Properties

Label 405.3.s.a.118.33
Level $405$
Weight $3$
Character 405.118
Analytic conductor $11.035$
Analytic rank $0$
Dimension $408$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(37,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.37"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([28, 9])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.s (of order \(36\), degree \(12\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(408\)
Relative dimension: \(34\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 118.33
Character \(\chi\) \(=\) 405.118
Dual form 405.3.s.a.127.33

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.324599 - 3.71019i) q^{2} +(-9.72089 - 1.71405i) q^{4} +(4.74836 + 1.56622i) q^{5} +(7.47006 + 5.23059i) q^{7} +(-5.65912 + 21.1201i) q^{8} +(7.35227 - 17.1089i) q^{10} +(7.46500 + 2.71704i) q^{11} +(-0.449058 - 5.13275i) q^{13} +(21.8312 - 26.0175i) q^{14} +(39.4204 + 14.3478i) q^{16} +(-7.59419 - 28.3419i) q^{17} +(9.25934 - 5.34588i) q^{19} +(-43.4737 - 23.3640i) q^{20} +(12.5039 - 26.8146i) q^{22} +(23.0026 - 16.1066i) q^{23} +(20.0939 + 14.8739i) q^{25} -19.1892 q^{26} +(-63.6501 - 63.6501i) q^{28} +(19.8626 + 23.6713i) q^{29} +(-3.45942 + 19.6193i) q^{31} +(29.0665 - 62.3334i) q^{32} +(-107.619 + 18.9761i) q^{34} +(27.2783 + 36.5365i) q^{35} +(6.34170 + 23.6675i) q^{37} +(-16.8287 - 36.0892i) q^{38} +(-59.9502 + 91.4226i) q^{40} +(-33.8265 - 28.3838i) q^{41} +(-9.22262 - 19.7780i) q^{43} +(-67.9093 - 39.2075i) q^{44} +(-52.2918 - 90.5720i) q^{46} +(26.5416 + 18.5846i) q^{47} +(11.6837 + 32.1007i) q^{49} +(61.7075 - 69.7242i) q^{50} +(-4.43258 + 50.6646i) q^{52} +(-36.3531 - 36.3531i) q^{53} +(31.1911 + 24.5933i) q^{55} +(-152.745 + 128.168i) q^{56} +(94.2724 - 66.0103i) q^{58} +(-13.3870 - 36.7804i) q^{59} +(1.11435 + 6.31979i) q^{61} +(71.6685 + 19.2035i) q^{62} +(-76.5134 - 44.1751i) q^{64} +(5.90670 - 25.0755i) q^{65} +(53.2028 - 4.65465i) q^{67} +(25.2427 + 288.525i) q^{68} +(144.412 - 89.3480i) q^{70} +(20.4199 - 35.3683i) q^{71} +(-14.7960 + 55.2194i) q^{73} +(89.8695 - 15.8464i) q^{74} +(-99.1722 + 36.0957i) q^{76} +(41.5523 + 59.3428i) q^{77} +(32.7011 + 38.9717i) q^{79} +(164.710 + 129.870i) q^{80} +(-116.289 + 116.289i) q^{82} +(-121.744 - 10.6512i) q^{83} +(8.32953 - 146.472i) q^{85} +(-76.3736 + 27.7977i) q^{86} +(-99.6295 + 142.286i) q^{88} +(-77.2540 + 44.6026i) q^{89} +(23.4928 - 40.6908i) q^{91} +(-251.213 + 117.143i) q^{92} +(77.5677 - 92.4416i) q^{94} +(52.3395 - 10.8821i) q^{95} +(104.160 - 48.5706i) q^{97} +(122.892 - 32.9288i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 408 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 6 q^{8} - 6 q^{10} + 60 q^{11} - 12 q^{13} - 24 q^{16} + 6 q^{17} + 300 q^{20} - 12 q^{22} + 156 q^{23} + 6 q^{25} + 48 q^{26} - 24 q^{28} - 24 q^{31} - 72 q^{32}+ \cdots + 1032 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.324599 3.71019i 0.162300 1.85509i −0.282252 0.959340i \(-0.591082\pi\)
0.444552 0.895753i \(-0.353363\pi\)
\(3\) 0 0
\(4\) −9.72089 1.71405i −2.43022 0.428514i
\(5\) 4.74836 + 1.56622i 0.949673 + 0.313243i
\(6\) 0 0
\(7\) 7.47006 + 5.23059i 1.06715 + 0.747227i 0.968780 0.247923i \(-0.0797478\pi\)
0.0983713 + 0.995150i \(0.468637\pi\)
\(8\) −5.65912 + 21.1201i −0.707390 + 2.64001i
\(9\) 0 0
\(10\) 7.35227 17.1089i 0.735227 1.71089i
\(11\) 7.46500 + 2.71704i 0.678637 + 0.247004i 0.658262 0.752789i \(-0.271292\pi\)
0.0203746 + 0.999792i \(0.493514\pi\)
\(12\) 0 0
\(13\) −0.449058 5.13275i −0.0345429 0.394827i −0.993710 0.111986i \(-0.964279\pi\)
0.959167 0.282841i \(-0.0912768\pi\)
\(14\) 21.8312 26.0175i 1.55937 1.85839i
\(15\) 0 0
\(16\) 39.4204 + 14.3478i 2.46377 + 0.896740i
\(17\) −7.59419 28.3419i −0.446717 1.66717i −0.711363 0.702824i \(-0.751922\pi\)
0.264646 0.964346i \(-0.414745\pi\)
\(18\) 0 0
\(19\) 9.25934 5.34588i 0.487334 0.281362i −0.236134 0.971721i \(-0.575880\pi\)
0.723468 + 0.690358i \(0.242547\pi\)
\(20\) −43.4737 23.3640i −2.17369 1.16820i
\(21\) 0 0
\(22\) 12.5039 26.8146i 0.568357 1.21885i
\(23\) 23.0026 16.1066i 1.00011 0.700286i 0.0457543 0.998953i \(-0.485431\pi\)
0.954357 + 0.298667i \(0.0965420\pi\)
\(24\) 0 0
\(25\) 20.0939 + 14.8739i 0.803758 + 0.594957i
\(26\) −19.1892 −0.738047
\(27\) 0 0
\(28\) −63.6501 63.6501i −2.27322 2.27322i
\(29\) 19.8626 + 23.6713i 0.684917 + 0.816253i 0.990731 0.135839i \(-0.0433729\pi\)
−0.305814 + 0.952091i \(0.598928\pi\)
\(30\) 0 0
\(31\) −3.45942 + 19.6193i −0.111594 + 0.632882i 0.876786 + 0.480880i \(0.159683\pi\)
−0.988380 + 0.152001i \(0.951428\pi\)
\(32\) 29.0665 62.3334i 0.908329 1.94792i
\(33\) 0 0
\(34\) −107.619 + 18.9761i −3.16526 + 0.558120i
\(35\) 27.2783 + 36.5365i 0.779381 + 1.04390i
\(36\) 0 0
\(37\) 6.34170 + 23.6675i 0.171397 + 0.639663i 0.997137 + 0.0756123i \(0.0240911\pi\)
−0.825740 + 0.564051i \(0.809242\pi\)
\(38\) −16.8287 36.0892i −0.442859 0.949715i
\(39\) 0 0
\(40\) −59.9502 + 91.4226i −1.49875 + 2.28557i
\(41\) −33.8265 28.3838i −0.825035 0.692287i 0.129110 0.991630i \(-0.458788\pi\)
−0.954145 + 0.299343i \(0.903232\pi\)
\(42\) 0 0
\(43\) −9.22262 19.7780i −0.214480 0.459953i 0.769404 0.638762i \(-0.220553\pi\)
−0.983884 + 0.178809i \(0.942775\pi\)
\(44\) −67.9093 39.2075i −1.54339 0.891079i
\(45\) 0 0
\(46\) −52.2918 90.5720i −1.13678 1.96896i
\(47\) 26.5416 + 18.5846i 0.564714 + 0.395417i 0.820782 0.571242i \(-0.193538\pi\)
−0.256068 + 0.966659i \(0.582427\pi\)
\(48\) 0 0
\(49\) 11.6837 + 32.1007i 0.238443 + 0.655116i
\(50\) 61.7075 69.7242i 1.23415 1.39448i
\(51\) 0 0
\(52\) −4.43258 + 50.6646i −0.0852419 + 0.974320i
\(53\) −36.3531 36.3531i −0.685908 0.685908i 0.275417 0.961325i \(-0.411184\pi\)
−0.961325 + 0.275417i \(0.911184\pi\)
\(54\) 0 0
\(55\) 31.1911 + 24.5933i 0.567111 + 0.447151i
\(56\) −152.745 + 128.168i −2.72758 + 2.28871i
\(57\) 0 0
\(58\) 94.2724 66.0103i 1.62539 1.13811i
\(59\) −13.3870 36.7804i −0.226898 0.623396i 0.773042 0.634354i \(-0.218734\pi\)
−0.999940 + 0.0109585i \(0.996512\pi\)
\(60\) 0 0
\(61\) 1.11435 + 6.31979i 0.0182680 + 0.103603i 0.992578 0.121606i \(-0.0388045\pi\)
−0.974310 + 0.225209i \(0.927693\pi\)
\(62\) 71.6685 + 19.2035i 1.15594 + 0.309734i
\(63\) 0 0
\(64\) −76.5134 44.1751i −1.19552 0.690235i
\(65\) 5.90670 25.0755i 0.0908724 0.385777i
\(66\) 0 0
\(67\) 53.2028 4.65465i 0.794072 0.0694723i 0.317102 0.948392i \(-0.397290\pi\)
0.476971 + 0.878919i \(0.341735\pi\)
\(68\) 25.2427 + 288.525i 0.371216 + 4.24302i
\(69\) 0 0
\(70\) 144.412 89.3480i 2.06302 1.27640i
\(71\) 20.4199 35.3683i 0.287604 0.498145i −0.685633 0.727947i \(-0.740475\pi\)
0.973237 + 0.229802i \(0.0738079\pi\)
\(72\) 0 0
\(73\) −14.7960 + 55.2194i −0.202685 + 0.756430i 0.787458 + 0.616368i \(0.211397\pi\)
−0.990143 + 0.140062i \(0.955270\pi\)
\(74\) 89.8695 15.8464i 1.21445 0.214141i
\(75\) 0 0
\(76\) −99.1722 + 36.0957i −1.30490 + 0.474944i
\(77\) 41.5523 + 59.3428i 0.539640 + 0.770686i
\(78\) 0 0
\(79\) 32.7011 + 38.9717i 0.413938 + 0.493312i 0.932217 0.361899i \(-0.117872\pi\)
−0.518279 + 0.855212i \(0.673427\pi\)
\(80\) 164.710 + 129.870i 2.05888 + 1.62337i
\(81\) 0 0
\(82\) −116.289 + 116.289i −1.41816 + 1.41816i
\(83\) −121.744 10.6512i −1.46679 0.128328i −0.674412 0.738355i \(-0.735603\pi\)
−0.792380 + 0.610028i \(0.791158\pi\)
\(84\) 0 0
\(85\) 8.32953 146.472i 0.0979945 1.72320i
\(86\) −76.3736 + 27.7977i −0.888065 + 0.323229i
\(87\) 0 0
\(88\) −99.6295 + 142.286i −1.13215 + 1.61688i
\(89\) −77.2540 + 44.6026i −0.868022 + 0.501153i −0.866691 0.498846i \(-0.833757\pi\)
−0.00133173 + 0.999999i \(0.500424\pi\)
\(90\) 0 0
\(91\) 23.4928 40.6908i 0.258163 0.447152i
\(92\) −251.213 + 117.143i −2.73058 + 1.27329i
\(93\) 0 0
\(94\) 77.5677 92.4416i 0.825188 0.983421i
\(95\) 52.3395 10.8821i 0.550943 0.114548i
\(96\) 0 0
\(97\) 104.160 48.5706i 1.07381 0.500728i 0.196431 0.980518i \(-0.437065\pi\)
0.877383 + 0.479790i \(0.159287\pi\)
\(98\) 122.892 32.9288i 1.25400 0.336009i
\(99\) 0 0
\(100\) −169.836 179.030i −1.69836 1.79030i
\(101\) −9.98220 56.6119i −0.0988336 0.560513i −0.993505 0.113788i \(-0.963701\pi\)
0.894671 0.446725i \(-0.147410\pi\)
\(102\) 0 0
\(103\) 79.5607 + 37.0998i 0.772434 + 0.360192i 0.768541 0.639801i \(-0.220983\pi\)
0.00389284 + 0.999992i \(0.498761\pi\)
\(104\) 110.946 + 19.5627i 1.06678 + 0.188103i
\(105\) 0 0
\(106\) −146.677 + 123.077i −1.38375 + 1.16110i
\(107\) −66.6047 + 66.6047i −0.622474 + 0.622474i −0.946163 0.323690i \(-0.895077\pi\)
0.323690 + 0.946163i \(0.395077\pi\)
\(108\) 0 0
\(109\) 66.6182i 0.611176i 0.952164 + 0.305588i \(0.0988530\pi\)
−0.952164 + 0.305588i \(0.901147\pi\)
\(110\) 101.370 107.742i 0.921548 0.979471i
\(111\) 0 0
\(112\) 219.425 + 313.371i 1.95915 + 2.79795i
\(113\) 84.0689 + 39.2020i 0.743972 + 0.346920i 0.757366 0.652990i \(-0.226486\pi\)
−0.0133940 + 0.999910i \(0.504264\pi\)
\(114\) 0 0
\(115\) 134.451 40.4529i 1.16914 0.351764i
\(116\) −152.508 264.152i −1.31473 2.27717i
\(117\) 0 0
\(118\) −140.807 + 37.7292i −1.19328 + 0.319739i
\(119\) 91.5158 251.438i 0.769040 2.11292i
\(120\) 0 0
\(121\) −44.3474 37.2119i −0.366508 0.307536i
\(122\) 23.8093 2.08305i 0.195158 0.0170742i
\(123\) 0 0
\(124\) 67.2572 184.788i 0.542397 1.49022i
\(125\) 72.1176 + 102.098i 0.576941 + 0.816786i
\(126\) 0 0
\(127\) −59.4764 15.9367i −0.468318 0.125486i 0.0169396 0.999857i \(-0.494608\pi\)
−0.485258 + 0.874371i \(0.661274\pi\)
\(128\) −30.9378 + 44.1838i −0.241702 + 0.345186i
\(129\) 0 0
\(130\) −91.1175 30.0545i −0.700904 0.231188i
\(131\) 6.70011 37.9982i 0.0511459 0.290063i −0.948497 0.316786i \(-0.897396\pi\)
0.999643 + 0.0267234i \(0.00850732\pi\)
\(132\) 0 0
\(133\) 97.1300 + 8.49777i 0.730300 + 0.0638930i
\(134\) 198.903i 1.48435i
\(135\) 0 0
\(136\) 641.560 4.71736
\(137\) 2.62347 29.9863i 0.0191494 0.218878i −0.980590 0.196067i \(-0.937183\pi\)
0.999740 0.0228110i \(-0.00726160\pi\)
\(138\) 0 0
\(139\) −255.255 45.0084i −1.83637 0.323802i −0.855401 0.517966i \(-0.826689\pi\)
−0.980969 + 0.194165i \(0.937800\pi\)
\(140\) −202.544 401.924i −1.44674 2.87088i
\(141\) 0 0
\(142\) −124.595 87.2421i −0.877427 0.614381i
\(143\) 10.5937 39.5361i 0.0740816 0.276476i
\(144\) 0 0
\(145\) 57.2405 + 143.509i 0.394762 + 0.989719i
\(146\) 200.071 + 72.8200i 1.37035 + 0.498767i
\(147\) 0 0
\(148\) −21.0795 240.939i −0.142429 1.62797i
\(149\) −168.712 + 201.064i −1.13230 + 1.34942i −0.203395 + 0.979097i \(0.565198\pi\)
−0.928903 + 0.370324i \(0.879247\pi\)
\(150\) 0 0
\(151\) −5.52161 2.00970i −0.0365669 0.0133093i 0.323672 0.946169i \(-0.395083\pi\)
−0.360239 + 0.932860i \(0.617305\pi\)
\(152\) 60.5060 + 225.811i 0.398066 + 1.48560i
\(153\) 0 0
\(154\) 233.661 134.904i 1.51728 0.876001i
\(155\) −47.1547 + 87.7415i −0.304224 + 0.566075i
\(156\) 0 0
\(157\) 21.3774 45.8440i 0.136162 0.292000i −0.826390 0.563099i \(-0.809609\pi\)
0.962552 + 0.271098i \(0.0873869\pi\)
\(158\) 155.207 108.677i 0.982322 0.687830i
\(159\) 0 0
\(160\) 235.646 250.457i 1.47279 1.56536i
\(161\) 256.077 1.59054
\(162\) 0 0
\(163\) 19.6350 + 19.6350i 0.120460 + 0.120460i 0.764767 0.644307i \(-0.222854\pi\)
−0.644307 + 0.764767i \(0.722854\pi\)
\(164\) 280.172 + 333.896i 1.70837 + 2.03595i
\(165\) 0 0
\(166\) −79.0359 + 448.235i −0.476120 + 2.70021i
\(167\) −102.754 + 220.357i −0.615294 + 1.31950i 0.313740 + 0.949509i \(0.398418\pi\)
−0.929034 + 0.369993i \(0.879360\pi\)
\(168\) 0 0
\(169\) 140.289 24.7367i 0.830113 0.146371i
\(170\) −540.734 78.4487i −3.18079 0.461463i
\(171\) 0 0
\(172\) 55.7515 + 208.068i 0.324137 + 1.20970i
\(173\) 95.0822 + 203.904i 0.549608 + 1.17864i 0.963351 + 0.268244i \(0.0864435\pi\)
−0.413743 + 0.910394i \(0.635779\pi\)
\(174\) 0 0
\(175\) 72.3035 + 216.212i 0.413163 + 1.23550i
\(176\) 255.289 + 214.213i 1.45051 + 1.21712i
\(177\) 0 0
\(178\) 140.407 + 301.105i 0.788806 + 1.69160i
\(179\) −245.990 142.022i −1.37424 0.793420i −0.382785 0.923837i \(-0.625035\pi\)
−0.991459 + 0.130417i \(0.958368\pi\)
\(180\) 0 0
\(181\) 46.2375 + 80.0858i 0.255456 + 0.442463i 0.965019 0.262179i \(-0.0844411\pi\)
−0.709563 + 0.704642i \(0.751108\pi\)
\(182\) −143.345 100.371i −0.787608 0.551489i
\(183\) 0 0
\(184\) 209.998 + 576.966i 1.14130 + 3.13568i
\(185\) −6.95576 + 122.315i −0.0375987 + 0.661160i
\(186\) 0 0
\(187\) 20.3154 232.206i 0.108638 1.24174i
\(188\) −226.152 226.152i −1.20294 1.20294i
\(189\) 0 0
\(190\) −23.3852 197.722i −0.123080 1.04064i
\(191\) −54.9994 + 46.1500i −0.287955 + 0.241623i −0.775310 0.631581i \(-0.782406\pi\)
0.487355 + 0.873204i \(0.337962\pi\)
\(192\) 0 0
\(193\) −137.740 + 96.4463i −0.713677 + 0.499722i −0.873132 0.487483i \(-0.837915\pi\)
0.159455 + 0.987205i \(0.449026\pi\)
\(194\) −146.396 402.219i −0.754617 2.07329i
\(195\) 0 0
\(196\) −58.5536 332.074i −0.298743 1.69425i
\(197\) 223.435 + 59.8693i 1.13419 + 0.303905i 0.776613 0.629979i \(-0.216936\pi\)
0.357577 + 0.933884i \(0.383603\pi\)
\(198\) 0 0
\(199\) −243.210 140.417i −1.22216 0.705615i −0.256783 0.966469i \(-0.582663\pi\)
−0.965378 + 0.260854i \(0.915996\pi\)
\(200\) −427.853 + 340.213i −2.13926 + 1.70106i
\(201\) 0 0
\(202\) −213.281 + 18.6596i −1.05585 + 0.0923745i
\(203\) 24.5598 + 280.719i 0.120984 + 1.38285i
\(204\) 0 0
\(205\) −116.165 187.756i −0.566660 0.915883i
\(206\) 163.472 283.142i 0.793555 1.37448i
\(207\) 0 0
\(208\) 55.9419 208.778i 0.268951 1.00374i
\(209\) 83.6460 14.7490i 0.400220 0.0705696i
\(210\) 0 0
\(211\) −38.1041 + 13.8688i −0.180588 + 0.0657287i −0.430732 0.902480i \(-0.641744\pi\)
0.250143 + 0.968209i \(0.419522\pi\)
\(212\) 291.073 + 415.696i 1.37299 + 1.96083i
\(213\) 0 0
\(214\) 225.496 + 268.736i 1.05372 + 1.25577i
\(215\) −12.8158 108.358i −0.0596084 0.503989i
\(216\) 0 0
\(217\) −128.463 + 128.463i −0.591994 + 0.591994i
\(218\) 247.166 + 21.6242i 1.13379 + 0.0991936i
\(219\) 0 0
\(220\) −261.051 292.532i −1.18659 1.32969i
\(221\) −142.062 + 51.7062i −0.642813 + 0.233965i
\(222\) 0 0
\(223\) −74.9224 + 107.000i −0.335975 + 0.479822i −0.951220 0.308514i \(-0.900168\pi\)
0.615245 + 0.788336i \(0.289057\pi\)
\(224\) 543.169 313.599i 2.42486 1.39999i
\(225\) 0 0
\(226\) 172.735 299.186i 0.764315 1.32383i
\(227\) 398.011 185.596i 1.75335 0.817602i 0.769496 0.638652i \(-0.220507\pi\)
0.983858 0.178951i \(-0.0572703\pi\)
\(228\) 0 0
\(229\) 27.3680 32.6159i 0.119511 0.142428i −0.702972 0.711218i \(-0.748144\pi\)
0.822483 + 0.568790i \(0.192588\pi\)
\(230\) −106.445 511.969i −0.462805 2.22595i
\(231\) 0 0
\(232\) −612.346 + 285.542i −2.63942 + 1.23078i
\(233\) −154.074 + 41.2840i −0.661263 + 0.177185i −0.573816 0.818984i \(-0.694537\pi\)
−0.0874468 + 0.996169i \(0.527871\pi\)
\(234\) 0 0
\(235\) 96.9215 + 129.816i 0.412432 + 0.552409i
\(236\) 67.0895 + 380.484i 0.284278 + 1.61222i
\(237\) 0 0
\(238\) −903.175 421.157i −3.79485 1.76957i
\(239\) 186.365 + 32.8613i 0.779772 + 0.137495i 0.549346 0.835595i \(-0.314877\pi\)
0.230426 + 0.973090i \(0.425988\pi\)
\(240\) 0 0
\(241\) −78.8923 + 66.1985i −0.327354 + 0.274683i −0.791621 0.611013i \(-0.790762\pi\)
0.464267 + 0.885695i \(0.346318\pi\)
\(242\) −152.458 + 152.458i −0.629993 + 0.629993i
\(243\) 0 0
\(244\) 63.3441i 0.259607i
\(245\) 5.20186 + 170.725i 0.0212321 + 0.696837i
\(246\) 0 0
\(247\) −31.5971 45.1253i −0.127923 0.182694i
\(248\) −394.785 184.091i −1.59188 0.742304i
\(249\) 0 0
\(250\) 402.213 234.429i 1.60885 0.937715i
\(251\) −239.077 414.094i −0.952500 1.64978i −0.739989 0.672619i \(-0.765169\pi\)
−0.212510 0.977159i \(-0.568164\pi\)
\(252\) 0 0
\(253\) 215.476 57.7367i 0.851685 0.228208i
\(254\) −78.4340 + 215.496i −0.308795 + 0.848408i
\(255\) 0 0
\(256\) −116.833 98.0342i −0.456377 0.382946i
\(257\) −141.631 + 12.3911i −0.551095 + 0.0482146i −0.359303 0.933221i \(-0.616986\pi\)
−0.191792 + 0.981436i \(0.561430\pi\)
\(258\) 0 0
\(259\) −76.4223 + 209.969i −0.295067 + 0.810690i
\(260\) −100.399 + 233.632i −0.386151 + 0.898584i
\(261\) 0 0
\(262\) −138.806 37.1929i −0.529793 0.141958i
\(263\) −149.199 + 213.078i −0.567295 + 0.810181i −0.995625 0.0934412i \(-0.970213\pi\)
0.428330 + 0.903623i \(0.359102\pi\)
\(264\) 0 0
\(265\) −115.681 229.555i −0.436532 0.866244i
\(266\) 63.0566 357.612i 0.237055 1.34441i
\(267\) 0 0
\(268\) −525.157 45.9453i −1.95954 0.171438i
\(269\) 487.371i 1.81179i 0.423503 + 0.905895i \(0.360800\pi\)
−0.423503 + 0.905895i \(0.639200\pi\)
\(270\) 0 0
\(271\) −283.160 −1.04487 −0.522435 0.852679i \(-0.674976\pi\)
−0.522435 + 0.852679i \(0.674976\pi\)
\(272\) 107.279 1226.21i 0.394409 4.50812i
\(273\) 0 0
\(274\) −110.403 19.4671i −0.402932 0.0710478i
\(275\) 109.588 + 165.630i 0.398503 + 0.602290i
\(276\) 0 0
\(277\) 362.475 + 253.808i 1.30858 + 0.916274i 0.999397 0.0347295i \(-0.0110570\pi\)
0.309179 + 0.951004i \(0.399946\pi\)
\(278\) −249.845 + 932.436i −0.898724 + 3.35408i
\(279\) 0 0
\(280\) −926.026 + 369.357i −3.30723 + 1.31913i
\(281\) −28.6840 10.4401i −0.102078 0.0371534i 0.290476 0.956882i \(-0.406186\pi\)
−0.392554 + 0.919729i \(0.628409\pi\)
\(282\) 0 0
\(283\) 21.1770 + 242.054i 0.0748304 + 0.855315i 0.937145 + 0.348941i \(0.113459\pi\)
−0.862314 + 0.506374i \(0.830986\pi\)
\(284\) −259.123 + 308.810i −0.912404 + 1.08736i
\(285\) 0 0
\(286\) −143.248 52.1379i −0.500866 0.182300i
\(287\) −104.222 388.961i −0.363142 1.35526i
\(288\) 0 0
\(289\) −495.310 + 285.967i −1.71387 + 0.989506i
\(290\) 551.026 165.790i 1.90009 0.571689i
\(291\) 0 0
\(292\) 238.479 511.420i 0.816710 1.75144i
\(293\) −162.267 + 113.621i −0.553812 + 0.387784i −0.816717 0.577038i \(-0.804208\pi\)
0.262905 + 0.964822i \(0.415320\pi\)
\(294\) 0 0
\(295\) −5.96019 195.613i −0.0202040 0.663096i
\(296\) −535.749 −1.80996
\(297\) 0 0
\(298\) 691.220 + 691.220i 2.31953 + 2.31953i
\(299\) −93.0005 110.834i −0.311039 0.370681i
\(300\) 0 0
\(301\) 34.5570 195.982i 0.114807 0.651104i
\(302\) −9.24868 + 19.8338i −0.0306248 + 0.0656750i
\(303\) 0 0
\(304\) 441.708 77.8851i 1.45299 0.256201i
\(305\) −4.60682 + 31.7540i −0.0151043 + 0.104111i
\(306\) 0 0
\(307\) 3.58859 + 13.3928i 0.0116892 + 0.0436247i 0.971524 0.236941i \(-0.0761447\pi\)
−0.959835 + 0.280565i \(0.909478\pi\)
\(308\) −302.208 648.088i −0.981196 2.10418i
\(309\) 0 0
\(310\) 310.231 + 203.433i 1.00075 + 0.656237i
\(311\) 191.095 + 160.348i 0.614455 + 0.515589i 0.896055 0.443943i \(-0.146421\pi\)
−0.281600 + 0.959532i \(0.590865\pi\)
\(312\) 0 0
\(313\) −146.255 313.644i −0.467267 1.00206i −0.988858 0.148861i \(-0.952439\pi\)
0.521591 0.853195i \(-0.325339\pi\)
\(314\) −163.151 94.1952i −0.519589 0.299985i
\(315\) 0 0
\(316\) −251.084 434.891i −0.794571 1.37624i
\(317\) −240.194 168.186i −0.757710 0.530554i 0.129690 0.991555i \(-0.458602\pi\)
−0.887400 + 0.461000i \(0.847491\pi\)
\(318\) 0 0
\(319\) 83.9585 + 230.674i 0.263193 + 0.723116i
\(320\) −294.126 329.596i −0.919144 1.02999i
\(321\) 0 0
\(322\) 83.1225 950.095i 0.258145 2.95061i
\(323\) −221.830 221.830i −0.686779 0.686779i
\(324\) 0 0
\(325\) 67.3208 109.816i 0.207141 0.337897i
\(326\) 79.2232 66.4761i 0.243016 0.203915i
\(327\) 0 0
\(328\) 790.896 553.791i 2.41127 1.68839i
\(329\) 101.059 + 277.656i 0.307169 + 0.843939i
\(330\) 0 0
\(331\) −17.8707 101.350i −0.0539900 0.306193i 0.945840 0.324633i \(-0.105241\pi\)
−0.999830 + 0.0184407i \(0.994130\pi\)
\(332\) 1165.20 + 312.215i 3.50964 + 0.940405i
\(333\) 0 0
\(334\) 784.211 + 452.765i 2.34794 + 1.35558i
\(335\) 259.917 + 61.2251i 0.775871 + 0.182762i
\(336\) 0 0
\(337\) 545.773 47.7489i 1.61950 0.141688i 0.758986 0.651107i \(-0.225695\pi\)
0.860519 + 0.509419i \(0.170140\pi\)
\(338\) −46.2402 528.528i −0.136805 1.56369i
\(339\) 0 0
\(340\) −332.031 + 1409.56i −0.976562 + 4.14576i
\(341\) −79.1310 + 137.059i −0.232056 + 0.401932i
\(342\) 0 0
\(343\) 35.0239 130.711i 0.102111 0.381082i
\(344\) 469.905 82.8569i 1.36600 0.240863i
\(345\) 0 0
\(346\) 787.387 286.585i 2.27568 0.828282i
\(347\) −146.016 208.532i −0.420795 0.600957i 0.551654 0.834073i \(-0.313997\pi\)
−0.972449 + 0.233116i \(0.925108\pi\)
\(348\) 0 0
\(349\) −247.270 294.685i −0.708511 0.844371i 0.284950 0.958542i \(-0.408023\pi\)
−0.993461 + 0.114172i \(0.963579\pi\)
\(350\) 825.657 198.077i 2.35902 0.565935i
\(351\) 0 0
\(352\) 386.344 386.344i 1.09757 1.09757i
\(353\) −444.615 38.8987i −1.25953 0.110195i −0.562235 0.826977i \(-0.690058\pi\)
−0.697297 + 0.716783i \(0.745614\pi\)
\(354\) 0 0
\(355\) 152.355 135.960i 0.429170 0.382985i
\(356\) 827.429 301.159i 2.32424 0.845953i
\(357\) 0 0
\(358\) −606.777 + 866.568i −1.69491 + 2.42058i
\(359\) 142.071 82.0247i 0.395741 0.228481i −0.288904 0.957358i \(-0.593291\pi\)
0.684645 + 0.728877i \(0.259957\pi\)
\(360\) 0 0
\(361\) −123.343 + 213.636i −0.341671 + 0.591791i
\(362\) 312.142 145.554i 0.862270 0.402083i
\(363\) 0 0
\(364\) −298.118 + 355.283i −0.819004 + 0.976051i
\(365\) −156.742 + 239.028i −0.429431 + 0.654871i
\(366\) 0 0
\(367\) 167.015 77.8802i 0.455081 0.212208i −0.181542 0.983383i \(-0.558109\pi\)
0.636622 + 0.771176i \(0.280331\pi\)
\(368\) 1137.86 304.890i 3.09202 0.828505i
\(369\) 0 0
\(370\) 451.552 + 65.5104i 1.22041 + 0.177055i
\(371\) −81.4116 461.708i −0.219438 1.24450i
\(372\) 0 0
\(373\) 498.225 + 232.326i 1.33572 + 0.622859i 0.953551 0.301232i \(-0.0973977\pi\)
0.382174 + 0.924090i \(0.375176\pi\)
\(374\) −854.933 150.748i −2.28592 0.403069i
\(375\) 0 0
\(376\) −542.710 + 455.388i −1.44338 + 1.21114i
\(377\) 112.580 112.580i 0.298620 0.298620i
\(378\) 0 0
\(379\) 205.714i 0.542780i 0.962469 + 0.271390i \(0.0874833\pi\)
−0.962469 + 0.271390i \(0.912517\pi\)
\(380\) −527.439 + 16.0707i −1.38800 + 0.0422913i
\(381\) 0 0
\(382\) 153.372 + 219.038i 0.401498 + 0.573399i
\(383\) 149.033 + 69.4952i 0.389120 + 0.181450i 0.607325 0.794453i \(-0.292243\pi\)
−0.218205 + 0.975903i \(0.570020\pi\)
\(384\) 0 0
\(385\) 104.362 + 346.861i 0.271070 + 0.900938i
\(386\) 313.124 + 542.346i 0.811201 + 1.40504i
\(387\) 0 0
\(388\) −1095.78 + 293.613i −2.82417 + 0.756735i
\(389\) −86.4883 + 237.625i −0.222335 + 0.610860i −0.999838 0.0180194i \(-0.994264\pi\)
0.777503 + 0.628880i \(0.216486\pi\)
\(390\) 0 0
\(391\) −631.177 529.620i −1.61426 1.35453i
\(392\) −744.090 + 65.0994i −1.89819 + 0.166070i
\(393\) 0 0
\(394\) 294.653 809.553i 0.747851 2.05470i
\(395\) 94.2388 + 236.269i 0.238579 + 0.598149i
\(396\) 0 0
\(397\) 92.8533 + 24.8800i 0.233887 + 0.0626699i 0.373859 0.927486i \(-0.378034\pi\)
−0.139972 + 0.990156i \(0.544701\pi\)
\(398\) −599.921 + 856.776i −1.50734 + 2.15270i
\(399\) 0 0
\(400\) 578.702 + 874.640i 1.44675 + 2.18660i
\(401\) 12.1246 68.7622i 0.0302360 0.171477i −0.965950 0.258727i \(-0.916697\pi\)
0.996186 + 0.0872504i \(0.0278080\pi\)
\(402\) 0 0
\(403\) 102.255 + 8.94612i 0.253734 + 0.0221988i
\(404\) 567.428i 1.40452i
\(405\) 0 0
\(406\) 1049.49 2.58496
\(407\) −16.9648 + 193.909i −0.0416826 + 0.476434i
\(408\) 0 0
\(409\) 160.227 + 28.2524i 0.391754 + 0.0690767i 0.366056 0.930593i \(-0.380708\pi\)
0.0256981 + 0.999670i \(0.491819\pi\)
\(410\) −734.317 + 370.049i −1.79102 + 0.902559i
\(411\) 0 0
\(412\) −709.809 497.014i −1.72284 1.20634i
\(413\) 92.3817 344.773i 0.223684 0.834802i
\(414\) 0 0
\(415\) −561.402 241.253i −1.35278 0.581332i
\(416\) −332.994 121.200i −0.800467 0.291346i
\(417\) 0 0
\(418\) −27.5703 315.130i −0.0659576 0.753899i
\(419\) 211.108 251.589i 0.503839 0.600451i −0.452842 0.891591i \(-0.649590\pi\)
0.956681 + 0.291139i \(0.0940343\pi\)
\(420\) 0 0
\(421\) 152.668 + 55.5665i 0.362631 + 0.131987i 0.516909 0.856041i \(-0.327083\pi\)
−0.154277 + 0.988028i \(0.549305\pi\)
\(422\) 39.0871 + 145.875i 0.0926235 + 0.345675i
\(423\) 0 0
\(424\) 973.508 562.055i 2.29601 1.32560i
\(425\) 268.958 682.456i 0.632842 1.60578i
\(426\) 0 0
\(427\) −24.7320 + 53.0379i −0.0579204 + 0.124211i
\(428\) 761.621 533.293i 1.77949 1.24601i
\(429\) 0 0
\(430\) −406.187 + 12.3762i −0.944621 + 0.0287819i
\(431\) −94.7520 −0.219842 −0.109921 0.993940i \(-0.535060\pi\)
−0.109921 + 0.993940i \(0.535060\pi\)
\(432\) 0 0
\(433\) −341.222 341.222i −0.788042 0.788042i 0.193131 0.981173i \(-0.438136\pi\)
−0.981173 + 0.193131i \(0.938136\pi\)
\(434\) 434.922 + 518.320i 1.00212 + 1.19428i
\(435\) 0 0
\(436\) 114.187 647.588i 0.261897 1.48529i
\(437\) 126.885 272.105i 0.290354 0.622667i
\(438\) 0 0
\(439\) 256.791 45.2792i 0.584946 0.103142i 0.126659 0.991946i \(-0.459574\pi\)
0.458287 + 0.888804i \(0.348463\pi\)
\(440\) −695.927 + 519.583i −1.58165 + 1.18087i
\(441\) 0 0
\(442\) 145.727 + 543.859i 0.329698 + 1.23045i
\(443\) −267.576 573.819i −0.604009 1.29530i −0.935994 0.352017i \(-0.885496\pi\)
0.331984 0.943285i \(-0.392282\pi\)
\(444\) 0 0
\(445\) −436.687 + 90.7931i −0.981320 + 0.204029i
\(446\) 372.671 + 312.708i 0.835585 + 0.701139i
\(447\) 0 0
\(448\) −340.498 730.201i −0.760041 1.62991i
\(449\) −75.4227 43.5453i −0.167979 0.0969828i 0.413653 0.910434i \(-0.364253\pi\)
−0.581633 + 0.813452i \(0.697586\pi\)
\(450\) 0 0
\(451\) −175.395 303.793i −0.388902 0.673598i
\(452\) −750.030 525.177i −1.65936 1.16189i
\(453\) 0 0
\(454\) −559.401 1536.94i −1.23216 3.38533i
\(455\) 175.283 156.420i 0.385238 0.343780i
\(456\) 0 0
\(457\) −61.4885 + 702.817i −0.134548 + 1.53789i 0.566071 + 0.824357i \(0.308463\pi\)
−0.700619 + 0.713536i \(0.747093\pi\)
\(458\) −112.128 112.128i −0.244820 0.244820i
\(459\) 0 0
\(460\) −1376.32 + 162.782i −2.99200 + 0.353874i
\(461\) −290.221 + 243.525i −0.629547 + 0.528253i −0.900788 0.434258i \(-0.857010\pi\)
0.271241 + 0.962512i \(0.412566\pi\)
\(462\) 0 0
\(463\) −472.637 + 330.944i −1.02081 + 0.714782i −0.959029 0.283307i \(-0.908568\pi\)
−0.0617857 + 0.998089i \(0.519680\pi\)
\(464\) 443.359 + 1218.12i 0.955514 + 2.62525i
\(465\) 0 0
\(466\) 103.159 + 585.045i 0.221372 + 1.25546i
\(467\) −476.253 127.612i −1.01981 0.273258i −0.290089 0.957000i \(-0.593685\pi\)
−0.729724 + 0.683741i \(0.760352\pi\)
\(468\) 0 0
\(469\) 421.775 + 243.512i 0.899307 + 0.519215i
\(470\) 513.103 317.459i 1.09171 0.675444i
\(471\) 0 0
\(472\) 852.564 74.5897i 1.80628 0.158029i
\(473\) −15.1094 172.701i −0.0319437 0.365118i
\(474\) 0 0
\(475\) 265.571 + 30.3029i 0.559097 + 0.0637955i
\(476\) −1320.59 + 2287.33i −2.77436 + 4.80532i
\(477\) 0 0
\(478\) 182.415 680.784i 0.381622 1.42423i
\(479\) −306.170 + 53.9861i −0.639186 + 0.112706i −0.483843 0.875155i \(-0.660759\pi\)
−0.155343 + 0.987861i \(0.549648\pi\)
\(480\) 0 0
\(481\) 118.632 43.1784i 0.246636 0.0897681i
\(482\) 220.000 + 314.193i 0.456432 + 0.651853i
\(483\) 0 0
\(484\) 367.313 + 437.747i 0.758911 + 0.904435i
\(485\) 570.661 67.4939i 1.17662 0.139163i
\(486\) 0 0
\(487\) 72.4558 72.4558i 0.148780 0.148780i −0.628793 0.777573i \(-0.716451\pi\)
0.777573 + 0.628793i \(0.216451\pi\)
\(488\) −139.781 12.2293i −0.286436 0.0250599i
\(489\) 0 0
\(490\) 635.110 + 36.1173i 1.29614 + 0.0737088i
\(491\) 401.682 146.200i 0.818089 0.297760i 0.101128 0.994873i \(-0.467755\pi\)
0.716961 + 0.697113i \(0.245533\pi\)
\(492\) 0 0
\(493\) 520.050 742.708i 1.05487 1.50651i
\(494\) −177.680 + 102.583i −0.359675 + 0.207659i
\(495\) 0 0
\(496\) −417.866 + 723.766i −0.842473 + 1.45921i
\(497\) 337.535 157.395i 0.679145 0.316690i
\(498\) 0 0
\(499\) −322.082 + 383.842i −0.645454 + 0.769223i −0.985221 0.171287i \(-0.945207\pi\)
0.339767 + 0.940510i \(0.389652\pi\)
\(500\) −526.045 1116.10i −1.05209 2.23220i
\(501\) 0 0
\(502\) −1613.97 + 752.607i −3.21508 + 1.49922i
\(503\) 776.540 208.073i 1.54382 0.413664i 0.616320 0.787496i \(-0.288623\pi\)
0.927497 + 0.373831i \(0.121956\pi\)
\(504\) 0 0
\(505\) 41.2672 284.448i 0.0817173 0.563263i
\(506\) −144.271 818.199i −0.285120 1.61699i
\(507\) 0 0
\(508\) 550.848 + 256.864i 1.08435 + 0.505639i
\(509\) 133.375 + 23.5177i 0.262034 + 0.0462037i 0.303122 0.952952i \(-0.401971\pi\)
−0.0410875 + 0.999156i \(0.513082\pi\)
\(510\) 0 0
\(511\) −399.357 + 335.100i −0.781520 + 0.655773i
\(512\) −554.210 + 554.210i −1.08244 + 1.08244i
\(513\) 0 0
\(514\) 529.501i 1.03016i
\(515\) 319.677 + 300.772i 0.620732 + 0.584024i
\(516\) 0 0
\(517\) 147.638 + 210.848i 0.285566 + 0.407831i
\(518\) 754.216 + 351.697i 1.45602 + 0.678951i
\(519\) 0 0
\(520\) 496.171 + 266.655i 0.954174 + 0.512799i
\(521\) −175.694 304.312i −0.337225 0.584091i 0.646684 0.762758i \(-0.276155\pi\)
−0.983910 + 0.178666i \(0.942822\pi\)
\(522\) 0 0
\(523\) −208.565 + 55.8848i −0.398785 + 0.106854i −0.452637 0.891695i \(-0.649517\pi\)
0.0538519 + 0.998549i \(0.482850\pi\)
\(524\) −130.262 + 357.892i −0.248592 + 0.683001i
\(525\) 0 0
\(526\) 742.128 + 622.720i 1.41089 + 1.18388i
\(527\) 582.320 50.9464i 1.10497 0.0966725i
\(528\) 0 0
\(529\) 88.7679 243.888i 0.167803 0.461035i
\(530\) −889.240 + 354.685i −1.67781 + 0.669217i
\(531\) 0 0
\(532\) −929.624 249.092i −1.74741 0.468218i
\(533\) −130.497 + 186.369i −0.244835 + 0.349660i
\(534\) 0 0
\(535\) −420.581 + 211.946i −0.786132 + 0.396161i
\(536\) −202.774 + 1149.99i −0.378311 + 2.14551i
\(537\) 0 0
\(538\) 1808.24 + 158.200i 3.36104 + 0.294053i
\(539\) 271.377i 0.503482i
\(540\) 0 0
\(541\) −441.887 −0.816797 −0.408399 0.912804i \(-0.633913\pi\)
−0.408399 + 0.912804i \(0.633913\pi\)
\(542\) −91.9135 + 1050.58i −0.169582 + 1.93833i
\(543\) 0 0
\(544\) −1987.38 350.429i −3.65328 0.644171i
\(545\) −104.338 + 316.327i −0.191447 + 0.580417i
\(546\) 0 0
\(547\) −586.171 410.442i −1.07161 0.750350i −0.101947 0.994790i \(-0.532507\pi\)
−0.969665 + 0.244439i \(0.921396\pi\)
\(548\) −76.9007 + 286.997i −0.140330 + 0.523718i
\(549\) 0 0
\(550\) 650.090 352.830i 1.18198 0.641508i
\(551\) 310.459 + 112.998i 0.563446 + 0.205078i
\(552\) 0 0
\(553\) 40.4344 + 462.167i 0.0731182 + 0.835745i
\(554\) 1059.33 1262.47i 1.91216 2.27882i
\(555\) 0 0
\(556\) 2404.16 + 875.044i 4.32403 + 1.57382i
\(557\) 91.3239 + 340.825i 0.163957 + 0.611895i 0.998171 + 0.0604543i \(0.0192549\pi\)
−0.834214 + 0.551440i \(0.814078\pi\)
\(558\) 0 0
\(559\) −97.3739 + 56.2189i −0.174193 + 0.100570i
\(560\) 551.102 + 1831.67i 0.984111 + 3.27083i
\(561\) 0 0
\(562\) −48.0455 + 103.034i −0.0854903 + 0.183334i
\(563\) −255.686 + 179.033i −0.454150 + 0.317999i −0.778173 0.628050i \(-0.783853\pi\)
0.324023 + 0.946049i \(0.394964\pi\)
\(564\) 0 0
\(565\) 337.791 + 317.815i 0.597860 + 0.562505i
\(566\) 904.940 1.59883
\(567\) 0 0
\(568\) 631.424 + 631.424i 1.11166 + 1.11166i
\(569\) −27.0610 32.2501i −0.0475589 0.0566785i 0.741741 0.670687i \(-0.234001\pi\)
−0.789300 + 0.614008i \(0.789556\pi\)
\(570\) 0 0
\(571\) 117.215 664.762i 0.205281 1.16421i −0.691716 0.722170i \(-0.743145\pi\)
0.896997 0.442037i \(-0.145744\pi\)
\(572\) −170.747 + 366.168i −0.298509 + 0.640154i
\(573\) 0 0
\(574\) −1476.95 + 260.426i −2.57308 + 0.453703i
\(575\) 701.780 + 18.4939i 1.22049 + 0.0321634i
\(576\) 0 0
\(577\) −47.2820 176.459i −0.0819446 0.305821i 0.912773 0.408466i \(-0.133936\pi\)
−0.994718 + 0.102645i \(0.967270\pi\)
\(578\) 900.214 + 1930.52i 1.55746 + 3.33999i
\(579\) 0 0
\(580\) −310.446 1493.15i −0.535251 2.57440i
\(581\) −853.721 716.357i −1.46940 1.23297i
\(582\) 0 0
\(583\) −172.603 370.149i −0.296060 0.634904i
\(584\) −1082.51 624.986i −1.85361 1.07018i
\(585\) 0 0
\(586\) 368.882 + 638.922i 0.629491 + 1.09031i
\(587\) 620.546 + 434.511i 1.05715 + 0.740224i 0.966761 0.255683i \(-0.0823003\pi\)
0.0903883 + 0.995907i \(0.471189\pi\)
\(588\) 0 0
\(589\) 72.8507 + 200.156i 0.123685 + 0.339823i
\(590\) −727.697 41.3825i −1.23338 0.0701399i
\(591\) 0 0
\(592\) −89.5860 + 1023.97i −0.151328 + 1.72968i
\(593\) −388.235 388.235i −0.654697 0.654697i 0.299423 0.954120i \(-0.403206\pi\)
−0.954120 + 0.299423i \(0.903206\pi\)
\(594\) 0 0
\(595\) 828.356 1050.58i 1.39219 1.76569i
\(596\) 1984.67 1665.33i 3.32998 2.79419i
\(597\) 0 0
\(598\) −441.402 + 309.073i −0.738130 + 0.516844i
\(599\) −231.477 635.977i −0.386439 1.06173i −0.968593 0.248653i \(-0.920012\pi\)
0.582154 0.813079i \(-0.302210\pi\)
\(600\) 0 0
\(601\) −167.114 947.753i −0.278061 1.57696i −0.729069 0.684440i \(-0.760047\pi\)
0.451008 0.892520i \(-0.351065\pi\)
\(602\) −715.914 191.829i −1.18923 0.318652i
\(603\) 0 0
\(604\) 50.2302 + 29.0004i 0.0831626 + 0.0480139i
\(605\) −152.296 246.153i −0.251729 0.406865i
\(606\) 0 0
\(607\) 803.166 70.2679i 1.32317 0.115763i 0.596426 0.802668i \(-0.296587\pi\)
0.726747 + 0.686905i \(0.241031\pi\)
\(608\) −64.0900 732.552i −0.105411 1.20486i
\(609\) 0 0
\(610\) 116.318 + 27.3995i 0.190685 + 0.0449172i
\(611\) 83.4714 144.577i 0.136614 0.236623i
\(612\) 0 0
\(613\) 3.29244 12.2875i 0.00537102 0.0200449i −0.963188 0.268828i \(-0.913364\pi\)
0.968559 + 0.248783i \(0.0800305\pi\)
\(614\) 50.8546 8.96703i 0.0828250 0.0146043i
\(615\) 0 0
\(616\) −1488.48 + 541.761i −2.41636 + 0.879482i
\(617\) −194.394 277.624i −0.315063 0.449957i 0.630120 0.776498i \(-0.283006\pi\)
−0.945183 + 0.326541i \(0.894117\pi\)
\(618\) 0 0
\(619\) 105.967 + 126.287i 0.171191 + 0.204017i 0.844818 0.535055i \(-0.179709\pi\)
−0.673627 + 0.739072i \(0.735264\pi\)
\(620\) 608.779 772.100i 0.981902 1.24532i
\(621\) 0 0
\(622\) 656.951 656.951i 1.05619 1.05619i
\(623\) −810.390 70.8999i −1.30079 0.113804i
\(624\) 0 0
\(625\) 182.533 + 597.751i 0.292053 + 0.956402i
\(626\) −1211.15 + 440.823i −1.93475 + 0.704190i
\(627\) 0 0
\(628\) −286.387 + 409.003i −0.456030 + 0.651278i
\(629\) 622.623 359.471i 0.989861 0.571497i
\(630\) 0 0
\(631\) 183.527 317.879i 0.290852 0.503770i −0.683160 0.730269i \(-0.739395\pi\)
0.974011 + 0.226499i \(0.0727280\pi\)
\(632\) −1008.15 + 470.106i −1.59517 + 0.743839i
\(633\) 0 0
\(634\) −701.967 + 836.572i −1.10720 + 1.31951i
\(635\) −257.456 168.826i −0.405442 0.265868i
\(636\) 0 0
\(637\) 159.518 74.3846i 0.250421 0.116773i
\(638\) 883.096 236.625i 1.38416 0.370886i
\(639\) 0 0
\(640\) −216.106 + 161.346i −0.337665 + 0.252102i
\(641\) −123.893 702.630i −0.193280 1.09615i −0.914847 0.403801i \(-0.867689\pi\)
0.721567 0.692345i \(-0.243422\pi\)
\(642\) 0 0
\(643\) 141.102 + 65.7967i 0.219443 + 0.102328i 0.529231 0.848478i \(-0.322480\pi\)
−0.309789 + 0.950805i \(0.600258\pi\)
\(644\) −2489.30 438.931i −3.86537 0.681570i
\(645\) 0 0
\(646\) −895.035 + 751.024i −1.38550 + 1.16258i
\(647\) 273.393 273.393i 0.422555 0.422555i −0.463527 0.886083i \(-0.653416\pi\)
0.886083 + 0.463527i \(0.153416\pi\)
\(648\) 0 0
\(649\) 310.938i 0.479104i
\(650\) −385.587 285.419i −0.593211 0.439106i
\(651\) 0 0
\(652\) −157.215 224.526i −0.241127 0.344364i
\(653\) 259.196 + 120.865i 0.396932 + 0.185092i 0.610827 0.791764i \(-0.290837\pi\)
−0.213895 + 0.976857i \(0.568615\pi\)
\(654\) 0 0
\(655\) 91.3280 169.936i 0.139432 0.259444i
\(656\) −926.205 1604.23i −1.41190 2.44548i
\(657\) 0 0
\(658\) 1062.96 284.819i 1.61544 0.432856i
\(659\) 173.443 476.530i 0.263191 0.723110i −0.735757 0.677246i \(-0.763173\pi\)
0.998948 0.0458648i \(-0.0146043\pi\)
\(660\) 0 0
\(661\) −191.112 160.362i −0.289126 0.242605i 0.486675 0.873583i \(-0.338210\pi\)
−0.775801 + 0.630978i \(0.782654\pi\)
\(662\) −381.827 + 33.4056i −0.576779 + 0.0504616i
\(663\) 0 0
\(664\) 913.917 2510.97i 1.37638 3.78157i
\(665\) 447.899 + 192.477i 0.673533 + 0.289439i
\(666\) 0 0
\(667\) 838.155 + 224.583i 1.25660 + 0.336706i
\(668\) 1376.57 1965.94i 2.06073 2.94302i
\(669\) 0 0
\(670\) 311.525 944.466i 0.464963 1.40965i
\(671\) −8.85250 + 50.2050i −0.0131930 + 0.0748212i
\(672\) 0 0
\(673\) 1017.54 + 89.0230i 1.51194 + 0.132278i 0.812732 0.582638i \(-0.197979\pi\)
0.699210 + 0.714916i \(0.253535\pi\)
\(674\) 2040.42i 3.02733i
\(675\) 0 0
\(676\) −1406.13 −2.08008
\(677\) −66.1686 + 756.311i −0.0977380 + 1.11715i 0.775993 + 0.630741i \(0.217249\pi\)
−0.873731 + 0.486409i \(0.838307\pi\)
\(678\) 0 0
\(679\) 1032.13 + 181.993i 1.52008 + 0.268031i
\(680\) 3046.36 + 1004.82i 4.47994 + 1.47768i
\(681\) 0 0
\(682\) 482.829 + 338.080i 0.707960 + 0.495719i
\(683\) −112.220 + 418.812i −0.164305 + 0.613195i 0.833823 + 0.552032i \(0.186147\pi\)
−0.998128 + 0.0611626i \(0.980519\pi\)
\(684\) 0 0
\(685\) 59.4222 138.277i 0.0867478 0.201865i
\(686\) −473.594 172.374i −0.690370 0.251274i
\(687\) 0 0
\(688\) −79.7879 911.979i −0.115971 1.32555i
\(689\) −170.267 + 202.916i −0.247122 + 0.294508i
\(690\) 0 0
\(691\) −328.942 119.725i −0.476038 0.173264i 0.0928477 0.995680i \(-0.470403\pi\)
−0.568885 + 0.822417i \(0.692625\pi\)
\(692\) −574.780 2145.11i −0.830607 3.09987i
\(693\) 0 0
\(694\) −821.090 + 474.057i −1.18313 + 0.683079i
\(695\) −1141.55 613.501i −1.64252 0.882736i
\(696\) 0 0
\(697\) −547.565 + 1174.26i −0.785603 + 1.68473i
\(698\) −1173.60 + 821.765i −1.68138 + 1.17731i
\(699\) 0 0
\(700\) −332.255 2225.71i −0.474649 3.17958i
\(701\) −1152.89 −1.64463 −0.822317 0.569030i \(-0.807319\pi\)
−0.822317 + 0.569030i \(0.807319\pi\)
\(702\) 0 0
\(703\) 185.244 + 185.244i 0.263505 + 0.263505i
\(704\) −451.148 537.657i −0.640835 0.763717i
\(705\) 0 0
\(706\) −288.643 + 1636.98i −0.408843 + 2.31866i
\(707\) 221.546 475.107i 0.313360 0.672004i
\(708\) 0 0
\(709\) −1315.07 + 231.883i −1.85483 + 0.327056i −0.985829 0.167755i \(-0.946348\pi\)
−0.869000 + 0.494812i \(0.835237\pi\)
\(710\) −454.981 609.400i −0.640818 0.858309i
\(711\) 0 0
\(712\) −504.823 1884.02i −0.709021 2.64610i
\(713\) 236.425 + 507.014i 0.331591 + 0.711100i
\(714\) 0 0
\(715\) 112.225 171.140i 0.156958 0.239357i
\(716\) 2147.81 + 1802.22i 2.99973 + 2.51707i
\(717\) 0 0
\(718\) −258.211 553.735i −0.359625 0.771218i
\(719\) 149.862 + 86.5229i 0.208431 + 0.120338i 0.600582 0.799563i \(-0.294936\pi\)
−0.392151 + 0.919901i \(0.628269\pi\)
\(720\) 0 0
\(721\) 400.269 + 693.287i 0.555158 + 0.961563i
\(722\) 752.594 + 526.972i 1.04237 + 0.729878i
\(723\) 0 0
\(724\) −312.199 857.758i −0.431213 1.18475i
\(725\) 47.0324 + 771.085i 0.0648723 + 1.06357i
\(726\) 0 0
\(727\) 48.1402 550.246i 0.0662177 0.756871i −0.888406 0.459058i \(-0.848187\pi\)
0.954624 0.297814i \(-0.0962574\pi\)
\(728\) 726.445 + 726.445i 0.997864 + 0.997864i
\(729\) 0 0
\(730\) 835.960 + 659.131i 1.14515 + 0.902919i
\(731\) −490.507 + 411.584i −0.671008 + 0.563043i
\(732\) 0 0
\(733\) −373.397 + 261.455i −0.509409 + 0.356692i −0.799849 0.600201i \(-0.795087\pi\)
0.290440 + 0.956893i \(0.406198\pi\)
\(734\) −234.737 644.935i −0.319805 0.878658i
\(735\) 0 0
\(736\) −335.372 1901.99i −0.455669 2.58422i
\(737\) 409.806 + 109.807i 0.556046 + 0.148992i
\(738\) 0 0
\(739\) −799.156 461.393i −1.08140 0.624348i −0.150128 0.988667i \(-0.547968\pi\)
−0.931274 + 0.364319i \(0.881302\pi\)
\(740\) 277.270 1177.08i 0.374689 1.59065i
\(741\) 0 0
\(742\) −1739.45 + 152.182i −2.34427 + 0.205097i
\(743\) 7.19167 + 82.2012i 0.00967923 + 0.110634i 0.999497 0.0317042i \(-0.0100935\pi\)
−0.989818 + 0.142338i \(0.954538\pi\)
\(744\) 0 0
\(745\) −1116.02 + 690.484i −1.49801 + 0.926824i
\(746\) 1023.70 1773.10i 1.37225 2.37680i
\(747\) 0 0
\(748\) −595.497 + 2222.43i −0.796120 + 2.97116i
\(749\) −845.923 + 149.159i −1.12940 + 0.199144i
\(750\) 0 0
\(751\) −123.653 + 45.0058i −0.164651 + 0.0599279i −0.423030 0.906116i \(-0.639034\pi\)
0.258380 + 0.966043i \(0.416811\pi\)
\(752\) 779.629 + 1113.43i 1.03674 + 1.48062i
\(753\) 0 0
\(754\) −381.148 454.235i −0.505501 0.602433i
\(755\) −23.0710 18.1908i −0.0305576 0.0240938i
\(756\) 0 0
\(757\) −361.781 + 361.781i −0.477914 + 0.477914i −0.904464 0.426550i \(-0.859729\pi\)
0.426550 + 0.904464i \(0.359729\pi\)
\(758\) 763.236 + 66.7745i 1.00691 + 0.0880930i
\(759\) 0 0
\(760\) −66.3647 + 1167.00i −0.0873220 + 1.53553i
\(761\) −251.832 + 91.6592i −0.330922 + 0.120446i −0.502137 0.864788i \(-0.667453\pi\)
0.171215 + 0.985234i \(0.445231\pi\)
\(762\) 0 0
\(763\) −348.452 + 497.642i −0.456687 + 0.652217i
\(764\) 613.747 354.347i 0.803334 0.463805i
\(765\) 0 0
\(766\) 306.216 530.382i 0.399760 0.692404i
\(767\) −182.773 + 85.2284i −0.238296 + 0.111119i
\(768\) 0 0
\(769\) 709.441 845.479i 0.922550 1.09945i −0.0722280 0.997388i \(-0.523011\pi\)
0.994778 0.102064i \(-0.0325446\pi\)
\(770\) 1320.80 274.611i 1.71532 0.356637i
\(771\) 0 0
\(772\) 1504.27 701.451i 1.94853 0.908615i
\(773\) 1314.48 352.215i 1.70050 0.455646i 0.727431 0.686180i \(-0.240714\pi\)
0.973064 + 0.230534i \(0.0740473\pi\)
\(774\) 0 0
\(775\) −361.330 + 342.775i −0.466232 + 0.442290i
\(776\) 436.363 + 2474.74i 0.562323 + 3.18909i
\(777\) 0 0
\(778\) 853.558 + 398.020i 1.09712 + 0.511594i
\(779\) −464.947 81.9827i −0.596851 0.105241i
\(780\) 0 0
\(781\) 248.532 208.543i 0.318222 0.267020i
\(782\) −2169.87 + 2169.87i −2.77477 + 2.77477i
\(783\) 0 0
\(784\) 1433.06i 1.82788i
\(785\) 173.309 184.203i 0.220776 0.234653i
\(786\) 0 0
\(787\) −547.559 781.995i −0.695754 0.993640i −0.999168 0.0407813i \(-0.987015\pi\)
0.303414 0.952859i \(-0.401874\pi\)
\(788\) −2069.37 964.963i −2.62611 1.22457i
\(789\) 0 0
\(790\) 907.191 272.951i 1.14834 0.345508i
\(791\) 422.950 + 732.571i 0.534703 + 0.926132i
\(792\) 0 0
\(793\) 31.9375 8.55763i 0.0402743 0.0107915i
\(794\) 122.449 336.427i 0.154218 0.423712i
\(795\) 0 0
\(796\) 2123.54 + 1781.86i 2.66776 + 2.23852i
\(797\) 191.664 16.7684i 0.240482 0.0210394i 0.0337223 0.999431i \(-0.489264\pi\)
0.206759 + 0.978392i \(0.433708\pi\)
\(798\) 0 0
\(799\) 325.161 893.373i 0.406960 1.11811i
\(800\) 1511.20 820.190i 1.88900 1.02524i
\(801\) 0 0
\(802\) −251.185 67.3048i −0.313198 0.0839212i
\(803\) −260.485 + 372.012i −0.324390 + 0.463277i
\(804\) 0 0
\(805\) 1215.95 + 401.072i 1.51050 + 0.498227i
\(806\) 66.3836 376.480i 0.0823617 0.467097i
\(807\) 0 0
\(808\) 1252.14 + 109.548i 1.54968 + 0.135579i
\(809\) 1045.60i 1.29246i 0.763141 + 0.646232i \(0.223656\pi\)
−0.763141 + 0.646232i \(0.776344\pi\)
\(810\) 0 0
\(811\) 729.313 0.899276 0.449638 0.893211i \(-0.351553\pi\)
0.449638 + 0.893211i \(0.351553\pi\)
\(812\) 242.426 2770.94i 0.298554 3.41249i
\(813\) 0 0
\(814\) 713.931 + 125.885i 0.877065 + 0.154650i
\(815\) 62.4816 + 123.987i 0.0766646 + 0.152131i
\(816\) 0 0
\(817\) −191.126 133.828i −0.233937 0.163804i
\(818\) 156.831 585.302i 0.191725 0.715528i
\(819\) 0 0
\(820\) 807.406 + 2024.27i 0.984641 + 2.46862i
\(821\) 915.354 + 333.161i 1.11493 + 0.405800i 0.832798 0.553577i \(-0.186738\pi\)
0.282127 + 0.959377i \(0.408960\pi\)
\(822\) 0 0
\(823\) −101.760 1163.13i −0.123646 1.41328i −0.764010 0.645205i \(-0.776772\pi\)
0.640364 0.768071i \(-0.278783\pi\)
\(824\) −1233.79 + 1470.38i −1.49732 + 1.78444i
\(825\) 0 0
\(826\) −1249.19 454.666i −1.51233 0.550443i
\(827\) 225.109 + 840.119i 0.272200 + 1.01586i 0.957695 + 0.287786i \(0.0929192\pi\)
−0.685495 + 0.728077i \(0.740414\pi\)
\(828\) 0 0
\(829\) −480.585 + 277.466i −0.579716 + 0.334699i −0.761021 0.648728i \(-0.775301\pi\)
0.181304 + 0.983427i \(0.441968\pi\)
\(830\) −1077.32 + 2004.59i −1.29798 + 2.41517i
\(831\) 0 0
\(832\) −192.381 + 412.562i −0.231227 + 0.495867i
\(833\) 821.066 574.917i 0.985674 0.690176i
\(834\) 0 0
\(835\) −833.040 + 885.400i −0.997653 + 1.06036i
\(836\) −838.394 −1.00286
\(837\) 0 0
\(838\) −864.917 864.917i −1.03212 1.03212i
\(839\) 75.9873 + 90.5581i 0.0905689 + 0.107936i 0.809426 0.587223i \(-0.199779\pi\)
−0.718857 + 0.695158i \(0.755334\pi\)
\(840\) 0 0
\(841\) −19.7707 + 112.125i −0.0235085 + 0.133324i
\(842\) 255.718 548.389i 0.303703 0.651293i
\(843\) 0 0
\(844\) 394.177 69.5041i 0.467035 0.0823508i
\(845\) 704.887 + 102.264i 0.834185 + 0.121022i
\(846\) 0 0
\(847\) −136.638 509.938i −0.161319 0.602052i
\(848\) −911.464 1954.64i −1.07484 2.30500i
\(849\) 0 0
\(850\) −2444.73 1219.41i −2.87616 1.43460i
\(851\) 527.078 + 442.271i 0.619363 + 0.519707i
\(852\) 0 0
\(853\) 276.438 + 592.824i 0.324078 + 0.694987i 0.999083 0.0428264i \(-0.0136363\pi\)
−0.675005 + 0.737813i \(0.735858\pi\)
\(854\) 188.753 + 108.976i 0.221022 + 0.127607i
\(855\) 0 0
\(856\) −1029.77 1783.62i −1.20301 2.08367i
\(857\) −1161.75 813.469i −1.35560 0.949205i −0.999893 0.0146091i \(-0.995350\pi\)
−0.355712 0.934596i \(-0.615761\pi\)
\(858\) 0 0
\(859\) 85.7399 + 235.568i 0.0998136 + 0.274236i 0.979542 0.201242i \(-0.0644976\pi\)
−0.879728 + 0.475477i \(0.842275\pi\)
\(860\) −61.1499 + 1075.30i −0.0711046 + 1.25035i
\(861\) 0 0
\(862\) −30.7564 + 351.548i −0.0356803 + 0.407828i
\(863\) −885.467 885.467i −1.02603 1.02603i −0.999652 0.0263813i \(-0.991602\pi\)
−0.0263813 0.999652i \(-0.508398\pi\)
\(864\) 0 0
\(865\) 132.127 + 1117.13i 0.152748 + 1.29148i
\(866\) −1376.76 + 1155.24i −1.58979 + 1.33399i
\(867\) 0 0
\(868\) 1468.96 1028.58i 1.69236 1.18500i
\(869\) 138.226 + 379.774i 0.159064 + 0.437024i
\(870\) 0 0
\(871\) −47.7823 270.987i −0.0548591 0.311121i
\(872\) −1406.98 377.000i −1.61351 0.432340i
\(873\) 0 0
\(874\) −968.375 559.091i −1.10798 0.639693i
\(875\) 4.68846 + 1139.90i 0.00535824 + 1.30274i
\(876\) 0 0
\(877\) 1345.05 117.676i 1.53369 0.134181i 0.711212 0.702977i \(-0.248146\pi\)
0.822478 + 0.568797i \(0.192591\pi\)
\(878\) −84.6401 967.441i −0.0964011 1.10187i
\(879\) 0 0
\(880\) 876.703 + 1417.00i 0.996254 + 1.61023i
\(881\) −305.858 + 529.761i −0.347171 + 0.601318i −0.985746 0.168242i \(-0.946191\pi\)
0.638575 + 0.769560i \(0.279524\pi\)
\(882\) 0 0
\(883\) 346.237 1292.17i 0.392114 1.46339i −0.434526 0.900659i \(-0.643084\pi\)
0.826640 0.562731i \(-0.190249\pi\)
\(884\) 1469.59 259.129i 1.66244 0.293132i
\(885\) 0 0
\(886\) −2215.83 + 806.496i −2.50094 + 0.910266i
\(887\) −600.168 857.129i −0.676627 0.966324i −0.999800 0.0199838i \(-0.993639\pi\)
0.323173 0.946340i \(-0.395250\pi\)
\(888\) 0 0
\(889\) −360.934 430.145i −0.406000 0.483852i
\(890\) 195.111 + 1649.66i 0.219226 + 1.85355i
\(891\) 0 0
\(892\) 911.716 911.716i 1.02210 1.02210i
\(893\) 345.108 + 30.1931i 0.386460 + 0.0338108i
\(894\) 0 0
\(895\) −945.612 1059.65i −1.05655 1.18396i
\(896\) −462.215 + 168.232i −0.515865 + 0.187759i
\(897\) 0 0
\(898\) −186.043 + 265.697i −0.207175 + 0.295877i
\(899\) −533.129 + 307.802i −0.593024 + 0.342383i
\(900\) 0 0
\(901\) −754.243 + 1306.39i −0.837118 + 1.44993i
\(902\) −1184.06 + 552.136i −1.31271 + 0.612125i
\(903\) 0 0
\(904\) −1303.71 + 1553.70i −1.44215 + 1.71869i
\(905\) 94.1211 + 452.694i 0.104001 + 0.500215i
\(906\) 0 0
\(907\) 197.246 91.9774i 0.217471 0.101408i −0.310830 0.950466i \(-0.600607\pi\)
0.528301 + 0.849057i \(0.322829\pi\)
\(908\) −4187.15 + 1121.94i −4.61139 + 1.23562i
\(909\) 0 0
\(910\) −523.450 701.107i −0.575220 0.770447i
\(911\) −230.151 1305.25i −0.252635 1.43277i −0.802070 0.597230i \(-0.796268\pi\)
0.549435 0.835537i \(-0.314843\pi\)
\(912\) 0 0
\(913\) −879.878 410.294i −0.963721 0.449391i
\(914\) 2587.62 + 456.268i 2.83110 + 0.499199i
\(915\) 0 0
\(916\) −321.947 + 270.146i −0.351470 + 0.294919i
\(917\) 248.803 248.803i 0.271323 0.271323i
\(918\) 0 0
\(919\) 388.093i 0.422299i 0.977454 + 0.211149i \(0.0677207\pi\)
−0.977454 + 0.211149i \(0.932279\pi\)
\(920\) 93.4963 + 3068.55i 0.101626 + 3.33538i
\(921\) 0 0
\(922\) 809.316 + 1155.82i 0.877783 + 1.25360i
\(923\) −190.706 88.9278i −0.206616 0.0963465i
\(924\) 0 0
\(925\) −224.599 + 569.900i −0.242810 + 0.616108i
\(926\) 1074.45 + 1861.00i 1.16031 + 2.00972i
\(927\) 0 0
\(928\) 2052.85 550.060i 2.21212 0.592737i
\(929\) 23.1011 63.4697i 0.0248666 0.0683204i −0.926638 0.375954i \(-0.877315\pi\)
0.951505 + 0.307634i \(0.0995372\pi\)
\(930\) 0 0
\(931\) 279.790 + 234.772i 0.300526 + 0.252171i
\(932\) 1568.50 137.226i 1.68294 0.147238i
\(933\) 0 0
\(934\) −628.054 + 1725.57i −0.672435 + 1.84750i
\(935\) 460.149 1070.78i 0.492138 1.14522i
\(936\) 0 0
\(937\) 58.4636 + 15.6653i 0.0623945 + 0.0167185i 0.289881 0.957063i \(-0.406384\pi\)
−0.227487 + 0.973781i \(0.573051\pi\)
\(938\) 1040.38 1485.82i 1.10915 1.58403i
\(939\) 0 0
\(940\) −719.651 1428.06i −0.765586 1.51921i
\(941\) −200.718 + 1138.33i −0.213302 + 1.20970i 0.670526 + 0.741886i \(0.266069\pi\)
−0.883828 + 0.467812i \(0.845042\pi\)
\(942\) 0 0
\(943\) −1235.26 108.071i −1.30993 0.114604i
\(944\) 1641.97i 1.73937i
\(945\) 0 0
\(946\) −645.657 −0.682512
\(947\) −86.4965 + 988.660i −0.0913374 + 1.04399i 0.802815 + 0.596228i \(0.203335\pi\)
−0.894152 + 0.447763i \(0.852221\pi\)
\(948\) 0 0
\(949\) 290.072 + 51.1475i 0.305660 + 0.0538962i
\(950\) 198.633 975.481i 0.209088 1.02682i
\(951\) 0 0
\(952\) 4792.49 + 3355.74i 5.03413 + 3.52494i
\(953\) −122.213 + 456.106i −0.128240 + 0.478600i −0.999934 0.0114507i \(-0.996355\pi\)
0.871694 + 0.490051i \(0.163022\pi\)
\(954\) 0 0
\(955\) −333.438 + 132.996i −0.349150 + 0.139263i
\(956\) −1755.31 638.881i −1.83610 0.668286i
\(957\) 0 0
\(958\) 100.916 + 1153.47i 0.105340 + 1.20404i
\(959\) 176.444 210.277i 0.183987 0.219267i
\(960\) 0 0
\(961\) 530.094 + 192.938i 0.551607 + 0.200768i
\(962\) −121.692 454.162i −0.126499 0.472102i
\(963\) 0 0
\(964\) 880.371 508.283i 0.913248 0.527264i
\(965\) −805.094 + 242.232i −0.834294 + 0.251018i
\(966\) 0 0
\(967\) −731.432 + 1568.56i −0.756393 + 1.62209i 0.0262778 + 0.999655i \(0.491635\pi\)
−0.782671 + 0.622436i \(0.786143\pi\)
\(968\) 1036.89 726.036i 1.07116 0.750037i
\(969\) 0 0
\(970\) −65.1789 2139.17i −0.0671947 2.20533i
\(971\) 1317.64 1.35699 0.678495 0.734605i \(-0.262633\pi\)
0.678495 + 0.734605i \(0.262633\pi\)
\(972\) 0 0
\(973\) −1671.35 1671.35i −1.71773 1.71773i
\(974\) −245.306 292.344i −0.251854 0.300148i
\(975\) 0 0
\(976\) −46.7473 + 265.117i −0.0478968 + 0.271636i
\(977\) 478.479 1026.10i 0.489743 1.05026i −0.493799 0.869576i \(-0.664392\pi\)
0.983542 0.180681i \(-0.0578302\pi\)
\(978\) 0 0
\(979\) −697.888 + 123.057i −0.712858 + 0.125696i
\(980\) 242.065 1668.51i 0.247005 1.70257i
\(981\) 0 0
\(982\) −412.044 1537.77i −0.419597 1.56596i
\(983\) 305.033 + 654.146i 0.310309 + 0.665459i 0.998176 0.0603779i \(-0.0192306\pi\)
−0.687867 + 0.725837i \(0.741453\pi\)
\(984\) 0 0
\(985\) 967.184 + 634.229i 0.981913 + 0.643888i
\(986\) −2586.78 2170.56i −2.62351 2.20138i
\(987\) 0 0
\(988\) 229.804 + 492.817i 0.232596 + 0.498803i
\(989\) −530.699 306.399i −0.536602 0.309807i
\(990\) 0 0
\(991\) 135.118 + 234.031i 0.136345 + 0.236157i 0.926111 0.377252i \(-0.123131\pi\)
−0.789765 + 0.613409i \(0.789798\pi\)
\(992\) 1122.39 + 785.903i 1.13144 + 0.792241i
\(993\) 0 0
\(994\) −474.402 1303.41i −0.477265 1.31128i
\(995\) −934.927 1047.67i −0.939625 1.05294i
\(996\) 0 0
\(997\) 151.510 1731.77i 0.151966 1.73698i −0.412000 0.911184i \(-0.635170\pi\)
0.563967 0.825798i \(-0.309275\pi\)
\(998\) 1319.58 + 1319.58i 1.32222 + 1.32222i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.s.a.118.33 408
3.2 odd 2 135.3.r.a.103.2 yes 408
5.2 odd 4 inner 405.3.s.a.37.33 408
15.2 even 4 135.3.r.a.22.2 408
27.11 odd 18 135.3.r.a.43.2 yes 408
27.16 even 9 inner 405.3.s.a.208.33 408
135.92 even 36 135.3.r.a.97.2 yes 408
135.97 odd 36 inner 405.3.s.a.127.33 408
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.r.a.22.2 408 15.2 even 4
135.3.r.a.43.2 yes 408 27.11 odd 18
135.3.r.a.97.2 yes 408 135.92 even 36
135.3.r.a.103.2 yes 408 3.2 odd 2
405.3.s.a.37.33 408 5.2 odd 4 inner
405.3.s.a.118.33 408 1.1 even 1 trivial
405.3.s.a.127.33 408 135.97 odd 36 inner
405.3.s.a.208.33 408 27.16 even 9 inner