Properties

Label 405.3.s.a.118.28
Level $405$
Weight $3$
Character 405.118
Analytic conductor $11.035$
Analytic rank $0$
Dimension $408$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(37,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.37"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([28, 9])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.s (of order \(36\), degree \(12\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(408\)
Relative dimension: \(34\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 118.28
Character \(\chi\) \(=\) 405.118
Dual form 405.3.s.a.127.28

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.227920 - 2.60513i) q^{2} +(-2.79554 - 0.492929i) q^{4} +(-2.63268 + 4.25076i) q^{5} +(4.66090 + 3.26360i) q^{7} +(0.786031 - 2.93351i) q^{8} +(10.4738 + 7.82731i) q^{10} +(-12.9139 - 4.70027i) q^{11} +(-0.714473 - 8.16646i) q^{13} +(9.56441 - 11.3984i) q^{14} +(-18.1329 - 6.59984i) q^{16} +(-7.23092 - 26.9862i) q^{17} +(26.2098 - 15.1322i) q^{19} +(9.45509 - 10.5855i) q^{20} +(-15.1882 + 32.5711i) q^{22} +(14.8089 - 10.3693i) q^{23} +(-11.1380 - 22.3818i) q^{25} -21.4376 q^{26} +(-11.4210 - 11.4210i) q^{28} +(-21.2227 - 25.2922i) q^{29} +(4.67998 - 26.5415i) q^{31} +(-16.1924 + 34.7246i) q^{32} +(-71.9506 + 12.6868i) q^{34} +(-26.1434 + 11.2204i) q^{35} +(10.0842 + 37.6347i) q^{37} +(-33.4478 - 71.7290i) q^{38} +(10.4003 + 11.0642i) q^{40} +(0.528369 + 0.443354i) q^{41} +(-3.77375 - 8.09284i) q^{43} +(33.7844 + 19.5054i) q^{44} +(-23.6382 - 40.9426i) q^{46} +(32.6681 + 22.8744i) q^{47} +(-5.68607 - 15.6223i) q^{49} +(-60.8461 + 23.9147i) q^{50} +(-2.02815 + 23.1819i) q^{52} +(29.6344 + 29.6344i) q^{53} +(53.9778 - 42.5196i) q^{55} +(13.2374 - 11.1075i) q^{56} +(-70.7267 + 49.5234i) q^{58} +(36.4412 + 100.121i) q^{59} +(10.9532 + 62.1185i) q^{61} +(-68.0774 - 18.2413i) q^{62} +(19.9262 + 11.5044i) q^{64} +(36.5947 + 18.4626i) q^{65} +(-76.4475 + 6.68829i) q^{67} +(6.91206 + 79.0052i) q^{68} +(23.2720 + 70.6645i) q^{70} +(16.7490 - 29.0101i) q^{71} +(3.38369 - 12.6281i) q^{73} +(100.342 - 17.6930i) q^{74} +(-80.7297 + 29.3832i) q^{76} +(-44.8505 - 64.0532i) q^{77} +(-45.0676 - 53.7094i) q^{79} +(75.7925 - 59.7035i) q^{80} +(1.27542 - 1.27542i) q^{82} +(-18.4793 - 1.61673i) q^{83} +(133.749 + 40.3090i) q^{85} +(-21.9430 + 7.98661i) q^{86} +(-23.9390 + 34.1884i) q^{88} +(71.9769 - 41.5559i) q^{89} +(23.3220 - 40.3948i) q^{91} +(-46.5103 + 21.6881i) q^{92} +(67.0366 - 79.8911i) q^{94} +(-4.67845 + 151.250i) q^{95} +(-24.7633 + 11.5473i) q^{97} +(-41.9942 + 11.2523i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 408 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 6 q^{8} - 6 q^{10} + 60 q^{11} - 12 q^{13} - 24 q^{16} + 6 q^{17} + 300 q^{20} - 12 q^{22} + 156 q^{23} + 6 q^{25} + 48 q^{26} - 24 q^{28} - 24 q^{31} - 72 q^{32}+ \cdots + 1032 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.227920 2.60513i 0.113960 1.30257i −0.696833 0.717233i \(-0.745408\pi\)
0.810793 0.585333i \(-0.199036\pi\)
\(3\) 0 0
\(4\) −2.79554 0.492929i −0.698885 0.123232i
\(5\) −2.63268 + 4.25076i −0.526536 + 0.850153i
\(6\) 0 0
\(7\) 4.66090 + 3.26360i 0.665843 + 0.466228i 0.856990 0.515333i \(-0.172332\pi\)
−0.191147 + 0.981561i \(0.561221\pi\)
\(8\) 0.786031 2.93351i 0.0982538 0.366688i
\(9\) 0 0
\(10\) 10.4738 + 7.82731i 1.04738 + 0.782731i
\(11\) −12.9139 4.70027i −1.17399 0.427297i −0.319914 0.947447i \(-0.603654\pi\)
−0.854075 + 0.520149i \(0.825876\pi\)
\(12\) 0 0
\(13\) −0.714473 8.16646i −0.0549595 0.628189i −0.972862 0.231384i \(-0.925674\pi\)
0.917903 0.396805i \(-0.129881\pi\)
\(14\) 9.56441 11.3984i 0.683172 0.814173i
\(15\) 0 0
\(16\) −18.1329 6.59984i −1.13331 0.412490i
\(17\) −7.23092 26.9862i −0.425348 1.58742i −0.763161 0.646208i \(-0.776354\pi\)
0.337813 0.941213i \(-0.390313\pi\)
\(18\) 0 0
\(19\) 26.2098 15.1322i 1.37946 0.796434i 0.387369 0.921925i \(-0.373384\pi\)
0.992095 + 0.125491i \(0.0400507\pi\)
\(20\) 9.45509 10.5855i 0.472754 0.529273i
\(21\) 0 0
\(22\) −15.1882 + 32.5711i −0.690370 + 1.48050i
\(23\) 14.8089 10.3693i 0.643867 0.450840i −0.205490 0.978659i \(-0.565879\pi\)
0.849357 + 0.527819i \(0.176990\pi\)
\(24\) 0 0
\(25\) −11.1380 22.3818i −0.445520 0.895272i
\(26\) −21.4376 −0.824522
\(27\) 0 0
\(28\) −11.4210 11.4210i −0.407893 0.407893i
\(29\) −21.2227 25.2922i −0.731817 0.872146i 0.263904 0.964549i \(-0.414990\pi\)
−0.995722 + 0.0924028i \(0.970545\pi\)
\(30\) 0 0
\(31\) 4.67998 26.5415i 0.150967 0.856176i −0.811414 0.584472i \(-0.801302\pi\)
0.962381 0.271704i \(-0.0875872\pi\)
\(32\) −16.1924 + 34.7246i −0.506011 + 1.08514i
\(33\) 0 0
\(34\) −71.9506 + 12.6868i −2.11619 + 0.373142i
\(35\) −26.1434 + 11.2204i −0.746955 + 0.320582i
\(36\) 0 0
\(37\) 10.0842 + 37.6347i 0.272546 + 1.01715i 0.957468 + 0.288539i \(0.0931694\pi\)
−0.684922 + 0.728616i \(0.740164\pi\)
\(38\) −33.4478 71.7290i −0.880204 1.88760i
\(39\) 0 0
\(40\) 10.4003 + 11.0642i 0.260007 + 0.276605i
\(41\) 0.528369 + 0.443354i 0.0128870 + 0.0108135i 0.649208 0.760611i \(-0.275100\pi\)
−0.636321 + 0.771424i \(0.719545\pi\)
\(42\) 0 0
\(43\) −3.77375 8.09284i −0.0877617 0.188206i 0.857528 0.514437i \(-0.171999\pi\)
−0.945290 + 0.326231i \(0.894221\pi\)
\(44\) 33.7844 + 19.5054i 0.767826 + 0.443305i
\(45\) 0 0
\(46\) −23.6382 40.9426i −0.513875 0.890057i
\(47\) 32.6681 + 22.8744i 0.695065 + 0.486690i 0.866930 0.498431i \(-0.166090\pi\)
−0.171864 + 0.985121i \(0.554979\pi\)
\(48\) 0 0
\(49\) −5.68607 15.6223i −0.116042 0.318823i
\(50\) −60.8461 + 23.9147i −1.21692 + 0.478294i
\(51\) 0 0
\(52\) −2.02815 + 23.1819i −0.0390029 + 0.445805i
\(53\) 29.6344 + 29.6344i 0.559139 + 0.559139i 0.929062 0.369923i \(-0.120616\pi\)
−0.369923 + 0.929062i \(0.620616\pi\)
\(54\) 0 0
\(55\) 53.9778 42.5196i 0.981415 0.773083i
\(56\) 13.2374 11.1075i 0.236382 0.198348i
\(57\) 0 0
\(58\) −70.7267 + 49.5234i −1.21943 + 0.853851i
\(59\) 36.4412 + 100.121i 0.617647 + 1.69697i 0.712673 + 0.701496i \(0.247484\pi\)
−0.0950262 + 0.995475i \(0.530293\pi\)
\(60\) 0 0
\(61\) 10.9532 + 62.1185i 0.179560 + 1.01834i 0.932748 + 0.360530i \(0.117404\pi\)
−0.753188 + 0.657806i \(0.771485\pi\)
\(62\) −68.0774 18.2413i −1.09802 0.294214i
\(63\) 0 0
\(64\) 19.9262 + 11.5044i 0.311347 + 0.179756i
\(65\) 36.5947 + 18.4626i 0.562995 + 0.284040i
\(66\) 0 0
\(67\) −76.4475 + 6.68829i −1.14101 + 0.0998252i −0.641952 0.766745i \(-0.721875\pi\)
−0.499055 + 0.866570i \(0.666320\pi\)
\(68\) 6.91206 + 79.0052i 0.101648 + 1.16184i
\(69\) 0 0
\(70\) 23.2720 + 70.6645i 0.332457 + 1.00949i
\(71\) 16.7490 29.0101i 0.235901 0.408593i −0.723633 0.690185i \(-0.757529\pi\)
0.959534 + 0.281592i \(0.0908624\pi\)
\(72\) 0 0
\(73\) 3.38369 12.6281i 0.0463519 0.172988i −0.938870 0.344273i \(-0.888125\pi\)
0.985221 + 0.171285i \(0.0547920\pi\)
\(74\) 100.342 17.6930i 1.35597 0.239094i
\(75\) 0 0
\(76\) −80.7297 + 29.3832i −1.06223 + 0.386621i
\(77\) −44.8505 64.0532i −0.582474 0.831860i
\(78\) 0 0
\(79\) −45.0676 53.7094i −0.570475 0.679866i 0.401253 0.915967i \(-0.368575\pi\)
−0.971729 + 0.236101i \(0.924130\pi\)
\(80\) 75.7925 59.7035i 0.947406 0.746293i
\(81\) 0 0
\(82\) 1.27542 1.27542i 0.0155539 0.0155539i
\(83\) −18.4793 1.61673i −0.222642 0.0194786i −0.0247110 0.999695i \(-0.507867\pi\)
−0.197931 + 0.980216i \(0.563422\pi\)
\(84\) 0 0
\(85\) 133.749 + 40.3090i 1.57351 + 0.474224i
\(86\) −21.9430 + 7.98661i −0.255152 + 0.0928676i
\(87\) 0 0
\(88\) −23.9390 + 34.1884i −0.272034 + 0.388504i
\(89\) 71.9769 41.5559i 0.808730 0.466920i −0.0377849 0.999286i \(-0.512030\pi\)
0.846515 + 0.532366i \(0.178697\pi\)
\(90\) 0 0
\(91\) 23.3220 40.3948i 0.256285 0.443899i
\(92\) −46.5103 + 21.6881i −0.505547 + 0.235740i
\(93\) 0 0
\(94\) 67.0366 79.8911i 0.713156 0.849906i
\(95\) −4.67845 + 151.250i −0.0492469 + 1.59211i
\(96\) 0 0
\(97\) −24.7633 + 11.5473i −0.255292 + 0.119044i −0.546051 0.837752i \(-0.683870\pi\)
0.290760 + 0.956796i \(0.406092\pi\)
\(98\) −41.9942 + 11.2523i −0.428513 + 0.114820i
\(99\) 0 0
\(100\) 20.1041 + 68.0595i 0.201041 + 0.680595i
\(101\) −11.1922 63.4739i −0.110814 0.628455i −0.988738 0.149656i \(-0.952183\pi\)
0.877925 0.478799i \(-0.158928\pi\)
\(102\) 0 0
\(103\) −41.1498 19.1885i −0.399513 0.186296i 0.212469 0.977168i \(-0.431850\pi\)
−0.611982 + 0.790872i \(0.709627\pi\)
\(104\) −24.5180 4.32318i −0.235750 0.0415690i
\(105\) 0 0
\(106\) 83.9557 70.4472i 0.792035 0.664596i
\(107\) −45.9700 + 45.9700i −0.429626 + 0.429626i −0.888501 0.458875i \(-0.848253\pi\)
0.458875 + 0.888501i \(0.348253\pi\)
\(108\) 0 0
\(109\) 7.40551i 0.0679405i 0.999423 + 0.0339702i \(0.0108151\pi\)
−0.999423 + 0.0339702i \(0.989185\pi\)
\(110\) −98.4665 150.311i −0.895150 1.36646i
\(111\) 0 0
\(112\) −62.9765 89.9397i −0.562290 0.803033i
\(113\) −170.252 79.3898i −1.50665 0.702565i −0.518366 0.855159i \(-0.673459\pi\)
−0.988289 + 0.152594i \(0.951237\pi\)
\(114\) 0 0
\(115\) 5.09038 + 90.2484i 0.0442642 + 0.784769i
\(116\) 46.8616 + 81.1667i 0.403980 + 0.699713i
\(117\) 0 0
\(118\) 269.135 72.1145i 2.28080 0.611140i
\(119\) 54.3694 149.379i 0.456886 1.25528i
\(120\) 0 0
\(121\) 51.9844 + 43.6201i 0.429623 + 0.360497i
\(122\) 164.323 14.3764i 1.34691 0.117840i
\(123\) 0 0
\(124\) −26.1661 + 71.8908i −0.211017 + 0.579765i
\(125\) 124.463 + 11.5791i 0.995700 + 0.0926331i
\(126\) 0 0
\(127\) −2.49220 0.667782i −0.0196236 0.00525813i 0.248994 0.968505i \(-0.419900\pi\)
−0.268617 + 0.963247i \(0.586567\pi\)
\(128\) −53.3929 + 76.2529i −0.417132 + 0.595726i
\(129\) 0 0
\(130\) 56.4382 91.1260i 0.434140 0.700969i
\(131\) 22.4868 127.529i 0.171655 0.973505i −0.770279 0.637707i \(-0.779883\pi\)
0.941934 0.335798i \(-0.109006\pi\)
\(132\) 0 0
\(133\) 171.547 + 15.0084i 1.28983 + 0.112845i
\(134\) 200.680i 1.49761i
\(135\) 0 0
\(136\) −84.8478 −0.623881
\(137\) −18.5233 + 211.722i −0.135206 + 1.54542i 0.561147 + 0.827716i \(0.310360\pi\)
−0.696353 + 0.717699i \(0.745195\pi\)
\(138\) 0 0
\(139\) −0.262808 0.0463401i −0.00189070 0.000333382i 0.172703 0.984974i \(-0.444750\pi\)
−0.174593 + 0.984641i \(0.555861\pi\)
\(140\) 78.6159 18.4802i 0.561542 0.132001i
\(141\) 0 0
\(142\) −71.7578 50.2454i −0.505337 0.353841i
\(143\) −29.1579 + 108.819i −0.203902 + 0.760972i
\(144\) 0 0
\(145\) 163.384 23.6264i 1.12679 0.162940i
\(146\) −32.1267 11.6932i −0.220046 0.0800901i
\(147\) 0 0
\(148\) −9.63951 110.180i −0.0651318 0.744460i
\(149\) 100.493 119.762i 0.674447 0.803774i −0.314935 0.949113i \(-0.601983\pi\)
0.989382 + 0.145339i \(0.0464273\pi\)
\(150\) 0 0
\(151\) 204.837 + 74.5544i 1.35653 + 0.493738i 0.914981 0.403498i \(-0.132206\pi\)
0.441553 + 0.897235i \(0.354428\pi\)
\(152\) −23.7888 88.7810i −0.156505 0.584086i
\(153\) 0 0
\(154\) −177.089 + 102.243i −1.14993 + 0.663913i
\(155\) 100.501 + 89.7687i 0.648391 + 0.579153i
\(156\) 0 0
\(157\) 49.9753 107.172i 0.318314 0.682627i −0.680426 0.732817i \(-0.738205\pi\)
0.998740 + 0.0501905i \(0.0159829\pi\)
\(158\) −150.192 + 105.166i −0.950582 + 0.665605i
\(159\) 0 0
\(160\) −104.977 160.249i −0.656106 1.00155i
\(161\) 102.864 0.638909
\(162\) 0 0
\(163\) −113.010 113.010i −0.693315 0.693315i 0.269645 0.962960i \(-0.413094\pi\)
−0.962960 + 0.269645i \(0.913094\pi\)
\(164\) −1.25853 1.49986i −0.00767398 0.00914550i
\(165\) 0 0
\(166\) −8.42357 + 47.7725i −0.0507444 + 0.287786i
\(167\) −67.6957 + 145.174i −0.405364 + 0.869305i 0.592598 + 0.805498i \(0.298102\pi\)
−0.997962 + 0.0638074i \(0.979676\pi\)
\(168\) 0 0
\(169\) 100.252 17.6771i 0.593206 0.104598i
\(170\) 135.494 339.246i 0.797025 1.99556i
\(171\) 0 0
\(172\) 6.56048 + 24.4841i 0.0381423 + 0.142349i
\(173\) 25.5416 + 54.7740i 0.147639 + 0.316613i 0.966194 0.257815i \(-0.0830024\pi\)
−0.818555 + 0.574428i \(0.805225\pi\)
\(174\) 0 0
\(175\) 21.1321 140.669i 0.120755 0.803824i
\(176\) 203.145 + 170.459i 1.15423 + 0.968518i
\(177\) 0 0
\(178\) −91.8537 196.981i −0.516032 1.10663i
\(179\) 236.166 + 136.351i 1.31936 + 0.761735i 0.983626 0.180221i \(-0.0576813\pi\)
0.335737 + 0.941956i \(0.391015\pi\)
\(180\) 0 0
\(181\) −93.8465 162.547i −0.518489 0.898049i −0.999769 0.0214826i \(-0.993161\pi\)
0.481280 0.876567i \(-0.340172\pi\)
\(182\) −99.9183 69.9636i −0.549002 0.384415i
\(183\) 0 0
\(184\) −18.7782 51.5927i −0.102056 0.280395i
\(185\) −186.525 56.2147i −1.00824 0.303863i
\(186\) 0 0
\(187\) −33.4630 + 382.483i −0.178946 + 2.04537i
\(188\) −80.0494 80.0494i −0.425795 0.425795i
\(189\) 0 0
\(190\) 392.960 + 46.6608i 2.06821 + 0.245583i
\(191\) 101.563 85.2213i 0.531742 0.446185i −0.336960 0.941519i \(-0.609399\pi\)
0.868702 + 0.495334i \(0.164954\pi\)
\(192\) 0 0
\(193\) −77.3222 + 54.1416i −0.400633 + 0.280526i −0.756478 0.654019i \(-0.773082\pi\)
0.355846 + 0.934545i \(0.384193\pi\)
\(194\) 24.4382 + 67.1435i 0.125970 + 0.346101i
\(195\) 0 0
\(196\) 8.19492 + 46.4757i 0.0418108 + 0.237121i
\(197\) 202.958 + 54.3825i 1.03024 + 0.276053i 0.734065 0.679079i \(-0.237621\pi\)
0.296180 + 0.955132i \(0.404287\pi\)
\(198\) 0 0
\(199\) 118.108 + 68.1897i 0.593508 + 0.342662i 0.766483 0.642264i \(-0.222005\pi\)
−0.172975 + 0.984926i \(0.555338\pi\)
\(200\) −74.4120 + 15.0806i −0.372060 + 0.0754029i
\(201\) 0 0
\(202\) −167.909 + 14.6901i −0.831232 + 0.0727234i
\(203\) −16.3732 187.147i −0.0806563 0.921906i
\(204\) 0 0
\(205\) −3.27562 + 1.07876i −0.0159786 + 0.00526225i
\(206\) −59.3673 + 102.827i −0.288191 + 0.499161i
\(207\) 0 0
\(208\) −40.9419 + 152.797i −0.196836 + 0.734602i
\(209\) −409.596 + 72.2228i −1.95979 + 0.345564i
\(210\) 0 0
\(211\) 223.645 81.4002i 1.05993 0.385783i 0.247528 0.968881i \(-0.420382\pi\)
0.812402 + 0.583098i \(0.198160\pi\)
\(212\) −68.2364 97.4517i −0.321870 0.459678i
\(213\) 0 0
\(214\) 109.280 + 130.235i 0.510656 + 0.608576i
\(215\) 44.3359 + 5.26452i 0.206213 + 0.0244862i
\(216\) 0 0
\(217\) 108.434 108.434i 0.499694 0.499694i
\(218\) 19.2923 + 1.68786i 0.0884970 + 0.00774248i
\(219\) 0 0
\(220\) −171.856 + 92.2579i −0.781165 + 0.419354i
\(221\) −215.215 + 78.3319i −0.973825 + 0.354443i
\(222\) 0 0
\(223\) 6.71950 9.59643i 0.0301323 0.0430333i −0.803803 0.594895i \(-0.797194\pi\)
0.833936 + 0.551862i \(0.186082\pi\)
\(224\) −188.798 + 109.003i −0.842849 + 0.486619i
\(225\) 0 0
\(226\) −245.625 + 425.435i −1.08684 + 1.88245i
\(227\) −217.750 + 101.538i −0.959249 + 0.447305i −0.838213 0.545343i \(-0.816399\pi\)
−0.121036 + 0.992648i \(0.538622\pi\)
\(228\) 0 0
\(229\) −89.8856 + 107.121i −0.392513 + 0.467779i −0.925722 0.378204i \(-0.876542\pi\)
0.533209 + 0.845984i \(0.320986\pi\)
\(230\) 236.269 + 7.30826i 1.02726 + 0.0317750i
\(231\) 0 0
\(232\) −90.8766 + 42.3765i −0.391710 + 0.182657i
\(233\) 106.050 28.4159i 0.455149 0.121957i −0.0239588 0.999713i \(-0.507627\pi\)
0.479108 + 0.877756i \(0.340960\pi\)
\(234\) 0 0
\(235\) −183.238 + 78.6432i −0.779738 + 0.334652i
\(236\) −52.5200 297.856i −0.222543 1.26210i
\(237\) 0 0
\(238\) −376.759 175.686i −1.58302 0.738176i
\(239\) −170.015 29.9783i −0.711361 0.125432i −0.193753 0.981050i \(-0.562066\pi\)
−0.517608 + 0.855618i \(0.673177\pi\)
\(240\) 0 0
\(241\) −178.536 + 149.809i −0.740813 + 0.621616i −0.933056 0.359732i \(-0.882868\pi\)
0.192243 + 0.981347i \(0.438424\pi\)
\(242\) 125.484 125.484i 0.518531 0.518531i
\(243\) 0 0
\(244\) 179.054i 0.733827i
\(245\) 81.3765 + 16.9585i 0.332149 + 0.0692183i
\(246\) 0 0
\(247\) −142.303 203.230i −0.576126 0.822793i
\(248\) −74.1809 34.5911i −0.299117 0.139480i
\(249\) 0 0
\(250\) 58.5327 321.602i 0.234131 1.28641i
\(251\) −31.3082 54.2275i −0.124734 0.216046i 0.796895 0.604118i \(-0.206474\pi\)
−0.921629 + 0.388072i \(0.873141\pi\)
\(252\) 0 0
\(253\) −239.980 + 64.3023i −0.948536 + 0.254159i
\(254\) −2.30768 + 6.34030i −0.00908536 + 0.0249618i
\(255\) 0 0
\(256\) 256.983 + 215.634i 1.00384 + 0.842321i
\(257\) 78.1350 6.83592i 0.304027 0.0265989i 0.0658785 0.997828i \(-0.479015\pi\)
0.238149 + 0.971229i \(0.423459\pi\)
\(258\) 0 0
\(259\) −75.8232 + 208.322i −0.292754 + 0.804334i
\(260\) −93.2011 69.6516i −0.358466 0.267891i
\(261\) 0 0
\(262\) −327.105 87.6476i −1.24849 0.334533i
\(263\) −42.2612 + 60.3552i −0.160689 + 0.229488i −0.891420 0.453178i \(-0.850290\pi\)
0.730731 + 0.682665i \(0.239179\pi\)
\(264\) 0 0
\(265\) −203.987 + 47.9509i −0.769760 + 0.180947i
\(266\) 78.1978 443.482i 0.293977 1.66722i
\(267\) 0 0
\(268\) 217.009 + 18.9858i 0.809734 + 0.0708426i
\(269\) 133.665i 0.496895i 0.968645 + 0.248447i \(0.0799203\pi\)
−0.968645 + 0.248447i \(0.920080\pi\)
\(270\) 0 0
\(271\) −167.480 −0.618006 −0.309003 0.951061i \(-0.599995\pi\)
−0.309003 + 0.951061i \(0.599995\pi\)
\(272\) −46.9867 + 537.061i −0.172745 + 1.97449i
\(273\) 0 0
\(274\) 547.342 + 96.5111i 1.99760 + 0.352230i
\(275\) 38.6342 + 341.388i 0.140488 + 1.24141i
\(276\) 0 0
\(277\) 437.853 + 306.588i 1.58070 + 1.10682i 0.941112 + 0.338096i \(0.109783\pi\)
0.639585 + 0.768720i \(0.279106\pi\)
\(278\) −0.180621 + 0.674087i −0.000649716 + 0.00242477i
\(279\) 0 0
\(280\) 12.3655 + 85.5115i 0.0441625 + 0.305398i
\(281\) 468.626 + 170.566i 1.66771 + 0.606996i 0.991546 0.129759i \(-0.0414202\pi\)
0.676161 + 0.736754i \(0.263642\pi\)
\(282\) 0 0
\(283\) −2.93131 33.5050i −0.0103580 0.118392i 0.989255 0.146198i \(-0.0467036\pi\)
−0.999613 + 0.0278056i \(0.991148\pi\)
\(284\) −61.1224 + 72.8429i −0.215220 + 0.256489i
\(285\) 0 0
\(286\) 276.842 + 100.762i 0.967979 + 0.352316i
\(287\) 1.01574 + 3.79081i 0.00353918 + 0.0132084i
\(288\) 0 0
\(289\) −425.686 + 245.770i −1.47296 + 0.850414i
\(290\) −24.3114 431.022i −0.0838324 1.48628i
\(291\) 0 0
\(292\) −15.6840 + 33.6344i −0.0537123 + 0.115186i
\(293\) 145.787 102.081i 0.497568 0.348401i −0.297700 0.954660i \(-0.596219\pi\)
0.795267 + 0.606259i \(0.207331\pi\)
\(294\) 0 0
\(295\) −521.530 108.684i −1.76790 0.368422i
\(296\) 118.328 0.399757
\(297\) 0 0
\(298\) −289.093 289.093i −0.970109 0.970109i
\(299\) −95.2613 113.528i −0.318600 0.379692i
\(300\) 0 0
\(301\) 8.82269 50.0359i 0.0293113 0.166232i
\(302\) 240.910 516.634i 0.797716 1.71071i
\(303\) 0 0
\(304\) −575.130 + 101.411i −1.89188 + 0.333589i
\(305\) −292.887 116.979i −0.960286 0.383537i
\(306\) 0 0
\(307\) 31.5341 + 117.687i 0.102717 + 0.383345i 0.998076 0.0620000i \(-0.0197479\pi\)
−0.895359 + 0.445345i \(0.853081\pi\)
\(308\) 93.8077 + 201.171i 0.304571 + 0.653154i
\(309\) 0 0
\(310\) 256.765 241.357i 0.828275 0.778573i
\(311\) −457.010 383.477i −1.46949 1.23305i −0.916610 0.399783i \(-0.869085\pi\)
−0.552877 0.833263i \(-0.686470\pi\)
\(312\) 0 0
\(313\) −105.281 225.776i −0.336361 0.721328i 0.663273 0.748377i \(-0.269167\pi\)
−0.999634 + 0.0270491i \(0.991389\pi\)
\(314\) −267.808 154.619i −0.852892 0.492417i
\(315\) 0 0
\(316\) 99.5132 + 172.362i 0.314915 + 0.545449i
\(317\) 455.409 + 318.881i 1.43662 + 1.00593i 0.994018 + 0.109214i \(0.0348335\pi\)
0.442602 + 0.896718i \(0.354055\pi\)
\(318\) 0 0
\(319\) 155.187 + 426.373i 0.486480 + 1.33659i
\(320\) −101.362 + 54.4141i −0.316755 + 0.170044i
\(321\) 0 0
\(322\) 23.4448 267.975i 0.0728099 0.832221i
\(323\) −597.882 597.882i −1.85103 1.85103i
\(324\) 0 0
\(325\) −174.822 + 106.949i −0.537915 + 0.329074i
\(326\) −320.164 + 268.650i −0.982099 + 0.824079i
\(327\) 0 0
\(328\) 1.71589 1.20148i 0.00523139 0.00366306i
\(329\) 77.6097 + 213.231i 0.235896 + 0.648118i
\(330\) 0 0
\(331\) −87.1410 494.201i −0.263266 1.49305i −0.773929 0.633273i \(-0.781711\pi\)
0.510663 0.859781i \(-0.329400\pi\)
\(332\) 50.8626 + 13.6286i 0.153201 + 0.0410500i
\(333\) 0 0
\(334\) 362.768 + 209.444i 1.08613 + 0.627079i
\(335\) 172.831 342.568i 0.515915 1.02259i
\(336\) 0 0
\(337\) −107.639 + 9.41717i −0.319403 + 0.0279441i −0.245730 0.969338i \(-0.579028\pi\)
−0.0736729 + 0.997282i \(0.523472\pi\)
\(338\) −23.2019 265.198i −0.0686445 0.784611i
\(339\) 0 0
\(340\) −354.030 178.614i −1.04126 0.525335i
\(341\) −185.189 + 320.756i −0.543075 + 0.940634i
\(342\) 0 0
\(343\) 96.6430 360.677i 0.281758 1.05154i
\(344\) −26.7067 + 4.70911i −0.0776357 + 0.0136893i
\(345\) 0 0
\(346\) 148.515 54.0551i 0.429234 0.156229i
\(347\) 173.998 + 248.495i 0.501435 + 0.716123i 0.987468 0.157817i \(-0.0504456\pi\)
−0.486034 + 0.873940i \(0.661557\pi\)
\(348\) 0 0
\(349\) 35.3610 + 42.1416i 0.101321 + 0.120749i 0.814322 0.580413i \(-0.197109\pi\)
−0.713001 + 0.701163i \(0.752665\pi\)
\(350\) −361.646 87.1133i −1.03327 0.248895i
\(351\) 0 0
\(352\) 372.321 372.321i 1.05773 1.05773i
\(353\) 636.855 + 55.7176i 1.80412 + 0.157840i 0.939044 0.343798i \(-0.111713\pi\)
0.865078 + 0.501638i \(0.167269\pi\)
\(354\) 0 0
\(355\) 79.2204 + 147.570i 0.223156 + 0.415691i
\(356\) −221.698 + 80.6916i −0.622749 + 0.226662i
\(357\) 0 0
\(358\) 409.038 584.167i 1.14256 1.63175i
\(359\) 87.4299 50.4777i 0.243537 0.140606i −0.373264 0.927725i \(-0.621761\pi\)
0.616802 + 0.787119i \(0.288428\pi\)
\(360\) 0 0
\(361\) 277.469 480.591i 0.768613 1.33128i
\(362\) −444.846 + 207.435i −1.22886 + 0.573025i
\(363\) 0 0
\(364\) −85.1092 + 101.429i −0.233817 + 0.278652i
\(365\) 44.7709 + 47.6290i 0.122660 + 0.130491i
\(366\) 0 0
\(367\) 177.604 82.8180i 0.483934 0.225662i −0.165311 0.986241i \(-0.552863\pi\)
0.649245 + 0.760579i \(0.275085\pi\)
\(368\) −336.965 + 90.2895i −0.915666 + 0.245352i
\(369\) 0 0
\(370\) −188.959 + 473.109i −0.510701 + 1.27867i
\(371\) 41.4082 + 234.837i 0.111612 + 0.632985i
\(372\) 0 0
\(373\) 551.415 + 257.129i 1.47832 + 0.689354i 0.983711 0.179760i \(-0.0575320\pi\)
0.494613 + 0.869113i \(0.335310\pi\)
\(374\) 988.793 + 174.351i 2.64383 + 0.466179i
\(375\) 0 0
\(376\) 92.7804 77.8520i 0.246756 0.207053i
\(377\) −191.385 + 191.385i −0.507653 + 0.507653i
\(378\) 0 0
\(379\) 710.326i 1.87421i −0.349045 0.937106i \(-0.613494\pi\)
0.349045 0.937106i \(-0.386506\pi\)
\(380\) 87.6343 420.519i 0.230617 1.10663i
\(381\) 0 0
\(382\) −198.865 284.008i −0.520588 0.743477i
\(383\) −238.881 111.392i −0.623710 0.290841i 0.0849561 0.996385i \(-0.472925\pi\)
−0.708666 + 0.705544i \(0.750703\pi\)
\(384\) 0 0
\(385\) 390.352 22.0175i 1.01390 0.0571882i
\(386\) 123.423 + 213.774i 0.319748 + 0.553820i
\(387\) 0 0
\(388\) 74.9188 20.0744i 0.193090 0.0517382i
\(389\) 129.260 355.140i 0.332289 0.912955i −0.655227 0.755432i \(-0.727427\pi\)
0.987515 0.157523i \(-0.0503509\pi\)
\(390\) 0 0
\(391\) −386.911 324.657i −0.989542 0.830324i
\(392\) −50.2977 + 4.40047i −0.128310 + 0.0112257i
\(393\) 0 0
\(394\) 187.932 516.338i 0.476984 1.31050i
\(395\) 346.955 50.1718i 0.878366 0.127017i
\(396\) 0 0
\(397\) 321.590 + 86.1697i 0.810050 + 0.217052i 0.639992 0.768382i \(-0.278938\pi\)
0.170058 + 0.985434i \(0.445604\pi\)
\(398\) 204.562 292.145i 0.513976 0.734034i
\(399\) 0 0
\(400\) 54.2479 + 479.356i 0.135620 + 1.19839i
\(401\) 15.5961 88.4496i 0.0388929 0.220573i −0.959166 0.282842i \(-0.908723\pi\)
0.998059 + 0.0622696i \(0.0198338\pi\)
\(402\) 0 0
\(403\) −220.094 19.2557i −0.546138 0.0477809i
\(404\) 182.961i 0.452873i
\(405\) 0 0
\(406\) −491.274 −1.21004
\(407\) 46.6672 533.409i 0.114661 1.31059i
\(408\) 0 0
\(409\) −66.3266 11.6952i −0.162168 0.0285946i 0.0919747 0.995761i \(-0.470682\pi\)
−0.254142 + 0.967167i \(0.581793\pi\)
\(410\) 2.06374 + 8.77929i 0.00503351 + 0.0214129i
\(411\) 0 0
\(412\) 105.577 + 73.9260i 0.256256 + 0.179432i
\(413\) −156.907 + 585.585i −0.379920 + 1.41788i
\(414\) 0 0
\(415\) 55.5223 74.2947i 0.133789 0.179023i
\(416\) 295.146 + 107.424i 0.709486 + 0.258232i
\(417\) 0 0
\(418\) 94.7951 + 1083.51i 0.226783 + 2.59214i
\(419\) −313.309 + 373.388i −0.747755 + 0.891140i −0.997008 0.0772984i \(-0.975371\pi\)
0.249253 + 0.968438i \(0.419815\pi\)
\(420\) 0 0
\(421\) 626.052 + 227.864i 1.48706 + 0.541245i 0.952674 0.303995i \(-0.0983207\pi\)
0.534386 + 0.845241i \(0.320543\pi\)
\(422\) −161.085 601.178i −0.381718 1.42459i
\(423\) 0 0
\(424\) 110.226 63.6391i 0.259967 0.150092i
\(425\) −523.461 + 462.413i −1.23167 + 1.08803i
\(426\) 0 0
\(427\) −151.678 + 325.275i −0.355218 + 0.761767i
\(428\) 151.171 105.851i 0.353203 0.247315i
\(429\) 0 0
\(430\) 23.8198 114.301i 0.0553949 0.265816i
\(431\) 463.226 1.07477 0.537385 0.843337i \(-0.319412\pi\)
0.537385 + 0.843337i \(0.319412\pi\)
\(432\) 0 0
\(433\) 136.418 + 136.418i 0.315052 + 0.315052i 0.846863 0.531811i \(-0.178488\pi\)
−0.531811 + 0.846863i \(0.678488\pi\)
\(434\) −257.770 307.198i −0.593939 0.707829i
\(435\) 0 0
\(436\) 3.65039 20.7024i 0.00837246 0.0474826i
\(437\) 231.228 495.871i 0.529126 1.13472i
\(438\) 0 0
\(439\) −774.274 + 136.525i −1.76372 + 0.310992i −0.959157 0.282873i \(-0.908712\pi\)
−0.804565 + 0.593865i \(0.797601\pi\)
\(440\) −82.3031 191.766i −0.187053 0.435832i
\(441\) 0 0
\(442\) 155.013 + 578.518i 0.350709 + 1.30886i
\(443\) −79.9036 171.354i −0.180369 0.386803i 0.795247 0.606285i \(-0.207341\pi\)
−0.975617 + 0.219482i \(0.929563\pi\)
\(444\) 0 0
\(445\) −12.8479 + 415.360i −0.0288717 + 0.933394i
\(446\) −23.4685 19.6924i −0.0526199 0.0441534i
\(447\) 0 0
\(448\) 55.3283 + 118.652i 0.123501 + 0.264848i
\(449\) −687.568 396.968i −1.53133 0.884115i −0.999301 0.0373913i \(-0.988095\pi\)
−0.532032 0.846724i \(-0.678571\pi\)
\(450\) 0 0
\(451\) −4.73941 8.20889i −0.0105087 0.0182015i
\(452\) 436.813 + 305.859i 0.966400 + 0.676680i
\(453\) 0 0
\(454\) 214.891 + 590.409i 0.473329 + 1.30046i
\(455\) 110.310 + 205.483i 0.242439 + 0.451610i
\(456\) 0 0
\(457\) −1.89953 + 21.7117i −0.00415652 + 0.0475093i −0.997990 0.0633763i \(-0.979813\pi\)
0.993833 + 0.110886i \(0.0353687\pi\)
\(458\) 258.579 + 258.579i 0.564583 + 0.564583i
\(459\) 0 0
\(460\) 30.2557 254.802i 0.0657733 0.553918i
\(461\) 74.4549 62.4751i 0.161507 0.135521i −0.558452 0.829537i \(-0.688605\pi\)
0.719960 + 0.694016i \(0.244160\pi\)
\(462\) 0 0
\(463\) 28.2390 19.7732i 0.0609914 0.0427066i −0.542683 0.839938i \(-0.682592\pi\)
0.603675 + 0.797231i \(0.293703\pi\)
\(464\) 217.905 + 598.688i 0.469622 + 1.29028i
\(465\) 0 0
\(466\) −49.8564 282.750i −0.106988 0.606760i
\(467\) −96.1818 25.7718i −0.205957 0.0551859i 0.154366 0.988014i \(-0.450667\pi\)
−0.360322 + 0.932828i \(0.617333\pi\)
\(468\) 0 0
\(469\) −378.142 218.320i −0.806273 0.465502i
\(470\) 163.112 + 495.285i 0.347048 + 1.05380i
\(471\) 0 0
\(472\) 322.350 28.2020i 0.682945 0.0597500i
\(473\) 10.6953 + 122.248i 0.0226116 + 0.258452i
\(474\) 0 0
\(475\) −630.611 418.080i −1.32760 0.880168i
\(476\) −225.625 + 390.794i −0.474002 + 0.820995i
\(477\) 0 0
\(478\) −116.847 + 436.080i −0.244450 + 0.912301i
\(479\) 42.4814 7.49061i 0.0886876 0.0156380i −0.129128 0.991628i \(-0.541218\pi\)
0.217816 + 0.975990i \(0.430107\pi\)
\(480\) 0 0
\(481\) 300.138 109.241i 0.623987 0.227113i
\(482\) 349.582 + 499.254i 0.725273 + 1.03580i
\(483\) 0 0
\(484\) −123.823 147.566i −0.255832 0.304889i
\(485\) 16.1089 135.663i 0.0332143 0.279718i
\(486\) 0 0
\(487\) 328.967 328.967i 0.675497 0.675497i −0.283481 0.958978i \(-0.591489\pi\)
0.958978 + 0.283481i \(0.0914893\pi\)
\(488\) 190.834 + 16.6958i 0.391054 + 0.0342128i
\(489\) 0 0
\(490\) 62.7264 208.131i 0.128013 0.424758i
\(491\) 784.475 285.526i 1.59771 0.581519i 0.618752 0.785586i \(-0.287638\pi\)
0.978957 + 0.204067i \(0.0654162\pi\)
\(492\) 0 0
\(493\) −529.081 + 755.606i −1.07319 + 1.53267i
\(494\) −561.874 + 324.398i −1.13740 + 0.656677i
\(495\) 0 0
\(496\) −260.031 + 450.387i −0.524256 + 0.908038i
\(497\) 172.743 80.5513i 0.347571 0.162075i
\(498\) 0 0
\(499\) −98.5930 + 117.499i −0.197581 + 0.235468i −0.855734 0.517417i \(-0.826894\pi\)
0.658152 + 0.752885i \(0.271338\pi\)
\(500\) −342.232 93.7211i −0.684464 0.187442i
\(501\) 0 0
\(502\) −148.406 + 69.2026i −0.295628 + 0.137854i
\(503\) −73.8842 + 19.7972i −0.146887 + 0.0393583i −0.331513 0.943451i \(-0.607559\pi\)
0.184626 + 0.982809i \(0.440893\pi\)
\(504\) 0 0
\(505\) 299.278 + 119.531i 0.592630 + 0.236696i
\(506\) 112.820 + 639.834i 0.222965 + 1.26449i
\(507\) 0 0
\(508\) 6.63787 + 3.09529i 0.0130667 + 0.00609309i
\(509\) −86.9868 15.3381i −0.170898 0.0301338i 0.0875445 0.996161i \(-0.472098\pi\)
−0.258442 + 0.966027i \(0.583209\pi\)
\(510\) 0 0
\(511\) 56.9841 47.8153i 0.111515 0.0935721i
\(512\) 357.035 357.035i 0.697335 0.697335i
\(513\) 0 0
\(514\) 205.110i 0.399047i
\(515\) 189.900 124.401i 0.368738 0.241555i
\(516\) 0 0
\(517\) −314.356 448.946i −0.608038 0.868368i
\(518\) 525.426 + 245.010i 1.01434 + 0.472993i
\(519\) 0 0
\(520\) 82.9248 92.8385i 0.159471 0.178536i
\(521\) 343.130 + 594.318i 0.658598 + 1.14073i 0.980979 + 0.194115i \(0.0621835\pi\)
−0.322381 + 0.946610i \(0.604483\pi\)
\(522\) 0 0
\(523\) −169.317 + 45.3683i −0.323741 + 0.0867462i −0.417030 0.908893i \(-0.636929\pi\)
0.0932883 + 0.995639i \(0.470262\pi\)
\(524\) −125.726 + 345.428i −0.239934 + 0.659214i
\(525\) 0 0
\(526\) 147.601 + 123.852i 0.280611 + 0.235460i
\(527\) −750.093 + 65.6246i −1.42333 + 0.124525i
\(528\) 0 0
\(529\) −69.1470 + 189.980i −0.130713 + 0.359130i
\(530\) 78.4260 + 542.341i 0.147974 + 1.02328i
\(531\) 0 0
\(532\) −472.168 126.517i −0.887533 0.237814i
\(533\) 3.24313 4.63167i 0.00608467 0.00868981i
\(534\) 0 0
\(535\) −74.3833 316.432i −0.139034 0.591461i
\(536\) −40.4699 + 229.516i −0.0755036 + 0.428202i
\(537\) 0 0
\(538\) 348.214 + 30.4648i 0.647239 + 0.0566261i
\(539\) 228.471i 0.423880i
\(540\) 0 0
\(541\) 518.161 0.957784 0.478892 0.877874i \(-0.341039\pi\)
0.478892 + 0.877874i \(0.341039\pi\)
\(542\) −38.1719 + 436.307i −0.0704278 + 0.804994i
\(543\) 0 0
\(544\) 1054.17 + 185.879i 1.93781 + 0.341689i
\(545\) −31.4791 19.4963i −0.0577598 0.0357731i
\(546\) 0 0
\(547\) 700.415 + 490.436i 1.28047 + 0.896592i 0.998033 0.0626950i \(-0.0199695\pi\)
0.282433 + 0.959287i \(0.408858\pi\)
\(548\) 156.146 582.746i 0.284939 1.06341i
\(549\) 0 0
\(550\) 898.165 22.8384i 1.63303 0.0415244i
\(551\) −938.971 341.758i −1.70412 0.620250i
\(552\) 0 0
\(553\) −34.7694 397.417i −0.0628742 0.718656i
\(554\) 898.498 1070.79i 1.62184 1.93283i
\(555\) 0 0
\(556\) 0.711847 + 0.259091i 0.00128030 + 0.000465991i
\(557\) 54.2859 + 202.598i 0.0974612 + 0.363730i 0.997381 0.0723250i \(-0.0230419\pi\)
−0.899920 + 0.436055i \(0.856375\pi\)
\(558\) 0 0
\(559\) −63.3936 + 36.6003i −0.113405 + 0.0654747i
\(560\) 548.109 30.9156i 0.978767 0.0552065i
\(561\) 0 0
\(562\) 551.155 1181.96i 0.980704 2.10313i
\(563\) 89.6853 62.7983i 0.159299 0.111542i −0.491209 0.871042i \(-0.663445\pi\)
0.650508 + 0.759499i \(0.274556\pi\)
\(564\) 0 0
\(565\) 785.686 514.693i 1.39060 0.910961i
\(566\) −87.9531 −0.155394
\(567\) 0 0
\(568\) −71.9362 71.9362i −0.126648 0.126648i
\(569\) −115.386 137.512i −0.202787 0.241672i 0.655060 0.755576i \(-0.272643\pi\)
−0.857848 + 0.513904i \(0.828199\pi\)
\(570\) 0 0
\(571\) −99.5175 + 564.392i −0.174286 + 0.988427i 0.764678 + 0.644412i \(0.222898\pi\)
−0.938964 + 0.344014i \(0.888213\pi\)
\(572\) 135.152 289.835i 0.236280 0.506704i
\(573\) 0 0
\(574\) 10.1071 1.78215i 0.0176081 0.00310479i
\(575\) −397.026 215.957i −0.690480 0.375578i
\(576\) 0 0
\(577\) 88.5245 + 330.378i 0.153422 + 0.572579i 0.999235 + 0.0390997i \(0.0124490\pi\)
−0.845813 + 0.533479i \(0.820884\pi\)
\(578\) 543.241 + 1164.98i 0.939863 + 2.01554i
\(579\) 0 0
\(580\) −468.392 14.4883i −0.807573 0.0249798i
\(581\) −80.8537 67.8443i −0.139163 0.116772i
\(582\) 0 0
\(583\) −243.405 521.984i −0.417505 0.895342i
\(584\) −34.3849 19.8522i −0.0588783 0.0339934i
\(585\) 0 0
\(586\) −232.708 403.062i −0.397112 0.687818i
\(587\) −717.413 502.338i −1.22217 0.855772i −0.229111 0.973400i \(-0.573582\pi\)
−0.993058 + 0.117628i \(0.962471\pi\)
\(588\) 0 0
\(589\) −278.971 766.465i −0.473634 1.30130i
\(590\) −402.004 + 1333.88i −0.681363 + 2.26082i
\(591\) 0 0
\(592\) 65.5274 748.981i 0.110688 1.26517i
\(593\) −26.3100 26.3100i −0.0443676 0.0443676i 0.684575 0.728942i \(-0.259988\pi\)
−0.728942 + 0.684575i \(0.759988\pi\)
\(594\) 0 0
\(595\) 491.836 + 624.378i 0.826615 + 1.04937i
\(596\) −339.965 + 285.265i −0.570411 + 0.478632i
\(597\) 0 0
\(598\) −317.468 + 222.293i −0.530882 + 0.371728i
\(599\) −373.022 1024.87i −0.622741 1.71097i −0.700176 0.713970i \(-0.746895\pi\)
0.0774351 0.996997i \(-0.475327\pi\)
\(600\) 0 0
\(601\) −195.015 1105.98i −0.324484 1.84024i −0.513277 0.858223i \(-0.671569\pi\)
0.188793 0.982017i \(-0.439543\pi\)
\(602\) −128.339 34.3884i −0.213188 0.0571237i
\(603\) 0 0
\(604\) −535.878 309.390i −0.887216 0.512234i
\(605\) −322.277 + 106.136i −0.532690 + 0.175431i
\(606\) 0 0
\(607\) −713.135 + 62.3913i −1.17485 + 0.102786i −0.657817 0.753178i \(-0.728520\pi\)
−0.517035 + 0.855964i \(0.672964\pi\)
\(608\) 101.063 + 1155.15i 0.166222 + 1.89992i
\(609\) 0 0
\(610\) −371.500 + 736.348i −0.609016 + 1.20713i
\(611\) 163.463 283.126i 0.267533 0.463381i
\(612\) 0 0
\(613\) −278.779 + 1040.42i −0.454778 + 1.69725i 0.233963 + 0.972245i \(0.424830\pi\)
−0.688741 + 0.725007i \(0.741836\pi\)
\(614\) 313.777 55.3273i 0.511037 0.0901097i
\(615\) 0 0
\(616\) −223.154 + 81.2215i −0.362263 + 0.131853i
\(617\) −59.3078 84.7003i −0.0961228 0.137278i 0.768210 0.640198i \(-0.221148\pi\)
−0.864333 + 0.502920i \(0.832259\pi\)
\(618\) 0 0
\(619\) 377.183 + 449.509i 0.609342 + 0.726185i 0.979199 0.202903i \(-0.0650377\pi\)
−0.369857 + 0.929089i \(0.620593\pi\)
\(620\) −236.704 300.492i −0.381780 0.484664i
\(621\) 0 0
\(622\) −1103.17 + 1103.17i −1.77359 + 1.77359i
\(623\) 471.099 + 41.2158i 0.756178 + 0.0661570i
\(624\) 0 0
\(625\) −376.890 + 498.577i −0.603024 + 0.797723i
\(626\) −612.171 + 222.812i −0.977910 + 0.355930i
\(627\) 0 0
\(628\) −192.536 + 274.970i −0.306586 + 0.437851i
\(629\) 942.699 544.268i 1.49873 0.865290i
\(630\) 0 0
\(631\) −47.0582 + 81.5072i −0.0745771 + 0.129171i −0.900902 0.434022i \(-0.857094\pi\)
0.826325 + 0.563193i \(0.190427\pi\)
\(632\) −192.981 + 89.9887i −0.305350 + 0.142387i
\(633\) 0 0
\(634\) 934.523 1113.72i 1.47401 1.75666i
\(635\) 9.39974 8.83569i 0.0148027 0.0139145i
\(636\) 0 0
\(637\) −123.517 + 57.5968i −0.193904 + 0.0904188i
\(638\) 1146.13 307.104i 1.79644 0.481355i
\(639\) 0 0
\(640\) −183.567 427.710i −0.286823 0.668297i
\(641\) −28.4464 161.328i −0.0443782 0.251681i 0.954546 0.298065i \(-0.0963413\pi\)
−0.998924 + 0.0463842i \(0.985230\pi\)
\(642\) 0 0
\(643\) 190.018 + 88.6070i 0.295518 + 0.137803i 0.564723 0.825280i \(-0.308983\pi\)
−0.269205 + 0.963083i \(0.586761\pi\)
\(644\) −287.561 50.7048i −0.446524 0.0787342i
\(645\) 0 0
\(646\) −1693.83 + 1421.29i −2.62203 + 2.20014i
\(647\) 575.686 575.686i 0.889778 0.889778i −0.104723 0.994501i \(-0.533396\pi\)
0.994501 + 0.104723i \(0.0333957\pi\)
\(648\) 0 0
\(649\) 1464.24i 2.25614i
\(650\) 238.771 + 479.811i 0.367341 + 0.738171i
\(651\) 0 0
\(652\) 260.219 + 371.631i 0.399108 + 0.569986i
\(653\) −329.524 153.660i −0.504631 0.235313i 0.153595 0.988134i \(-0.450915\pi\)
−0.658226 + 0.752820i \(0.728693\pi\)
\(654\) 0 0
\(655\) 482.896 + 431.330i 0.737245 + 0.658519i
\(656\) −6.65480 11.5264i −0.0101445 0.0175708i
\(657\) 0 0
\(658\) 573.183 153.584i 0.871100 0.233410i
\(659\) 232.026 637.485i 0.352087 0.967352i −0.629611 0.776911i \(-0.716786\pi\)
0.981698 0.190442i \(-0.0609921\pi\)
\(660\) 0 0
\(661\) −125.268 105.112i −0.189512 0.159020i 0.543095 0.839671i \(-0.317252\pi\)
−0.732607 + 0.680652i \(0.761697\pi\)
\(662\) −1307.32 + 114.376i −1.97480 + 0.172773i
\(663\) 0 0
\(664\) −19.2679 + 52.9382i −0.0290180 + 0.0797263i
\(665\) −515.425 + 689.693i −0.775075 + 1.03713i
\(666\) 0 0
\(667\) −576.549 154.486i −0.864392 0.231613i
\(668\) 260.807 372.470i 0.390429 0.557590i
\(669\) 0 0
\(670\) −853.044 528.327i −1.27320 0.788547i
\(671\) 150.526 853.673i 0.224330 1.27224i
\(672\) 0 0
\(673\) 1146.56 + 100.311i 1.70365 + 0.149050i 0.897016 0.441998i \(-0.145730\pi\)
0.806636 + 0.591049i \(0.201286\pi\)
\(674\) 282.560i 0.419228i
\(675\) 0 0
\(676\) −288.972 −0.427473
\(677\) 35.6905 407.945i 0.0527187 0.602577i −0.923182 0.384363i \(-0.874421\pi\)
0.975901 0.218214i \(-0.0700232\pi\)
\(678\) 0 0
\(679\) −153.105 26.9965i −0.225486 0.0397593i
\(680\) 223.377 360.668i 0.328496 0.530394i
\(681\) 0 0
\(682\) 793.404 + 555.548i 1.16335 + 0.814586i
\(683\) 142.470 531.706i 0.208595 0.778485i −0.779729 0.626117i \(-0.784643\pi\)
0.988324 0.152369i \(-0.0486901\pi\)
\(684\) 0 0
\(685\) −851.214 636.134i −1.24265 0.928663i
\(686\) −917.584 333.973i −1.33759 0.486841i
\(687\) 0 0
\(688\) 15.0177 + 171.653i 0.0218280 + 0.249496i
\(689\) 220.835 263.181i 0.320515 0.381975i
\(690\) 0 0
\(691\) −65.4999 23.8400i −0.0947901 0.0345008i 0.294190 0.955747i \(-0.404950\pi\)
−0.388980 + 0.921246i \(0.627172\pi\)
\(692\) −44.4027 165.713i −0.0641658 0.239470i
\(693\) 0 0
\(694\) 687.019 396.651i 0.989941 0.571543i
\(695\) 0.888869 0.995135i 0.00127895 0.00143185i
\(696\) 0 0
\(697\) 8.14383 17.4645i 0.0116841 0.0250567i
\(698\) 117.844 82.5151i 0.168831 0.118217i
\(699\) 0 0
\(700\) −128.416 + 382.830i −0.183451 + 0.546900i
\(701\) −516.228 −0.736417 −0.368208 0.929743i \(-0.620029\pi\)
−0.368208 + 0.929743i \(0.620029\pi\)
\(702\) 0 0
\(703\) 833.802 + 833.802i 1.18606 + 1.18606i
\(704\) −203.251 242.225i −0.288708 0.344069i
\(705\) 0 0
\(706\) 290.303 1646.39i 0.411195 2.33200i
\(707\) 154.988 332.372i 0.219219 0.470116i
\(708\) 0 0
\(709\) −110.908 + 19.5560i −0.156428 + 0.0275825i −0.251314 0.967906i \(-0.580863\pi\)
0.0948855 + 0.995488i \(0.469751\pi\)
\(710\) 402.497 172.746i 0.566897 0.243304i
\(711\) 0 0
\(712\) −65.3284 243.809i −0.0917534 0.342428i
\(713\) −205.912 441.579i −0.288796 0.619326i
\(714\) 0 0
\(715\) −385.800 410.429i −0.539581 0.574027i
\(716\) −593.000 497.586i −0.828213 0.694953i
\(717\) 0 0
\(718\) −111.574 239.271i −0.155396 0.333247i
\(719\) 306.341 + 176.866i 0.426065 + 0.245989i 0.697669 0.716420i \(-0.254221\pi\)
−0.271604 + 0.962409i \(0.587554\pi\)
\(720\) 0 0
\(721\) −129.172 223.732i −0.179156 0.310308i
\(722\) −1188.76 832.381i −1.64649 1.15288i
\(723\) 0 0
\(724\) 182.228 + 500.666i 0.251696 + 0.691528i
\(725\) −329.708 + 756.707i −0.454769 + 1.04373i
\(726\) 0 0
\(727\) 22.1374 253.031i 0.0304503 0.348049i −0.965652 0.259840i \(-0.916330\pi\)
0.996102 0.0882088i \(-0.0281143\pi\)
\(728\) −100.167 100.167i −0.137592 0.137592i
\(729\) 0 0
\(730\) 134.284 105.779i 0.183951 0.144902i
\(731\) −191.107 + 160.358i −0.261432 + 0.219368i
\(732\) 0 0
\(733\) −424.701 + 297.379i −0.579402 + 0.405701i −0.826209 0.563363i \(-0.809507\pi\)
0.246808 + 0.969064i \(0.420618\pi\)
\(734\) −175.273 481.557i −0.238791 0.656073i
\(735\) 0 0
\(736\) 120.279 + 682.139i 0.163423 + 0.926819i
\(737\) 1018.67 + 272.952i 1.38218 + 0.370355i
\(738\) 0 0
\(739\) 593.622 + 342.728i 0.803277 + 0.463772i 0.844616 0.535373i \(-0.179829\pi\)
−0.0413386 + 0.999145i \(0.513162\pi\)
\(740\) 493.728 + 249.094i 0.667199 + 0.336613i
\(741\) 0 0
\(742\) 621.220 54.3498i 0.837224 0.0732476i
\(743\) 35.6070 + 406.990i 0.0479233 + 0.547766i 0.981767 + 0.190086i \(0.0608767\pi\)
−0.933844 + 0.357680i \(0.883568\pi\)
\(744\) 0 0
\(745\) 244.517 + 742.466i 0.328210 + 0.996599i
\(746\) 795.533 1377.90i 1.06640 1.84706i
\(747\) 0 0
\(748\) 282.084 1052.75i 0.377118 1.40742i
\(749\) −364.289 + 64.2339i −0.486367 + 0.0857596i
\(750\) 0 0
\(751\) −881.970 + 321.011i −1.17439 + 0.427445i −0.854219 0.519914i \(-0.825964\pi\)
−0.320176 + 0.947358i \(0.603742\pi\)
\(752\) −441.400 630.384i −0.586968 0.838277i
\(753\) 0 0
\(754\) 454.963 + 542.204i 0.603399 + 0.719103i
\(755\) −856.182 + 674.434i −1.13402 + 0.893290i
\(756\) 0 0
\(757\) −661.648 + 661.648i −0.874040 + 0.874040i −0.992910 0.118870i \(-0.962073\pi\)
0.118870 + 0.992910i \(0.462073\pi\)
\(758\) −1850.49 161.897i −2.44129 0.213585i
\(759\) 0 0
\(760\) 440.015 + 132.611i 0.578968 + 0.174489i
\(761\) 344.002 125.206i 0.452039 0.164529i −0.105960 0.994370i \(-0.533792\pi\)
0.557999 + 0.829842i \(0.311569\pi\)
\(762\) 0 0
\(763\) −24.1686 + 34.5163i −0.0316758 + 0.0452377i
\(764\) −325.931 + 188.176i −0.426611 + 0.246304i
\(765\) 0 0
\(766\) −344.637 + 596.928i −0.449917 + 0.779280i
\(767\) 791.601 369.129i 1.03207 0.481264i
\(768\) 0 0
\(769\) 336.653 401.207i 0.437780 0.521726i −0.501370 0.865233i \(-0.667171\pi\)
0.939150 + 0.343507i \(0.111615\pi\)
\(770\) 31.6105 1021.94i 0.0410525 1.32719i
\(771\) 0 0
\(772\) 242.845 113.241i 0.314566 0.146685i
\(773\) 101.742 27.2616i 0.131619 0.0352673i −0.192408 0.981315i \(-0.561630\pi\)
0.324027 + 0.946048i \(0.394963\pi\)
\(774\) 0 0
\(775\) −646.171 + 190.872i −0.833770 + 0.246287i
\(776\) 14.4094 + 81.7198i 0.0185688 + 0.105309i
\(777\) 0 0
\(778\) −895.725 417.683i −1.15132 0.536868i
\(779\) 20.5574 + 3.62482i 0.0263894 + 0.00465317i
\(780\) 0 0
\(781\) −352.650 + 295.909i −0.451537 + 0.378884i
\(782\) −933.958 + 933.958i −1.19432 + 1.19432i
\(783\) 0 0
\(784\) 320.806i 0.409191i
\(785\) 323.996 + 494.584i 0.412733 + 0.630043i
\(786\) 0 0
\(787\) 465.668 + 665.042i 0.591700 + 0.845035i 0.997626 0.0688712i \(-0.0219398\pi\)
−0.405926 + 0.913906i \(0.633051\pi\)
\(788\) −540.571 252.072i −0.686004 0.319889i
\(789\) 0 0
\(790\) −51.6266 915.298i −0.0653501 1.15860i
\(791\) −534.431 925.662i −0.675640 1.17024i
\(792\) 0 0
\(793\) 499.462 133.831i 0.629839 0.168765i
\(794\) 297.780 818.144i 0.375038 1.03041i
\(795\) 0 0
\(796\) −296.563 248.846i −0.372567 0.312621i
\(797\) −946.575 + 82.8146i −1.18767 + 0.103908i −0.663814 0.747897i \(-0.731063\pi\)
−0.523858 + 0.851805i \(0.675508\pi\)
\(798\) 0 0
\(799\) 381.073 1046.99i 0.476937 1.31037i
\(800\) 957.550 24.3485i 1.19694 0.0304356i
\(801\) 0 0
\(802\) −226.868 60.7892i −0.282878 0.0757970i
\(803\) −103.052 + 147.174i −0.128334 + 0.183280i
\(804\) 0 0
\(805\) −270.809 + 437.252i −0.336408 + 0.543170i
\(806\) −100.327 + 568.984i −0.124476 + 0.705936i
\(807\) 0 0
\(808\) −194.999 17.0602i −0.241335 0.0211141i
\(809\) 985.730i 1.21845i 0.792996 + 0.609227i \(0.208520\pi\)
−0.792996 + 0.609227i \(0.791480\pi\)
\(810\) 0 0
\(811\) −590.003 −0.727501 −0.363750 0.931496i \(-0.618504\pi\)
−0.363750 + 0.931496i \(0.618504\pi\)
\(812\) −46.4781 + 531.247i −0.0572391 + 0.654246i
\(813\) 0 0
\(814\) −1378.96 243.149i −1.69406 0.298708i
\(815\) 777.900 182.860i 0.954479 0.224368i
\(816\) 0 0
\(817\) −221.372 155.006i −0.270957 0.189726i
\(818\) −45.5846 + 170.124i −0.0557269 + 0.207976i
\(819\) 0 0
\(820\) 9.68887 1.40107i 0.0118157 0.00170863i
\(821\) −679.549 247.336i −0.827709 0.301261i −0.106791 0.994282i \(-0.534058\pi\)
−0.720918 + 0.693020i \(0.756280\pi\)
\(822\) 0 0
\(823\) −112.760 1288.85i −0.137011 1.56604i −0.684364 0.729141i \(-0.739920\pi\)
0.547353 0.836902i \(-0.315636\pi\)
\(824\) −88.6345 + 105.630i −0.107566 + 0.128192i
\(825\) 0 0
\(826\) 1489.76 + 542.230i 1.80359 + 0.656452i
\(827\) 412.833 + 1540.72i 0.499194 + 1.86302i 0.505145 + 0.863035i \(0.331439\pi\)
−0.00595087 + 0.999982i \(0.501894\pi\)
\(828\) 0 0
\(829\) 891.879 514.927i 1.07585 0.621142i 0.146076 0.989273i \(-0.453336\pi\)
0.929774 + 0.368132i \(0.120002\pi\)
\(830\) −180.893 161.576i −0.217943 0.194670i
\(831\) 0 0
\(832\) 79.7134 170.946i 0.0958094 0.205464i
\(833\) −380.472 + 266.409i −0.456749 + 0.319819i
\(834\) 0 0
\(835\) −438.879 669.955i −0.525604 0.802342i
\(836\) 1180.64 1.41225
\(837\) 0 0
\(838\) 901.315 + 901.315i 1.07556 + 1.07556i
\(839\) −259.990 309.844i −0.309881 0.369302i 0.588516 0.808485i \(-0.299712\pi\)
−0.898397 + 0.439184i \(0.855268\pi\)
\(840\) 0 0
\(841\) −43.2559 + 245.316i −0.0514338 + 0.291696i
\(842\) 736.306 1579.01i 0.874473 1.87531i
\(843\) 0 0
\(844\) −665.333 + 117.316i −0.788310 + 0.139000i
\(845\) −188.790 + 472.685i −0.223420 + 0.559391i
\(846\) 0 0
\(847\) 99.9357 + 372.965i 0.117988 + 0.440337i
\(848\) −341.775 732.939i −0.403037 0.864315i
\(849\) 0 0
\(850\) 1085.34 + 1469.08i 1.27687 + 1.72833i
\(851\) 539.583 + 452.764i 0.634058 + 0.532038i
\(852\) 0 0
\(853\) 87.7886 + 188.263i 0.102918 + 0.220707i 0.951023 0.309120i \(-0.100034\pi\)
−0.848106 + 0.529827i \(0.822257\pi\)
\(854\) 812.813 + 469.278i 0.951772 + 0.549506i
\(855\) 0 0
\(856\) 98.7194 + 170.987i 0.115326 + 0.199751i
\(857\) 437.567 + 306.388i 0.510580 + 0.357512i 0.800300 0.599599i \(-0.204673\pi\)
−0.289720 + 0.957111i \(0.593562\pi\)
\(858\) 0 0
\(859\) −91.0704 250.214i −0.106019 0.291285i 0.875328 0.483530i \(-0.160645\pi\)
−0.981347 + 0.192245i \(0.938423\pi\)
\(860\) −121.348 36.5716i −0.141102 0.0425251i
\(861\) 0 0
\(862\) 105.578 1206.77i 0.122481 1.39996i
\(863\) 414.792 + 414.792i 0.480639 + 0.480639i 0.905336 0.424697i \(-0.139619\pi\)
−0.424697 + 0.905336i \(0.639619\pi\)
\(864\) 0 0
\(865\) −300.074 35.6314i −0.346907 0.0411924i
\(866\) 386.478 324.294i 0.446279 0.374473i
\(867\) 0 0
\(868\) −356.580 + 249.680i −0.410807 + 0.287650i
\(869\) 329.548 + 905.427i 0.379227 + 1.04192i
\(870\) 0 0
\(871\) 109.239 + 619.527i 0.125418 + 0.711282i
\(872\) 21.7241 + 5.82096i 0.0249130 + 0.00667541i
\(873\) 0 0
\(874\) −1239.11 715.399i −1.41774 0.818534i
\(875\) 542.318 + 460.165i 0.619792 + 0.525903i
\(876\) 0 0
\(877\) −75.5182 + 6.60699i −0.0861097 + 0.00753362i −0.130129 0.991497i \(-0.541539\pi\)
0.0440195 + 0.999031i \(0.485984\pi\)
\(878\) 179.195 + 2048.20i 0.204094 + 2.33281i
\(879\) 0 0
\(880\) −1259.40 + 414.758i −1.43113 + 0.471316i
\(881\) −476.501 + 825.323i −0.540863 + 0.936803i 0.457991 + 0.888957i \(0.348569\pi\)
−0.998855 + 0.0478462i \(0.984764\pi\)
\(882\) 0 0
\(883\) −176.672 + 659.350i −0.200082 + 0.746716i 0.790811 + 0.612061i \(0.209659\pi\)
−0.990893 + 0.134655i \(0.957007\pi\)
\(884\) 640.255 112.894i 0.724270 0.127708i
\(885\) 0 0
\(886\) −464.611 + 169.105i −0.524392 + 0.190863i
\(887\) 558.367 + 797.431i 0.629501 + 0.899021i 0.999550 0.0299916i \(-0.00954805\pi\)
−0.370049 + 0.929012i \(0.620659\pi\)
\(888\) 0 0
\(889\) −9.43651 11.2460i −0.0106147 0.0126502i
\(890\) 1079.14 + 128.139i 1.21252 + 0.143977i
\(891\) 0 0
\(892\) −23.5150 + 23.5150i −0.0263621 + 0.0263621i
\(893\) 1202.37 + 105.193i 1.34643 + 0.117798i
\(894\) 0 0
\(895\) −1201.34 + 644.919i −1.34228 + 0.720580i
\(896\) −497.718 + 181.154i −0.555489 + 0.202181i
\(897\) 0 0
\(898\) −1190.86 + 1700.73i −1.32613 + 1.89391i
\(899\) −770.615 + 444.915i −0.857191 + 0.494900i
\(900\) 0 0
\(901\) 585.434 1014.00i 0.649761 1.12542i
\(902\) −22.4655 + 10.4758i −0.0249063 + 0.0116140i
\(903\) 0 0
\(904\) −366.714 + 437.032i −0.405657 + 0.483443i
\(905\) 938.017 + 29.0146i 1.03648 + 0.0320604i
\(906\) 0 0
\(907\) −1100.10 + 512.987i −1.21290 + 0.565586i −0.920513 0.390712i \(-0.872229\pi\)
−0.292391 + 0.956299i \(0.594451\pi\)
\(908\) 658.779 176.519i 0.725527 0.194404i
\(909\) 0 0
\(910\) 560.452 240.538i 0.615881 0.264327i
\(911\) −97.3307 551.990i −0.106839 0.605916i −0.990470 0.137731i \(-0.956019\pi\)
0.883630 0.468185i \(-0.155092\pi\)
\(912\) 0 0
\(913\) 231.040 + 107.736i 0.253056 + 0.118002i
\(914\) 56.1290 + 9.89707i 0.0614103 + 0.0108283i
\(915\) 0 0
\(916\) 304.082 255.155i 0.331967 0.278554i
\(917\) 521.013 521.013i 0.568171 0.568171i
\(918\) 0 0
\(919\) 647.257i 0.704306i 0.935943 + 0.352153i \(0.114550\pi\)
−0.935943 + 0.352153i \(0.885450\pi\)
\(920\) 268.746 + 56.0054i 0.292115 + 0.0608754i
\(921\) 0 0
\(922\) −145.786 208.204i −0.158119 0.225818i
\(923\) −248.877 116.053i −0.269639 0.125735i
\(924\) 0 0
\(925\) 730.015 644.878i 0.789206 0.697165i
\(926\) −45.0755 78.0730i −0.0486776 0.0843121i
\(927\) 0 0
\(928\) 1221.91 327.410i 1.31671 0.352812i
\(929\) −489.817 + 1345.76i −0.527251 + 1.44861i 0.335042 + 0.942203i \(0.391249\pi\)
−0.862294 + 0.506408i \(0.830973\pi\)
\(930\) 0 0
\(931\) −385.432 323.416i −0.413998 0.347385i
\(932\) −310.473 + 27.1629i −0.333126 + 0.0291447i
\(933\) 0 0
\(934\) −89.0608 + 244.692i −0.0953541 + 0.261983i
\(935\) −1537.75 1149.20i −1.64465 1.22909i
\(936\) 0 0
\(937\) 1488.49 + 398.840i 1.58857 + 0.425656i 0.941566 0.336829i \(-0.109355\pi\)
0.647005 + 0.762486i \(0.276021\pi\)
\(938\) −654.939 + 935.350i −0.698230 + 0.997175i
\(939\) 0 0
\(940\) 551.016 129.527i 0.586187 0.137794i
\(941\) 60.4078 342.590i 0.0641954 0.364070i −0.935740 0.352691i \(-0.885267\pi\)
0.999935 0.0113791i \(-0.00362216\pi\)
\(942\) 0 0
\(943\) 12.4219 + 1.08677i 0.0131727 + 0.00115246i
\(944\) 2056.00i 2.17796i
\(945\) 0 0
\(946\) 320.909 0.339227
\(947\) −65.7115 + 751.086i −0.0693891 + 0.793121i 0.879167 + 0.476513i \(0.158100\pi\)
−0.948556 + 0.316608i \(0.897456\pi\)
\(948\) 0 0
\(949\) −105.545 18.6103i −0.111217 0.0196105i
\(950\) −1232.88 + 1547.54i −1.29777 + 1.62899i
\(951\) 0 0
\(952\) −395.467 276.909i −0.415407 0.290871i
\(953\) −91.6247 + 341.948i −0.0961435 + 0.358812i −0.997190 0.0749094i \(-0.976133\pi\)
0.901047 + 0.433722i \(0.142800\pi\)
\(954\) 0 0
\(955\) 94.8733 + 656.080i 0.0993438 + 0.686994i
\(956\) 460.507 + 167.611i 0.481702 + 0.175325i
\(957\) 0 0
\(958\) −9.83170 112.377i −0.0102627 0.117304i
\(959\) −777.310 + 926.362i −0.810542 + 0.965967i
\(960\) 0 0
\(961\) 220.497 + 80.2545i 0.229446 + 0.0835114i
\(962\) −216.181 806.797i −0.224720 0.838666i
\(963\) 0 0
\(964\) 572.949 330.793i 0.594346 0.343146i
\(965\) −26.5785 471.216i −0.0275425 0.488306i
\(966\) 0 0
\(967\) 160.494 344.180i 0.165971 0.355925i −0.805678 0.592353i \(-0.798199\pi\)
0.971649 + 0.236428i \(0.0759768\pi\)
\(968\) 168.821 118.210i 0.174402 0.122118i
\(969\) 0 0
\(970\) −349.749 72.8862i −0.360566 0.0751404i
\(971\) 15.4343 0.0158953 0.00794765 0.999968i \(-0.497470\pi\)
0.00794765 + 0.999968i \(0.497470\pi\)
\(972\) 0 0
\(973\) −1.07368 1.07368i −0.00110348 0.00110348i
\(974\) −782.025 931.981i −0.802900 0.956859i
\(975\) 0 0
\(976\) 211.359 1198.68i 0.216557 1.22815i
\(977\) −626.075 + 1342.62i −0.640813 + 1.37423i 0.270582 + 0.962697i \(0.412784\pi\)
−0.911395 + 0.411532i \(0.864994\pi\)
\(978\) 0 0
\(979\) −1124.83 + 198.337i −1.14895 + 0.202592i
\(980\) −219.132 87.5210i −0.223604 0.0893071i
\(981\) 0 0
\(982\) −565.035 2108.74i −0.575392 2.14739i
\(983\) −349.672 749.873i −0.355719 0.762841i 0.644279 0.764790i \(-0.277157\pi\)
−0.999998 + 0.00194892i \(0.999380\pi\)
\(984\) 0 0
\(985\) −765.491 + 719.556i −0.777148 + 0.730514i
\(986\) 1847.87 + 1550.54i 1.87410 + 1.57256i
\(987\) 0 0
\(988\) 297.636 + 638.282i 0.301251 + 0.646035i
\(989\) −139.803 80.7151i −0.141358 0.0816129i
\(990\) 0 0
\(991\) 423.252 + 733.093i 0.427095 + 0.739751i 0.996614 0.0822277i \(-0.0262035\pi\)
−0.569518 + 0.821979i \(0.692870\pi\)
\(992\) 845.863 + 592.279i 0.852684 + 0.597056i
\(993\) 0 0
\(994\) −170.475 468.377i −0.171504 0.471204i
\(995\) −600.799 + 322.528i −0.603818 + 0.324149i
\(996\) 0 0
\(997\) −34.8884 + 398.777i −0.0349934 + 0.399977i 0.958417 + 0.285370i \(0.0921164\pi\)
−0.993411 + 0.114607i \(0.963439\pi\)
\(998\) 283.628 + 283.628i 0.284197 + 0.284197i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.s.a.118.28 408
3.2 odd 2 135.3.r.a.103.7 yes 408
5.2 odd 4 inner 405.3.s.a.37.28 408
15.2 even 4 135.3.r.a.22.7 408
27.11 odd 18 135.3.r.a.43.7 yes 408
27.16 even 9 inner 405.3.s.a.208.28 408
135.92 even 36 135.3.r.a.97.7 yes 408
135.97 odd 36 inner 405.3.s.a.127.28 408
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.r.a.22.7 408 15.2 even 4
135.3.r.a.43.7 yes 408 27.11 odd 18
135.3.r.a.97.7 yes 408 135.92 even 36
135.3.r.a.103.7 yes 408 3.2 odd 2
405.3.s.a.37.28 408 5.2 odd 4 inner
405.3.s.a.118.28 408 1.1 even 1 trivial
405.3.s.a.127.28 408 135.97 odd 36 inner
405.3.s.a.208.28 408 27.16 even 9 inner