 0 0
\(891\) 0 0
\(892\) −16453.5 −0.617606
\(893\) 6081.86 0.227908
\(894\) 0 0
\(895\) 0 0
\(896\) 48471.0 1.80726
\(897\) 0 0
\(898\) 11108.5 0.412801
\(899\) 1161.00 0.0430719
\(900\) 0 0
\(901\) 28632.4 1.05869
\(902\) 214.387 0.00791386
\(903\) 0 0
\(904\) 41286.5 1.51899
\(905\) 0 0
\(906\) 0 0
\(907\) −27550.1 −1.00858 −0.504292 0.863533i \(-0.668246\pi\)
−0.504292 + 0.863533i \(0.668246\pi\)
\(908\) −31869.2 −1.16478
\(909\) 0 0
\(910\) 0 0
\(911\) −5634.64 −0.204922 −0.102461 0.994737i \(-0.532672\pi\)
−0.102461 + 0.994737i \(0.532672\pi\)
\(912\) 0 0
\(913\) 5759.00 0.208757
\(914\) −14517.9 −0.525394
\(915\) 0 0
\(916\) 18642.0 0.672432
\(917\) 74267.4 2.67451
\(918\) 0 0
\(919\) 8518.91 0.305781 0.152891 0.988243i \(-0.451142\pi\)
0.152891 + 0.988243i \(0.451142\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −8862.87 −0.316576
\(923\) 1639.79 0.0584770
\(924\) 0 0
\(925\) 0 0
\(926\) 2174.15 0.0771567
\(927\) 0 0
\(928\) −768.100 −0.0271704
\(929\) −6640.06 −0.234503 −0.117252 0.993102i \(-0.537408\pi\)
−0.117252 + 0.993102i \(0.537408\pi\)
\(930\) 0 0
\(931\) 25999.3 0.915245
\(932\) 28173.2 0.990176
\(933\) 0 0
\(934\) 6299.32 0.220685
\(935\) 0 0
\(936\) 0 0
\(937\) 44972.1 1.56795 0.783977 0.620789i \(-0.213188\pi\)
0.783977 + 0.620789i \(0.213188\pi\)
\(938\) −20033.2 −0.697343
\(939\) 0 0
\(940\) 0 0
\(941\) −6264.93 −0.217036 −0.108518 0.994094i \(-0.534611\pi\)
−0.108518 + 0.994094i \(0.534611\pi\)
\(942\) 0 0
\(943\) 1345.07 0.0464492
\(944\) −25652.7 −0.884452
\(945\) 0 0
\(946\) 10957.0 0.376579
\(947\) 9672.34 0.331899 0.165950 0.986134i \(-0.446931\pi\)
0.165950 + 0.986134i \(0.446931\pi\)
\(948\) 0 0
\(949\) 13209.6 0.451846
\(950\) 0 0
\(951\) 0 0
\(952\) −28670.1 −0.976054
\(953\) 14173.3 0.481761 0.240880 0.970555i \(-0.422564\pi\)
0.240880 + 0.970555i \(0.422564\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −24464.9 −0.827667
\(957\) 0 0
\(958\) −9594.91 −0.323588
\(959\) −33226.8 −1.11882
\(960\) 0 0
\(961\) 43390.4 1.45649
\(962\) 6171.48 0.206836
\(963\) 0 0
\(964\) 20205.4 0.675074
\(965\) 0 0
\(966\) 0 0
\(967\) 43588.7 1.44955 0.724776 0.688984i \(-0.241943\pi\)
0.724776 + 0.688984i \(0.241943\pi\)
\(968\) 13660.2 0.453571
\(969\) 0 0
\(970\) 0 0
\(971\) 20974.8 0.693216 0.346608 0.938010i \(-0.387333\pi\)
0.346608 + 0.938010i \(0.387333\pi\)
\(972\) 0 0
\(973\) 59486.8 1.95998
\(974\) 10584.2 0.348192
\(975\) 0 0
\(976\) 17934.2 0.588176
\(977\) 8765.10 0.287022 0.143511 0.989649i \(-0.454161\pi\)
0.143511 + 0.989649i \(0.454161\pi\)
\(978\) 0 0
\(979\) −13219.2 −0.431549
\(980\) 0 0
\(981\) 0 0
\(982\) 2433.24 0.0790710
\(983\) 39341.3 1.27649 0.638247 0.769832i \(-0.279660\pi\)
0.638247 + 0.769832i \(0.279660\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 255.747 0.00826028
\(987\) 0 0
\(988\) −6906.44 −0.222392
\(989\) 68744.9 2.21027
\(990\) 0 0
\(991\) 5063.64 0.162313 0.0811563 0.996701i \(-0.474139\pi\)
0.0811563 + 0.996701i \(0.474139\pi\)
\(992\) −48415.5 −1.54959
\(993\) 0 0
\(994\) −2150.64 −0.0686258
\(995\) 0 0
\(996\) 0 0
\(997\) 29030.8 0.922181 0.461090 0.887353i \(-0.347458\pi\)
0.461090 + 0.887353i \(0.347458\pi\)
\(998\) −13765.2 −0.436603
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2025.4.a.bd.1.5 8
3.2 odd 2 2025.4.a.bc.1.4 8
5.2 odd 4 405.4.b.c.244.5 yes 8
5.3 odd 4 405.4.b.c.244.4 yes 8
5.4 even 2 inner 2025.4.a.bd.1.4 8
15.2 even 4 405.4.b.b.244.4 8
15.8 even 4 405.4.b.b.244.5 yes 8
15.14 odd 2 2025.4.a.bc.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.4.b.b.244.4 8 15.2 even 4
405.4.b.b.244.5 yes 8 15.8 even 4
405.4.b.c.244.4 yes 8 5.3 odd 4
405.4.b.c.244.5 yes 8 5.2 odd 4
2025.4.a.bc.1.4 8 3.2 odd 2
2025.4.a.bc.1.5 8 15.14 odd 2
2025.4.a.bd.1.4 8 5.4 even 2 inner
2025.4.a.bd.1.5 8 1.1 even 1 trivial