Properties

Label 405.3.s.a.118.27
Level $405$
Weight $3$
Character 405.118
Analytic conductor $11.035$
Analytic rank $0$
Dimension $408$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(37,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.37"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([28, 9])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.s (of order \(36\), degree \(12\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(408\)
Relative dimension: \(34\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 118.27
Character \(\chi\) \(=\) 405.118
Dual form 405.3.s.a.127.27

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.217924 - 2.49089i) q^{2} +(-2.21779 - 0.391056i) q^{4} +(-4.81982 + 1.33016i) q^{5} +(1.23887 + 0.867466i) q^{7} +(1.13122 - 4.22177i) q^{8} +(2.26293 + 12.2955i) q^{10} +(-7.38848 - 2.68919i) q^{11} +(-1.63449 - 18.6824i) q^{13} +(2.43074 - 2.89684i) q^{14} +(-18.7342 - 6.81868i) q^{16} +(5.25283 + 19.6038i) q^{17} +(-26.7540 + 15.4465i) q^{19} +(11.2095 - 1.06520i) q^{20} +(-8.30859 + 17.8178i) q^{22} +(-31.0483 + 21.7403i) q^{23} +(21.4613 - 12.8223i) q^{25} -46.8918 q^{26} +(-2.40833 - 2.40833i) q^{28} +(6.52085 + 7.77124i) q^{29} +(-4.53255 + 25.7054i) q^{31} +(-13.6787 + 29.3340i) q^{32} +(49.9756 - 8.81204i) q^{34} +(-7.12500 - 2.53313i) q^{35} +(8.54330 + 31.8840i) q^{37} +(32.6450 + 70.0074i) q^{38} +(0.163367 + 21.8529i) q^{40} +(-31.8883 - 26.7575i) q^{41} +(-19.2652 - 41.3143i) q^{43} +(15.3345 + 8.85336i) q^{44} +(47.3864 + 82.0756i) q^{46} +(-36.3695 - 25.4662i) q^{47} +(-15.9767 - 43.8956i) q^{49} +(-27.2619 - 56.2520i) q^{50} +(-3.68088 + 42.0727i) q^{52} +(-10.0402 - 10.0402i) q^{53} +(39.1882 + 3.13351i) q^{55} +(5.06367 - 4.24893i) q^{56} +(20.7783 - 14.5491i) q^{58} +(-4.53496 - 12.4597i) q^{59} +(-5.74775 - 32.5971i) q^{61} +(63.0414 + 16.8919i) q^{62} +(1.02459 + 0.591547i) q^{64} +(32.7285 + 87.8714i) q^{65} +(92.0596 - 8.05417i) q^{67} +(-3.98347 - 45.5313i) q^{68} +(-7.86245 + 17.1955i) q^{70} +(22.0775 - 38.2394i) q^{71} +(-13.2076 + 49.2915i) q^{73} +(81.2813 - 14.3321i) q^{74} +(65.3753 - 23.7946i) q^{76} +(-6.82059 - 9.74081i) q^{77} +(-20.5814 - 24.5280i) q^{79} +(99.3653 + 7.94531i) q^{80} +(-73.5991 + 73.5991i) q^{82} +(45.4188 + 3.97363i) q^{83} +(-51.3940 - 87.4997i) q^{85} +(-107.108 + 38.9840i) q^{86} +(-19.7111 + 28.1504i) q^{88} +(26.4081 - 15.2467i) q^{89} +(14.1814 - 24.5629i) q^{91} +(77.3604 - 36.0737i) q^{92} +(-71.3592 + 85.0426i) q^{94} +(108.403 - 110.036i) q^{95} +(-109.882 + 51.2388i) q^{97} +(-112.821 + 30.2302i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 408 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 6 q^{8} - 6 q^{10} + 60 q^{11} - 12 q^{13} - 24 q^{16} + 6 q^{17} + 300 q^{20} - 12 q^{22} + 156 q^{23} + 6 q^{25} + 48 q^{26} - 24 q^{28} - 24 q^{31} - 72 q^{32}+ \cdots + 1032 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.217924 2.49089i 0.108962 1.24544i −0.723093 0.690750i \(-0.757280\pi\)
0.832055 0.554692i \(-0.187164\pi\)
\(3\) 0 0
\(4\) −2.21779 0.391056i −0.554447 0.0977640i
\(5\) −4.81982 + 1.33016i −0.963964 + 0.266033i
\(6\) 0 0
\(7\) 1.23887 + 0.867466i 0.176981 + 0.123924i 0.658711 0.752396i \(-0.271102\pi\)
−0.481729 + 0.876320i \(0.659991\pi\)
\(8\) 1.13122 4.22177i 0.141402 0.527721i
\(9\) 0 0
\(10\) 2.26293 + 12.2955i 0.226293 + 1.22955i
\(11\) −7.38848 2.68919i −0.671680 0.244472i −0.0164089 0.999865i \(-0.505223\pi\)
−0.655271 + 0.755394i \(0.727446\pi\)
\(12\) 0 0
\(13\) −1.63449 18.6824i −0.125730 1.43710i −0.752856 0.658186i \(-0.771324\pi\)
0.627125 0.778918i \(-0.284231\pi\)
\(14\) 2.43074 2.89684i 0.173624 0.206917i
\(15\) 0 0
\(16\) −18.7342 6.81868i −1.17089 0.426168i
\(17\) 5.25283 + 19.6038i 0.308990 + 1.15317i 0.929456 + 0.368933i \(0.120277\pi\)
−0.620466 + 0.784233i \(0.713057\pi\)
\(18\) 0 0
\(19\) −26.7540 + 15.4465i −1.40811 + 0.812971i −0.995206 0.0978043i \(-0.968818\pi\)
−0.412902 + 0.910776i \(0.635485\pi\)
\(20\) 11.2095 1.06520i 0.560476 0.0532601i
\(21\) 0 0
\(22\) −8.30859 + 17.8178i −0.377663 + 0.809901i
\(23\) −31.0483 + 21.7403i −1.34993 + 0.945230i −0.349964 + 0.936763i \(0.613806\pi\)
−0.999964 + 0.00846647i \(0.997305\pi\)
\(24\) 0 0
\(25\) 21.4613 12.8223i 0.858453 0.512892i
\(26\) −46.8918 −1.80353
\(27\) 0 0
\(28\) −2.40833 2.40833i −0.0860116 0.0860116i
\(29\) 6.52085 + 7.77124i 0.224857 + 0.267974i 0.866664 0.498892i \(-0.166260\pi\)
−0.641807 + 0.766866i \(0.721815\pi\)
\(30\) 0 0
\(31\) −4.53255 + 25.7054i −0.146211 + 0.829206i 0.820175 + 0.572113i \(0.193876\pi\)
−0.966387 + 0.257094i \(0.917235\pi\)
\(32\) −13.6787 + 29.3340i −0.427458 + 0.916686i
\(33\) 0 0
\(34\) 49.9756 8.81204i 1.46987 0.259178i
\(35\) −7.12500 2.53313i −0.203572 0.0723752i
\(36\) 0 0
\(37\) 8.54330 + 31.8840i 0.230900 + 0.861731i 0.979954 + 0.199222i \(0.0638415\pi\)
−0.749054 + 0.662509i \(0.769492\pi\)
\(38\) 32.6450 + 70.0074i 0.859079 + 1.84230i
\(39\) 0 0
\(40\) 0.163367 + 21.8529i 0.00408418 + 0.546321i
\(41\) −31.8883 26.7575i −0.777764 0.652622i 0.164920 0.986307i \(-0.447263\pi\)
−0.942685 + 0.333685i \(0.891708\pi\)
\(42\) 0 0
\(43\) −19.2652 41.3143i −0.448027 0.960798i −0.992526 0.122036i \(-0.961058\pi\)
0.544498 0.838762i \(-0.316720\pi\)
\(44\) 15.3345 + 8.85336i 0.348511 + 0.201213i
\(45\) 0 0
\(46\) 47.3864 + 82.0756i 1.03014 + 1.78425i
\(47\) −36.3695 25.4662i −0.773819 0.541834i 0.118653 0.992936i \(-0.462142\pi\)
−0.892473 + 0.451102i \(0.851031\pi\)
\(48\) 0 0
\(49\) −15.9767 43.8956i −0.326055 0.895828i
\(50\) −27.2619 56.2520i −0.545239 1.12504i
\(51\) 0 0
\(52\) −3.68088 + 42.0727i −0.0707862 + 0.809090i
\(53\) −10.0402 10.0402i −0.189438 0.189438i 0.606015 0.795453i \(-0.292767\pi\)
−0.795453 + 0.606015i \(0.792767\pi\)
\(54\) 0 0
\(55\) 39.1882 + 3.13351i 0.712513 + 0.0569729i
\(56\) 5.06367 4.24893i 0.0904227 0.0758737i
\(57\) 0 0
\(58\) 20.7783 14.5491i 0.358247 0.250847i
\(59\) −4.53496 12.4597i −0.0768638 0.211181i 0.895309 0.445445i \(-0.146954\pi\)
−0.972173 + 0.234263i \(0.924732\pi\)
\(60\) 0 0
\(61\) −5.74775 32.5971i −0.0942254 0.534379i −0.994982 0.100054i \(-0.968098\pi\)
0.900757 0.434324i \(-0.143013\pi\)
\(62\) 63.0414 + 16.8919i 1.01680 + 0.272450i
\(63\) 0 0
\(64\) 1.02459 + 0.591547i 0.0160092 + 0.00924292i
\(65\) 32.7285 + 87.8714i 0.503516 + 1.35187i
\(66\) 0 0
\(67\) 92.0596 8.05417i 1.37402 0.120212i 0.623898 0.781506i \(-0.285548\pi\)
0.750126 + 0.661295i \(0.229993\pi\)
\(68\) −3.98347 45.5313i −0.0585805 0.669578i
\(69\) 0 0
\(70\) −7.86245 + 17.1955i −0.112321 + 0.245651i
\(71\) 22.0775 38.2394i 0.310951 0.538583i −0.667618 0.744504i \(-0.732686\pi\)
0.978568 + 0.205922i \(0.0660192\pi\)
\(72\) 0 0
\(73\) −13.2076 + 49.2915i −0.180926 + 0.675226i 0.814540 + 0.580108i \(0.196990\pi\)
−0.995466 + 0.0951183i \(0.969677\pi\)
\(74\) 81.2813 14.3321i 1.09840 0.193677i
\(75\) 0 0
\(76\) 65.3753 23.7946i 0.860201 0.313087i
\(77\) −6.82059 9.74081i −0.0885791 0.126504i
\(78\) 0 0
\(79\) −20.5814 24.5280i −0.260525 0.310481i 0.619887 0.784691i \(-0.287178\pi\)
−0.880412 + 0.474210i \(0.842734\pi\)
\(80\) 99.3653 + 7.94531i 1.24207 + 0.0993164i
\(81\) 0 0
\(82\) −73.5991 + 73.5991i −0.897550 + 0.897550i
\(83\) 45.4188 + 3.97363i 0.547214 + 0.0478750i 0.357411 0.933947i \(-0.383660\pi\)
0.189803 + 0.981822i \(0.439215\pi\)
\(84\) 0 0
\(85\) −51.3940 87.4997i −0.604635 1.02941i
\(86\) −107.108 + 38.9840i −1.24544 + 0.453302i
\(87\) 0 0
\(88\) −19.7111 + 28.1504i −0.223990 + 0.319891i
\(89\) 26.4081 15.2467i 0.296720 0.171312i −0.344248 0.938879i \(-0.611866\pi\)
0.640969 + 0.767567i \(0.278533\pi\)
\(90\) 0 0
\(91\) 14.1814 24.5629i 0.155839 0.269922i
\(92\) 77.3604 36.0737i 0.840873 0.392106i
\(93\) 0 0
\(94\) −71.3592 + 85.0426i −0.759140 + 0.904708i
\(95\) 108.403 110.036i 1.14109 1.15828i
\(96\) 0 0
\(97\) −109.882 + 51.2388i −1.13280 + 0.528235i −0.896323 0.443402i \(-0.853771\pi\)
−0.236480 + 0.971636i \(0.575994\pi\)
\(98\) −112.821 + 30.2302i −1.15123 + 0.308471i
\(99\) 0 0
\(100\) −52.6110 + 20.0446i −0.526110 + 0.200446i
\(101\) 2.01063 + 11.4029i 0.0199072 + 0.112900i 0.993142 0.116913i \(-0.0372998\pi\)
−0.973235 + 0.229812i \(0.926189\pi\)
\(102\) 0 0
\(103\) −21.2687 9.91776i −0.206492 0.0962890i 0.316621 0.948552i \(-0.397452\pi\)
−0.523113 + 0.852263i \(0.675229\pi\)
\(104\) −80.7215 14.2334i −0.776168 0.136859i
\(105\) 0 0
\(106\) −27.1970 + 22.8210i −0.256575 + 0.215292i
\(107\) −71.3346 + 71.3346i −0.666679 + 0.666679i −0.956946 0.290267i \(-0.906256\pi\)
0.290267 + 0.956946i \(0.406256\pi\)
\(108\) 0 0
\(109\) 117.131i 1.07459i −0.843393 0.537297i \(-0.819445\pi\)
0.843393 0.537297i \(-0.180555\pi\)
\(110\) 16.3453 96.9305i 0.148593 0.881186i
\(111\) 0 0
\(112\) −17.2942 24.6987i −0.154413 0.220524i
\(113\) 116.476 + 54.3136i 1.03076 + 0.480651i 0.863014 0.505179i \(-0.168574\pi\)
0.167745 + 0.985830i \(0.446351\pi\)
\(114\) 0 0
\(115\) 120.729 146.084i 1.04982 1.27029i
\(116\) −11.4229 19.7850i −0.0984731 0.170560i
\(117\) 0 0
\(118\) −32.0240 + 8.58080i −0.271390 + 0.0727187i
\(119\) −10.4981 + 28.8432i −0.0882192 + 0.242380i
\(120\) 0 0
\(121\) −45.3335 38.0393i −0.374657 0.314374i
\(122\) −82.4482 + 7.21329i −0.675805 + 0.0591253i
\(123\) 0 0
\(124\) 20.1045 55.2367i 0.162133 0.445457i
\(125\) −86.3840 + 90.3482i −0.691072 + 0.722786i
\(126\) 0 0
\(127\) 76.6121 + 20.5282i 0.603245 + 0.161639i 0.547499 0.836806i \(-0.315580\pi\)
0.0557454 + 0.998445i \(0.482246\pi\)
\(128\) −72.5618 + 103.629i −0.566889 + 0.809601i
\(129\) 0 0
\(130\) 226.010 62.3737i 1.73854 0.479798i
\(131\) 30.1965 171.253i 0.230508 1.30727i −0.621364 0.783522i \(-0.713421\pi\)
0.851871 0.523751i \(-0.175468\pi\)
\(132\) 0 0
\(133\) −46.5441 4.07208i −0.349955 0.0306171i
\(134\) 231.065i 1.72437i
\(135\) 0 0
\(136\) 88.7048 0.652241
\(137\) 6.79618 77.6807i 0.0496072 0.567012i −0.930198 0.367058i \(-0.880365\pi\)
0.979805 0.199954i \(-0.0640794\pi\)
\(138\) 0 0
\(139\) 45.5336 + 8.02880i 0.327580 + 0.0577611i 0.335020 0.942211i \(-0.391257\pi\)
−0.00743985 + 0.999972i \(0.502368\pi\)
\(140\) 14.8112 + 8.40423i 0.105794 + 0.0600302i
\(141\) 0 0
\(142\) −90.4387 63.3258i −0.636892 0.445957i
\(143\) −38.1639 + 142.430i −0.266880 + 0.996011i
\(144\) 0 0
\(145\) −41.7663 28.7822i −0.288044 0.198498i
\(146\) 119.901 + 43.6405i 0.821242 + 0.298907i
\(147\) 0 0
\(148\) −6.47880 74.0530i −0.0437757 0.500358i
\(149\) 157.603 187.824i 1.05774 1.26056i 0.0934742 0.995622i \(-0.470203\pi\)
0.964264 0.264942i \(-0.0853528\pi\)
\(150\) 0 0
\(151\) −159.561 58.0755i −1.05670 0.384606i −0.245511 0.969394i \(-0.578956\pi\)
−0.811186 + 0.584788i \(0.801178\pi\)
\(152\) 34.9466 + 130.423i 0.229912 + 0.858044i
\(153\) 0 0
\(154\) −25.7496 + 14.8665i −0.167205 + 0.0965360i
\(155\) −12.3463 129.924i −0.0796534 0.838222i
\(156\) 0 0
\(157\) −11.1496 + 23.9104i −0.0710166 + 0.152296i −0.938611 0.344976i \(-0.887887\pi\)
0.867595 + 0.497272i \(0.165665\pi\)
\(158\) −65.5817 + 45.9208i −0.415074 + 0.290638i
\(159\) 0 0
\(160\) 26.9097 159.579i 0.168185 0.997370i
\(161\) −57.3238 −0.356049
\(162\) 0 0
\(163\) −145.013 145.013i −0.889652 0.889652i 0.104837 0.994489i \(-0.466568\pi\)
−0.994489 + 0.104837i \(0.966568\pi\)
\(164\) 60.2579 + 71.8126i 0.367426 + 0.437882i
\(165\) 0 0
\(166\) 19.7957 112.267i 0.119251 0.676307i
\(167\) −81.8374 + 175.501i −0.490044 + 1.05090i 0.493419 + 0.869792i \(0.335747\pi\)
−0.983463 + 0.181111i \(0.942031\pi\)
\(168\) 0 0
\(169\) −179.926 + 31.7258i −1.06465 + 0.187727i
\(170\) −229.152 + 108.948i −1.34795 + 0.640871i
\(171\) 0 0
\(172\) 26.5699 + 99.1602i 0.154476 + 0.576513i
\(173\) −114.312 245.143i −0.660762 1.41701i −0.895549 0.444963i \(-0.853217\pi\)
0.234787 0.972047i \(-0.424561\pi\)
\(174\) 0 0
\(175\) 37.7107 + 2.73182i 0.215490 + 0.0156104i
\(176\) 120.080 + 100.759i 0.682275 + 0.572497i
\(177\) 0 0
\(178\) −32.2229 69.1022i −0.181027 0.388215i
\(179\) −79.5086 45.9043i −0.444182 0.256449i 0.261188 0.965288i \(-0.415886\pi\)
−0.705370 + 0.708839i \(0.749219\pi\)
\(180\) 0 0
\(181\) 4.51197 + 7.81497i 0.0249280 + 0.0431766i 0.878220 0.478256i \(-0.158731\pi\)
−0.853292 + 0.521433i \(0.825398\pi\)
\(182\) −58.0929 40.6771i −0.319192 0.223500i
\(183\) 0 0
\(184\) 56.6599 + 155.672i 0.307934 + 0.846043i
\(185\) −83.5882 142.311i −0.451828 0.769250i
\(186\) 0 0
\(187\) 13.9079 158.968i 0.0743739 0.850097i
\(188\) 70.7012 + 70.7012i 0.376070 + 0.376070i
\(189\) 0 0
\(190\) −250.464 294.000i −1.31823 1.54737i
\(191\) 84.8059 71.1606i 0.444010 0.372568i −0.393198 0.919454i \(-0.628631\pi\)
0.837207 + 0.546886i \(0.184187\pi\)
\(192\) 0 0
\(193\) 163.890 114.757i 0.849172 0.594596i −0.0659278 0.997824i \(-0.521001\pi\)
0.915100 + 0.403228i \(0.132112\pi\)
\(194\) 103.684 + 284.869i 0.534453 + 1.46840i
\(195\) 0 0
\(196\) 18.2673 + 103.599i 0.0932004 + 0.528566i
\(197\) 295.205 + 79.0998i 1.49850 + 0.401522i 0.912597 0.408859i \(-0.134073\pi\)
0.585903 + 0.810381i \(0.300740\pi\)
\(198\) 0 0
\(199\) 239.148 + 138.072i 1.20175 + 0.693831i 0.960944 0.276742i \(-0.0892547\pi\)
0.240807 + 0.970573i \(0.422588\pi\)
\(200\) −29.8553 105.110i −0.149276 0.525548i
\(201\) 0 0
\(202\) 28.8414 2.52329i 0.142779 0.0124916i
\(203\) 1.33719 + 15.2842i 0.00658715 + 0.0752915i
\(204\) 0 0
\(205\) 189.288 + 86.5496i 0.923355 + 0.422193i
\(206\) −29.3390 + 50.8166i −0.142422 + 0.246683i
\(207\) 0 0
\(208\) −96.7681 + 361.144i −0.465231 + 1.73627i
\(209\) 239.210 42.1792i 1.14455 0.201814i
\(210\) 0 0
\(211\) −84.2672 + 30.6708i −0.399371 + 0.145359i −0.533894 0.845551i \(-0.679272\pi\)
0.134523 + 0.990910i \(0.457050\pi\)
\(212\) 18.3408 + 26.1933i 0.0865130 + 0.123553i
\(213\) 0 0
\(214\) 162.141 + 193.232i 0.757668 + 0.902953i
\(215\) 147.809 + 173.502i 0.687486 + 0.806985i
\(216\) 0 0
\(217\) −27.9138 + 27.9138i −0.128635 + 0.128635i
\(218\) −291.759 25.5256i −1.33835 0.117090i
\(219\) 0 0
\(220\) −85.6858 22.2743i −0.389481 0.101247i
\(221\) 357.660 130.177i 1.61837 0.589038i
\(222\) 0 0
\(223\) −218.591 + 312.181i −0.980230 + 1.39991i −0.0645906 + 0.997912i \(0.520574\pi\)
−0.915639 + 0.402001i \(0.868315\pi\)
\(224\) −42.3923 + 24.4752i −0.189251 + 0.109264i
\(225\) 0 0
\(226\) 160.672 278.292i 0.710937 1.23138i
\(227\) 9.95983 4.64435i 0.0438759 0.0204597i −0.400556 0.916272i \(-0.631183\pi\)
0.444432 + 0.895812i \(0.353405\pi\)
\(228\) 0 0
\(229\) −124.474 + 148.343i −0.543556 + 0.647785i −0.965981 0.258613i \(-0.916735\pi\)
0.422425 + 0.906398i \(0.361179\pi\)
\(230\) −337.568 332.558i −1.46769 1.44590i
\(231\) 0 0
\(232\) 40.1849 18.7385i 0.173211 0.0807695i
\(233\) 57.2817 15.3486i 0.245844 0.0658737i −0.133793 0.991009i \(-0.542716\pi\)
0.379637 + 0.925136i \(0.376049\pi\)
\(234\) 0 0
\(235\) 209.169 + 74.3651i 0.890079 + 0.316447i
\(236\) 5.18515 + 29.4064i 0.0219710 + 0.124604i
\(237\) 0 0
\(238\) 69.5574 + 32.4352i 0.292258 + 0.136282i
\(239\) −146.929 25.9075i −0.614766 0.108400i −0.142410 0.989808i \(-0.545485\pi\)
−0.472356 + 0.881408i \(0.656596\pi\)
\(240\) 0 0
\(241\) −255.936 + 214.756i −1.06197 + 0.891102i −0.994301 0.106606i \(-0.966002\pi\)
−0.0676725 + 0.997708i \(0.521557\pi\)
\(242\) −104.631 + 104.631i −0.432359 + 0.432359i
\(243\) 0 0
\(244\) 74.5412i 0.305497i
\(245\) 135.393 + 190.317i 0.552625 + 0.776805i
\(246\) 0 0
\(247\) 332.305 + 474.581i 1.34537 + 1.92138i
\(248\) 103.395 + 48.2138i 0.416915 + 0.194411i
\(249\) 0 0
\(250\) 206.222 + 234.862i 0.824888 + 0.939447i
\(251\) −115.237 199.597i −0.459113 0.795207i 0.539801 0.841793i \(-0.318499\pi\)
−0.998914 + 0.0465852i \(0.985166\pi\)
\(252\) 0 0
\(253\) 287.864 77.1328i 1.13780 0.304873i
\(254\) 67.8289 186.358i 0.267043 0.733695i
\(255\) 0 0
\(256\) 245.940 + 206.368i 0.960703 + 0.806126i
\(257\) 359.446 31.4475i 1.39862 0.122364i 0.637240 0.770665i \(-0.280076\pi\)
0.761384 + 0.648301i \(0.224520\pi\)
\(258\) 0 0
\(259\) −17.0743 + 46.9112i −0.0659239 + 0.181124i
\(260\) −38.2224 207.679i −0.147009 0.798765i
\(261\) 0 0
\(262\) −419.991 112.536i −1.60302 0.429527i
\(263\) −234.720 + 335.214i −0.892470 + 1.27458i 0.0684226 + 0.997656i \(0.478203\pi\)
−0.960892 + 0.276922i \(0.910686\pi\)
\(264\) 0 0
\(265\) 61.7470 + 35.0368i 0.233008 + 0.132214i
\(266\) −20.2862 + 115.049i −0.0762638 + 0.432513i
\(267\) 0 0
\(268\) −207.318 18.1380i −0.773576 0.0676792i
\(269\) 238.334i 0.886001i 0.896521 + 0.443001i \(0.146086\pi\)
−0.896521 + 0.443001i \(0.853914\pi\)
\(270\) 0 0
\(271\) 160.306 0.591533 0.295767 0.955260i \(-0.404425\pi\)
0.295767 + 0.955260i \(0.404425\pi\)
\(272\) 35.2648 403.079i 0.129650 1.48191i
\(273\) 0 0
\(274\) −192.013 33.8570i −0.700776 0.123566i
\(275\) −193.048 + 37.0237i −0.701993 + 0.134632i
\(276\) 0 0
\(277\) −261.061 182.797i −0.942457 0.659916i −0.00206152 0.999998i \(-0.500656\pi\)
−0.940396 + 0.340082i \(0.889545\pi\)
\(278\) 29.9217 111.669i 0.107632 0.401688i
\(279\) 0 0
\(280\) −18.7542 + 27.2146i −0.0669794 + 0.0971949i
\(281\) −357.089 129.970i −1.27078 0.462526i −0.383408 0.923579i \(-0.625250\pi\)
−0.887373 + 0.461053i \(0.847472\pi\)
\(282\) 0 0
\(283\) −10.4723 119.699i −0.0370046 0.422964i −0.991990 0.126313i \(-0.959686\pi\)
0.954986 0.296651i \(-0.0958699\pi\)
\(284\) −63.9170 + 76.1733i −0.225060 + 0.268216i
\(285\) 0 0
\(286\) 346.459 + 126.101i 1.21140 + 0.440912i
\(287\) −16.2943 60.8111i −0.0567745 0.211885i
\(288\) 0 0
\(289\) −106.436 + 61.4509i −0.368291 + 0.212633i
\(290\) −80.7951 + 97.7628i −0.278604 + 0.337113i
\(291\) 0 0
\(292\) 48.5675 104.153i 0.166327 0.356689i
\(293\) 97.8177 68.4927i 0.333849 0.233763i −0.394617 0.918846i \(-0.629123\pi\)
0.728466 + 0.685082i \(0.240234\pi\)
\(294\) 0 0
\(295\) 38.4312 + 54.0213i 0.130275 + 0.183123i
\(296\) 144.271 0.487403
\(297\) 0 0
\(298\) −433.503 433.503i −1.45471 1.45471i
\(299\) 456.908 + 544.522i 1.52812 + 1.82114i
\(300\) 0 0
\(301\) 11.9717 67.8950i 0.0397731 0.225565i
\(302\) −179.432 + 384.793i −0.594145 + 1.27415i
\(303\) 0 0
\(304\) 606.539 106.949i 1.99520 0.351807i
\(305\) 71.0626 + 149.467i 0.232992 + 0.490055i
\(306\) 0 0
\(307\) 76.4108 + 285.169i 0.248895 + 0.928889i 0.971386 + 0.237508i \(0.0763307\pi\)
−0.722490 + 0.691381i \(0.757003\pi\)
\(308\) 11.3174 + 24.2703i 0.0367449 + 0.0787997i
\(309\) 0 0
\(310\) −326.317 + 2.43948i −1.05264 + 0.00786928i
\(311\) 178.496 + 149.776i 0.573942 + 0.481595i 0.882951 0.469464i \(-0.155553\pi\)
−0.309009 + 0.951059i \(0.599997\pi\)
\(312\) 0 0
\(313\) 8.40699 + 18.0288i 0.0268594 + 0.0576002i 0.919280 0.393605i \(-0.128772\pi\)
−0.892420 + 0.451205i \(0.850994\pi\)
\(314\) 57.1283 + 32.9831i 0.181937 + 0.105042i
\(315\) 0 0
\(316\) 36.0535 + 62.4465i 0.114093 + 0.197615i
\(317\) −43.1234 30.1953i −0.136036 0.0952533i 0.503578 0.863950i \(-0.332017\pi\)
−0.639614 + 0.768697i \(0.720906\pi\)
\(318\) 0 0
\(319\) −27.2808 74.9534i −0.0855198 0.234964i
\(320\) −5.72519 1.48828i −0.0178912 0.00465087i
\(321\) 0 0
\(322\) −12.4923 + 142.787i −0.0387958 + 0.443438i
\(323\) −443.344 443.344i −1.37258 1.37258i
\(324\) 0 0
\(325\) −274.629 379.990i −0.845012 1.16920i
\(326\) −392.813 + 329.610i −1.20495 + 1.01107i
\(327\) 0 0
\(328\) −149.037 + 104.356i −0.454380 + 0.318160i
\(329\) −22.9660 63.0986i −0.0698056 0.191789i
\(330\) 0 0
\(331\) −94.5778 536.377i −0.285733 1.62048i −0.702654 0.711532i \(-0.748002\pi\)
0.416920 0.908943i \(-0.363109\pi\)
\(332\) −99.1753 26.5740i −0.298721 0.0800420i
\(333\) 0 0
\(334\) 419.318 + 242.093i 1.25544 + 0.724831i
\(335\) −432.997 + 161.274i −1.29253 + 0.481415i
\(336\) 0 0
\(337\) 560.582 49.0446i 1.66345 0.145533i 0.783754 0.621071i \(-0.213302\pi\)
0.879695 + 0.475538i \(0.157747\pi\)
\(338\) 39.8152 + 455.089i 0.117796 + 1.34642i
\(339\) 0 0
\(340\) 79.7637 + 214.154i 0.234599 + 0.629865i
\(341\) 102.615 177.735i 0.300925 0.521217i
\(342\) 0 0
\(343\) 37.4651 139.822i 0.109228 0.407644i
\(344\) −196.212 + 34.5976i −0.570385 + 0.100574i
\(345\) 0 0
\(346\) −635.534 + 231.315i −1.83680 + 0.668541i
\(347\) 174.873 + 249.745i 0.503957 + 0.719726i 0.987851 0.155401i \(-0.0496669\pi\)
−0.483894 + 0.875127i \(0.660778\pi\)
\(348\) 0 0
\(349\) 135.744 + 161.774i 0.388952 + 0.463535i 0.924618 0.380895i \(-0.124384\pi\)
−0.535666 + 0.844430i \(0.679939\pi\)
\(350\) 15.0227 93.3378i 0.0429221 0.266679i
\(351\) 0 0
\(352\) 179.949 179.949i 0.511219 0.511219i
\(353\) −398.519 34.8659i −1.12895 0.0987703i −0.492661 0.870221i \(-0.663976\pi\)
−0.636289 + 0.771451i \(0.719531\pi\)
\(354\) 0 0
\(355\) −55.5450 + 213.674i −0.156465 + 0.601897i
\(356\) −64.5299 + 23.4870i −0.181264 + 0.0659747i
\(357\) 0 0
\(358\) −131.669 + 188.043i −0.367791 + 0.525260i
\(359\) 9.76776 5.63942i 0.0272082 0.0157087i −0.486334 0.873773i \(-0.661666\pi\)
0.513542 + 0.858064i \(0.328333\pi\)
\(360\) 0 0
\(361\) 296.686 513.875i 0.821844 1.42348i
\(362\) 20.4495 9.53574i 0.0564902 0.0263418i
\(363\) 0 0
\(364\) −41.0568 + 48.9296i −0.112793 + 0.134422i
\(365\) −1.90741 255.145i −0.00522577 0.699026i
\(366\) 0 0
\(367\) −142.914 + 66.6419i −0.389412 + 0.181586i −0.607456 0.794353i \(-0.707810\pi\)
0.218044 + 0.975939i \(0.430032\pi\)
\(368\) 729.905 195.578i 1.98344 0.531461i
\(369\) 0 0
\(370\) −372.697 + 177.195i −1.00729 + 0.478907i
\(371\) −3.72897 21.1480i −0.0100511 0.0570028i
\(372\) 0 0
\(373\) −362.150 168.873i −0.970911 0.452743i −0.128577 0.991700i \(-0.541041\pi\)
−0.842334 + 0.538956i \(0.818819\pi\)
\(374\) −392.941 69.2861i −1.05064 0.185257i
\(375\) 0 0
\(376\) −148.654 + 124.736i −0.395357 + 0.331744i
\(377\) 134.527 134.527i 0.356835 0.356835i
\(378\) 0 0
\(379\) 366.291i 0.966468i 0.875491 + 0.483234i \(0.160538\pi\)
−0.875491 + 0.483234i \(0.839462\pi\)
\(380\) −283.446 + 201.646i −0.745911 + 0.530647i
\(381\) 0 0
\(382\) −158.772 226.749i −0.415632 0.593585i
\(383\) −581.532 271.173i −1.51836 0.708023i −0.528352 0.849025i \(-0.677190\pi\)
−0.990009 + 0.141002i \(0.954968\pi\)
\(384\) 0 0
\(385\) 45.8309 + 37.8765i 0.119041 + 0.0983804i
\(386\) −250.131 433.240i −0.648008 1.12238i
\(387\) 0 0
\(388\) 263.732 70.6668i 0.679722 0.182131i
\(389\) −183.702 + 504.717i −0.472241 + 1.29747i 0.443705 + 0.896173i \(0.353664\pi\)
−0.915947 + 0.401300i \(0.868559\pi\)
\(390\) 0 0
\(391\) −589.284 494.468i −1.50712 1.26462i
\(392\) −203.390 + 17.7943i −0.518852 + 0.0453937i
\(393\) 0 0
\(394\) 261.361 718.083i 0.663352 1.82255i
\(395\) 131.825 + 90.8439i 0.333735 + 0.229985i
\(396\) 0 0
\(397\) 52.9425 + 14.1859i 0.133356 + 0.0357327i 0.324880 0.945755i \(-0.394676\pi\)
−0.191523 + 0.981488i \(0.561343\pi\)
\(398\) 396.039 565.602i 0.995072 1.42111i
\(399\) 0 0
\(400\) −489.492 + 93.8771i −1.22373 + 0.234693i
\(401\) −103.149 + 584.989i −0.257230 + 1.45883i 0.533052 + 0.846083i \(0.321045\pi\)
−0.790282 + 0.612743i \(0.790066\pi\)
\(402\) 0 0
\(403\) 487.646 + 42.6635i 1.21004 + 0.105865i
\(404\) 26.0754i 0.0645431i
\(405\) 0 0
\(406\) 38.3626 0.0944890
\(407\) 22.6201 258.549i 0.0555777 0.635256i
\(408\) 0 0
\(409\) −329.194 58.0457i −0.804875 0.141921i −0.243950 0.969788i \(-0.578443\pi\)
−0.560925 + 0.827867i \(0.689554\pi\)
\(410\) 256.835 452.633i 0.626428 1.10398i
\(411\) 0 0
\(412\) 43.2911 + 30.3128i 0.105076 + 0.0735747i
\(413\) 5.19015 19.3699i 0.0125669 0.0469005i
\(414\) 0 0
\(415\) −224.196 + 41.2622i −0.540231 + 0.0994270i
\(416\) 570.385 + 207.603i 1.37112 + 0.499046i
\(417\) 0 0
\(418\) −52.9339 605.037i −0.126636 1.44746i
\(419\) −218.086 + 259.905i −0.520491 + 0.620297i −0.960697 0.277600i \(-0.910461\pi\)
0.440206 + 0.897897i \(0.354906\pi\)
\(420\) 0 0
\(421\) 604.194 + 219.909i 1.43514 + 0.522349i 0.938400 0.345550i \(-0.112308\pi\)
0.496741 + 0.867899i \(0.334530\pi\)
\(422\) 58.0335 + 216.584i 0.137520 + 0.513232i
\(423\) 0 0
\(424\) −53.7450 + 31.0297i −0.126757 + 0.0731833i
\(425\) 364.099 + 353.371i 0.856703 + 0.831460i
\(426\) 0 0
\(427\) 21.1562 45.3696i 0.0495461 0.106252i
\(428\) 186.101 130.309i 0.434816 0.304461i
\(429\) 0 0
\(430\) 464.384 330.366i 1.07996 0.768294i
\(431\) −234.638 −0.544404 −0.272202 0.962240i \(-0.587752\pi\)
−0.272202 + 0.962240i \(0.587752\pi\)
\(432\) 0 0
\(433\) 588.065 + 588.065i 1.35812 + 1.35812i 0.876236 + 0.481882i \(0.160046\pi\)
0.481882 + 0.876236i \(0.339954\pi\)
\(434\) 63.4470 + 75.6132i 0.146191 + 0.174224i
\(435\) 0 0
\(436\) −45.8047 + 259.771i −0.105057 + 0.595806i
\(437\) 494.858 1061.23i 1.13240 2.42844i
\(438\) 0 0
\(439\) −255.257 + 45.0087i −0.581451 + 0.102525i −0.456635 0.889654i \(-0.650945\pi\)
−0.124816 + 0.992180i \(0.539834\pi\)
\(440\) 57.5594 161.899i 0.130817 0.367952i
\(441\) 0 0
\(442\) −246.314 919.258i −0.557273 2.07977i
\(443\) 50.3545 + 107.986i 0.113667 + 0.243760i 0.954909 0.296899i \(-0.0959526\pi\)
−0.841242 + 0.540659i \(0.818175\pi\)
\(444\) 0 0
\(445\) −107.002 + 108.614i −0.240453 + 0.244075i
\(446\) 729.970 + 612.517i 1.63670 + 1.37336i
\(447\) 0 0
\(448\) 0.756187 + 1.62165i 0.00168792 + 0.00361975i
\(449\) −699.258 403.717i −1.55737 0.899146i −0.997508 0.0705578i \(-0.977522\pi\)
−0.559859 0.828588i \(-0.689145\pi\)
\(450\) 0 0
\(451\) 163.650 + 283.451i 0.362861 + 0.628494i
\(452\) −237.079 166.005i −0.524511 0.367267i
\(453\) 0 0
\(454\) −9.39805 25.8209i −0.0207005 0.0568743i
\(455\) −35.6791 + 137.252i −0.0784156 + 0.301653i
\(456\) 0 0
\(457\) 69.9584 799.628i 0.153082 1.74973i −0.399918 0.916551i \(-0.630961\pi\)
0.552999 0.833182i \(-0.313483\pi\)
\(458\) 342.379 + 342.379i 0.747552 + 0.747552i
\(459\) 0 0
\(460\) −324.879 + 276.771i −0.706259 + 0.601676i
\(461\) 424.380 356.097i 0.920564 0.772445i −0.0535349 0.998566i \(-0.517049\pi\)
0.974099 + 0.226121i \(0.0726044\pi\)
\(462\) 0 0
\(463\) −603.577 + 422.629i −1.30362 + 0.912806i −0.999210 0.0397349i \(-0.987349\pi\)
−0.304411 + 0.952541i \(0.598460\pi\)
\(464\) −69.1731 190.051i −0.149080 0.409594i
\(465\) 0 0
\(466\) −25.7485 146.027i −0.0552543 0.313362i
\(467\) −197.181 52.8345i −0.422229 0.113136i 0.0414471 0.999141i \(-0.486803\pi\)
−0.463676 + 0.886005i \(0.653470\pi\)
\(468\) 0 0
\(469\) 121.037 + 69.8805i 0.258074 + 0.148999i
\(470\) 230.818 504.809i 0.491102 1.07406i
\(471\) 0 0
\(472\) −57.7320 + 5.05090i −0.122314 + 0.0107011i
\(473\) 31.2385 + 357.058i 0.0660433 + 0.754878i
\(474\) 0 0
\(475\) −376.118 + 674.550i −0.791828 + 1.42010i
\(476\) 34.5619 59.8629i 0.0726089 0.125762i
\(477\) 0 0
\(478\) −96.5521 + 360.337i −0.201992 + 0.753844i
\(479\) 83.7408 14.7658i 0.174824 0.0308262i −0.0855507 0.996334i \(-0.527265\pi\)
0.260375 + 0.965508i \(0.416154\pi\)
\(480\) 0 0
\(481\) 581.705 211.723i 1.20937 0.440173i
\(482\) 479.157 + 684.307i 0.994102 + 1.41972i
\(483\) 0 0
\(484\) 85.6646 + 102.091i 0.176993 + 0.210932i
\(485\) 461.455 393.122i 0.951453 0.810562i
\(486\) 0 0
\(487\) −133.297 + 133.297i −0.273711 + 0.273711i −0.830592 0.556881i \(-0.811998\pi\)
0.556881 + 0.830592i \(0.311998\pi\)
\(488\) −144.119 12.6088i −0.295326 0.0258377i
\(489\) 0 0
\(490\) 503.564 295.774i 1.02768 0.603620i
\(491\) −194.091 + 70.6434i −0.395297 + 0.143877i −0.532018 0.846733i \(-0.678566\pi\)
0.136720 + 0.990610i \(0.456344\pi\)
\(492\) 0 0
\(493\) −118.093 + 168.654i −0.239540 + 0.342098i
\(494\) 1254.55 724.312i 2.53957 1.46622i
\(495\) 0 0
\(496\) 260.191 450.663i 0.524578 0.908595i
\(497\) 60.5225 28.2221i 0.121776 0.0567850i
\(498\) 0 0
\(499\) −182.688 + 217.719i −0.366108 + 0.436311i −0.917379 0.398016i \(-0.869699\pi\)
0.551270 + 0.834327i \(0.314143\pi\)
\(500\) 226.913 166.592i 0.453826 0.333185i
\(501\) 0 0
\(502\) −522.286 + 243.546i −1.04041 + 0.485152i
\(503\) 439.500 117.764i 0.873757 0.234122i 0.206045 0.978543i \(-0.433941\pi\)
0.667712 + 0.744420i \(0.267274\pi\)
\(504\) 0 0
\(505\) −24.8585 52.2853i −0.0492248 0.103535i
\(506\) −129.397 733.845i −0.255725 1.45029i
\(507\) 0 0
\(508\) −161.882 75.4867i −0.318665 0.148596i
\(509\) −258.517 45.5835i −0.507892 0.0895550i −0.0861703 0.996280i \(-0.527463\pi\)
−0.421722 + 0.906725i \(0.638574\pi\)
\(510\) 0 0
\(511\) −59.1213 + 49.6086i −0.115697 + 0.0970815i
\(512\) 209.819 209.819i 0.409802 0.409802i
\(513\) 0 0
\(514\) 902.193i 1.75524i
\(515\) 115.704 + 19.5110i 0.224667 + 0.0378854i
\(516\) 0 0
\(517\) 200.232 + 285.961i 0.387296 + 0.553116i
\(518\) 113.130 + 52.7532i 0.218397 + 0.101840i
\(519\) 0 0
\(520\) 407.996 38.7705i 0.784607 0.0745586i
\(521\) −279.823 484.668i −0.537089 0.930265i −0.999059 0.0433694i \(-0.986191\pi\)
0.461971 0.886895i \(-0.347143\pi\)
\(522\) 0 0
\(523\) 249.257 66.7883i 0.476591 0.127702i −0.0125237 0.999922i \(-0.503987\pi\)
0.489115 + 0.872219i \(0.337320\pi\)
\(524\) −133.939 + 367.994i −0.255609 + 0.702279i
\(525\) 0 0
\(526\) 783.829 + 657.711i 1.49017 + 1.25040i
\(527\) −527.733 + 46.1706i −1.00139 + 0.0876103i
\(528\) 0 0
\(529\) 310.431 852.902i 0.586826 1.61229i
\(530\) 100.729 146.169i 0.190055 0.275791i
\(531\) 0 0
\(532\) 101.633 + 27.2324i 0.191039 + 0.0511886i
\(533\) −447.771 + 639.484i −0.840096 + 1.19978i
\(534\) 0 0
\(535\) 248.933 438.707i 0.465296 0.820013i
\(536\) 70.1367 397.765i 0.130852 0.742099i
\(537\) 0 0
\(538\) 593.664 + 51.9388i 1.10346 + 0.0965406i
\(539\) 367.286i 0.681421i
\(540\) 0 0
\(541\) −424.251 −0.784198 −0.392099 0.919923i \(-0.628251\pi\)
−0.392099 + 0.919923i \(0.628251\pi\)
\(542\) 34.9345 399.303i 0.0644547 0.736721i
\(543\) 0 0
\(544\) −646.909 114.068i −1.18917 0.209683i
\(545\) 155.803 + 564.549i 0.285877 + 1.03587i
\(546\) 0 0
\(547\) 524.455 + 367.227i 0.958785 + 0.671348i 0.944487 0.328550i \(-0.106560\pi\)
0.0142979 + 0.999898i \(0.495449\pi\)
\(548\) −45.4500 + 169.622i −0.0829380 + 0.309529i
\(549\) 0 0
\(550\) 50.1520 + 488.929i 0.0911855 + 0.888962i
\(551\) −294.497 107.188i −0.534478 0.194534i
\(552\) 0 0
\(553\) −4.22052 48.2407i −0.00763204 0.0872346i
\(554\) −512.217 + 610.436i −0.924579 + 1.10187i
\(555\) 0 0
\(556\) −97.8442 35.6124i −0.175979 0.0640510i
\(557\) −94.1808 351.487i −0.169086 0.631037i −0.997484 0.0708966i \(-0.977414\pi\)
0.828398 0.560140i \(-0.189253\pi\)
\(558\) 0 0
\(559\) −740.360 + 427.447i −1.32444 + 0.764663i
\(560\) 116.208 + 96.0393i 0.207515 + 0.171499i
\(561\) 0 0
\(562\) −401.559 + 861.145i −0.714517 + 1.53229i
\(563\) 621.291 435.033i 1.10354 0.772705i 0.127832 0.991796i \(-0.459198\pi\)
0.975704 + 0.219091i \(0.0703092\pi\)
\(564\) 0 0
\(565\) −633.638 106.850i −1.12148 0.189115i
\(566\) −300.438 −0.530810
\(567\) 0 0
\(568\) −136.463 136.463i −0.240252 0.240252i
\(569\) −333.693 397.680i −0.586455 0.698910i 0.388465 0.921463i \(-0.373005\pi\)
−0.974920 + 0.222553i \(0.928561\pi\)
\(570\) 0 0
\(571\) −51.8056 + 293.804i −0.0907279 + 0.514543i 0.905245 + 0.424890i \(0.139687\pi\)
−0.995973 + 0.0896537i \(0.971424\pi\)
\(572\) 140.337 300.955i 0.245345 0.526145i
\(573\) 0 0
\(574\) −155.024 + 27.3350i −0.270077 + 0.0476219i
\(575\) −387.578 + 864.686i −0.674049 + 1.50380i
\(576\) 0 0
\(577\) −23.8985 89.1903i −0.0414185 0.154576i 0.942120 0.335277i \(-0.108830\pi\)
−0.983538 + 0.180701i \(0.942163\pi\)
\(578\) 129.872 + 278.512i 0.224692 + 0.481854i
\(579\) 0 0
\(580\) 81.3735 + 80.1658i 0.140299 + 0.138217i
\(581\) 52.8210 + 44.3221i 0.0909139 + 0.0762858i
\(582\) 0 0
\(583\) 47.1818 + 101.182i 0.0809294 + 0.173554i
\(584\) 193.157 + 111.519i 0.330747 + 0.190957i
\(585\) 0 0
\(586\) −149.291 258.579i −0.254762 0.441261i
\(587\) 309.803 + 216.926i 0.527773 + 0.369551i 0.806886 0.590708i \(-0.201151\pi\)
−0.279113 + 0.960258i \(0.590040\pi\)
\(588\) 0 0
\(589\) −275.793 757.735i −0.468239 1.28648i
\(590\) 142.936 83.9551i 0.242264 0.142297i
\(591\) 0 0
\(592\) 57.3554 655.575i 0.0968841 1.10739i
\(593\) 450.055 + 450.055i 0.758945 + 0.758945i 0.976130 0.217185i \(-0.0696876\pi\)
−0.217185 + 0.976130i \(0.569688\pi\)
\(594\) 0 0
\(595\) 12.2326 152.983i 0.0205591 0.257115i
\(596\) −422.980 + 354.922i −0.709698 + 0.595507i
\(597\) 0 0
\(598\) 1455.91 1019.44i 2.43464 1.70475i
\(599\) −291.283 800.294i −0.486282 1.33605i −0.904023 0.427483i \(-0.859400\pi\)
0.417741 0.908566i \(-0.362822\pi\)
\(600\) 0 0
\(601\) 40.3813 + 229.014i 0.0671902 + 0.381055i 0.999797 + 0.0201599i \(0.00641754\pi\)
−0.932607 + 0.360895i \(0.882471\pi\)
\(602\) −166.510 44.6161i −0.276594 0.0741132i
\(603\) 0 0
\(604\) 331.162 + 191.197i 0.548282 + 0.316551i
\(605\) 269.098 + 123.042i 0.444790 + 0.203375i
\(606\) 0 0
\(607\) 4.10796 0.359400i 0.00676764 0.000592092i −0.0837714 0.996485i \(-0.526697\pi\)
0.0905391 + 0.995893i \(0.471141\pi\)
\(608\) −87.1465 996.089i −0.143333 1.63830i
\(609\) 0 0
\(610\) 387.791 144.436i 0.635723 0.236781i
\(611\) −416.323 + 721.092i −0.681379 + 1.18018i
\(612\) 0 0
\(613\) 57.3893 214.180i 0.0936203 0.349396i −0.903186 0.429249i \(-0.858778\pi\)
0.996807 + 0.0798529i \(0.0254451\pi\)
\(614\) 726.975 128.185i 1.18400 0.208771i
\(615\) 0 0
\(616\) −48.8390 + 17.7759i −0.0792841 + 0.0288571i
\(617\) 95.5350 + 136.438i 0.154838 + 0.221131i 0.889075 0.457762i \(-0.151349\pi\)
−0.734237 + 0.678893i \(0.762460\pi\)
\(618\) 0 0
\(619\) −281.498 335.476i −0.454762 0.541965i 0.489133 0.872209i \(-0.337313\pi\)
−0.943895 + 0.330245i \(0.892869\pi\)
\(620\) −23.4263 + 292.973i −0.0377843 + 0.472537i
\(621\) 0 0
\(622\) 411.973 411.973i 0.662337 0.662337i
\(623\) 45.9422 + 4.01943i 0.0737436 + 0.00645173i
\(624\) 0 0
\(625\) 296.177 550.367i 0.473884 0.880587i
\(626\) 46.7399 17.0119i 0.0746644 0.0271756i
\(627\) 0 0
\(628\) 34.0778 48.6681i 0.0542640 0.0774970i
\(629\) −580.172 + 334.963i −0.922373 + 0.532532i
\(630\) 0 0
\(631\) −262.915 + 455.382i −0.416664 + 0.721683i −0.995602 0.0936889i \(-0.970134\pi\)
0.578938 + 0.815372i \(0.303467\pi\)
\(632\) −126.834 + 59.1435i −0.200686 + 0.0935815i
\(633\) 0 0
\(634\) −84.6107 + 100.835i −0.133455 + 0.159046i
\(635\) −396.562 + 2.96461i −0.624508 + 0.00466868i
\(636\) 0 0
\(637\) −793.959 + 370.229i −1.24640 + 0.581207i
\(638\) −192.646 + 51.6192i −0.301952 + 0.0809079i
\(639\) 0 0
\(640\) 211.891 595.992i 0.331080 0.931237i
\(641\) 42.8495 + 243.011i 0.0668478 + 0.379113i 0.999817 + 0.0191554i \(0.00609772\pi\)
−0.932969 + 0.359958i \(0.882791\pi\)
\(642\) 0 0
\(643\) 716.410 + 334.068i 1.11417 + 0.519545i 0.890437 0.455106i \(-0.150398\pi\)
0.223731 + 0.974651i \(0.428176\pi\)
\(644\) 127.132 + 22.4168i 0.197410 + 0.0348088i
\(645\) 0 0
\(646\) −1200.93 + 1007.70i −1.85903 + 1.55991i
\(647\) −519.013 + 519.013i −0.802184 + 0.802184i −0.983437 0.181253i \(-0.941985\pi\)
0.181253 + 0.983437i \(0.441985\pi\)
\(648\) 0 0
\(649\) 104.254i 0.160637i
\(650\) −1006.36 + 601.260i −1.54825 + 0.925016i
\(651\) 0 0
\(652\) 264.901 + 378.317i 0.406289 + 0.580241i
\(653\) 315.296 + 147.025i 0.482843 + 0.225153i 0.648770 0.760985i \(-0.275284\pi\)
−0.165927 + 0.986138i \(0.553062\pi\)
\(654\) 0 0
\(655\) 82.2526 + 865.574i 0.125576 + 1.32149i
\(656\) 414.951 + 718.716i 0.632547 + 1.09560i
\(657\) 0 0
\(658\) −162.176 + 43.4550i −0.246469 + 0.0660411i
\(659\) 244.610 672.060i 0.371184 1.01982i −0.603721 0.797196i \(-0.706316\pi\)
0.974905 0.222623i \(-0.0714619\pi\)
\(660\) 0 0
\(661\) −374.311 314.084i −0.566280 0.475165i 0.314129 0.949380i \(-0.398288\pi\)
−0.880409 + 0.474215i \(0.842732\pi\)
\(662\) −1356.67 + 118.693i −2.04934 + 0.179294i
\(663\) 0 0
\(664\) 68.1543 187.252i 0.102642 0.282007i
\(665\) 229.751 42.2845i 0.345490 0.0635858i
\(666\) 0 0
\(667\) −371.411 99.5192i −0.556837 0.149204i
\(668\) 250.129 357.221i 0.374444 0.534762i
\(669\) 0 0
\(670\) 307.354 + 1113.69i 0.458738 + 1.66223i
\(671\) −45.1926 + 256.300i −0.0673511 + 0.381967i
\(672\) 0 0
\(673\) 376.228 + 32.9157i 0.559031 + 0.0489089i 0.363170 0.931723i \(-0.381694\pi\)
0.195861 + 0.980632i \(0.437250\pi\)
\(674\) 1407.03i 2.08759i
\(675\) 0 0
\(676\) 411.445 0.608646
\(677\) −62.5370 + 714.801i −0.0923737 + 1.05584i 0.798625 + 0.601829i \(0.205561\pi\)
−0.890998 + 0.454007i \(0.849994\pi\)
\(678\) 0 0
\(679\) −180.577 31.8406i −0.265946 0.0468934i
\(680\) −427.541 + 117.992i −0.628737 + 0.173518i
\(681\) 0 0
\(682\) −420.355 294.336i −0.616356 0.431577i
\(683\) −56.0992 + 209.365i −0.0821365 + 0.306537i −0.994757 0.102271i \(-0.967389\pi\)
0.912620 + 0.408809i \(0.134056\pi\)
\(684\) 0 0
\(685\) 70.5716 + 383.447i 0.103024 + 0.559777i
\(686\) −340.115 123.792i −0.495795 0.180455i
\(687\) 0 0
\(688\) 79.2081 + 905.353i 0.115128 + 1.31592i
\(689\) −171.164 + 203.985i −0.248424 + 0.296060i
\(690\) 0 0
\(691\) −229.279 83.4506i −0.331807 0.120768i 0.170744 0.985315i \(-0.445383\pi\)
−0.502551 + 0.864547i \(0.667605\pi\)
\(692\) 157.655 + 588.377i 0.227825 + 0.850256i
\(693\) 0 0
\(694\) 660.195 381.164i 0.951289 0.549227i
\(695\) −230.143 + 21.8697i −0.331141 + 0.0314672i
\(696\) 0 0
\(697\) 357.045 765.685i 0.512260 1.09854i
\(698\) 432.542 302.869i 0.619688 0.433910i
\(699\) 0 0
\(700\) −82.5661 20.8056i −0.117952 0.0297223i
\(701\) −287.312 −0.409861 −0.204930 0.978777i \(-0.565697\pi\)
−0.204930 + 0.978777i \(0.565697\pi\)
\(702\) 0 0
\(703\) −721.063 721.063i −1.02569 1.02569i
\(704\) −5.97938 7.12595i −0.00849344 0.0101221i
\(705\) 0 0
\(706\) −173.694 + 985.068i −0.246026 + 1.39528i
\(707\) −7.40068 + 15.8708i −0.0104677 + 0.0224481i
\(708\) 0 0
\(709\) −876.568 + 154.563i −1.23634 + 0.218001i −0.753348 0.657622i \(-0.771563\pi\)
−0.482996 + 0.875623i \(0.660451\pi\)
\(710\) 520.132 + 184.921i 0.732580 + 0.260452i
\(711\) 0 0
\(712\) −34.4948 128.736i −0.0484477 0.180809i
\(713\) −418.114 896.649i −0.586415 1.25757i
\(714\) 0 0
\(715\) −5.51152 737.249i −0.00770842 1.03112i
\(716\) 158.382 + 132.898i 0.221204 + 0.185612i
\(717\) 0 0
\(718\) −11.9185 25.5593i −0.0165996 0.0355980i
\(719\) −746.732 431.126i −1.03857 0.599619i −0.119142 0.992877i \(-0.538014\pi\)
−0.919428 + 0.393259i \(0.871348\pi\)
\(720\) 0 0
\(721\) −17.7459 30.7367i −0.0246128 0.0426307i
\(722\) −1215.35 850.996i −1.68331 1.17867i
\(723\) 0 0
\(724\) −6.95051 19.0964i −0.00960016 0.0263762i
\(725\) 239.591 + 83.1690i 0.330471 + 0.114716i
\(726\) 0 0
\(727\) −107.388 + 1227.45i −0.147714 + 1.68837i 0.455058 + 0.890462i \(0.349618\pi\)
−0.602772 + 0.797913i \(0.705937\pi\)
\(728\) −87.6565 87.6565i −0.120407 0.120407i
\(729\) 0 0
\(730\) −635.952 50.8511i −0.871166 0.0696590i
\(731\) 708.721 594.688i 0.969523 0.813526i
\(732\) 0 0
\(733\) 181.798 127.296i 0.248019 0.173664i −0.442956 0.896543i \(-0.646070\pi\)
0.690975 + 0.722879i \(0.257181\pi\)
\(734\) 134.853 + 370.506i 0.183723 + 0.504776i
\(735\) 0 0
\(736\) −213.029 1208.15i −0.289442 1.64151i
\(737\) −701.840 188.057i −0.952293 0.255166i
\(738\) 0 0
\(739\) 862.244 + 497.817i 1.16677 + 0.673635i 0.952917 0.303230i \(-0.0980651\pi\)
0.213854 + 0.976866i \(0.431398\pi\)
\(740\) 129.729 + 348.304i 0.175310 + 0.470681i
\(741\) 0 0
\(742\) −53.4900 + 4.67977i −0.0720889 + 0.00630696i
\(743\) −23.7038 270.935i −0.0319028 0.364650i −0.995319 0.0966417i \(-0.969190\pi\)
0.963416 0.268009i \(-0.0863656\pi\)
\(744\) 0 0
\(745\) −509.782 + 1114.92i −0.684271 + 1.49653i
\(746\) −499.565 + 865.272i −0.669658 + 1.15988i
\(747\) 0 0
\(748\) −93.0103 + 347.119i −0.124345 + 0.464063i
\(749\) −150.255 + 26.4940i −0.200607 + 0.0353725i
\(750\) 0 0
\(751\) −67.0427 + 24.4015i −0.0892712 + 0.0324921i −0.386270 0.922386i \(-0.626237\pi\)
0.296998 + 0.954878i \(0.404014\pi\)
\(752\) 507.707 + 725.080i 0.675142 + 0.964203i
\(753\) 0 0
\(754\) −305.774 364.408i −0.405536 0.483299i
\(755\) 846.306 + 67.6711i 1.12094 + 0.0896307i
\(756\) 0 0
\(757\) 449.679 449.679i 0.594028 0.594028i −0.344689 0.938717i \(-0.612016\pi\)
0.938717 + 0.344689i \(0.112016\pi\)
\(758\) 912.390 + 79.8238i 1.20368 + 0.105308i
\(759\) 0 0
\(760\) −341.920 582.129i −0.449895 0.765959i
\(761\) −1091.88 + 397.413i −1.43480 + 0.522224i −0.938303 0.345814i \(-0.887603\pi\)
−0.496497 + 0.868039i \(0.665381\pi\)
\(762\) 0 0
\(763\) 101.607 145.110i 0.133168 0.190183i
\(764\) −215.909 + 124.655i −0.282604 + 0.163161i
\(765\) 0 0
\(766\) −802.191 + 1389.44i −1.04725 + 1.81388i
\(767\) −225.364 + 105.089i −0.293826 + 0.137013i
\(768\) 0 0
\(769\) 129.235 154.017i 0.168056 0.200282i −0.675443 0.737412i \(-0.736047\pi\)
0.843499 + 0.537131i \(0.180492\pi\)
\(770\) 104.334 105.905i 0.135498 0.137539i
\(771\) 0 0
\(772\) −408.350 + 190.417i −0.528951 + 0.246654i
\(773\) −768.252 + 205.852i −0.993858 + 0.266303i −0.718870 0.695144i \(-0.755340\pi\)
−0.274988 + 0.961448i \(0.588674\pi\)
\(774\) 0 0
\(775\) 232.327 + 609.790i 0.299777 + 0.786825i
\(776\) 92.0176 + 521.858i 0.118579 + 0.672497i
\(777\) 0 0
\(778\) 1217.16 + 567.570i 1.56447 + 0.729525i
\(779\) 1266.45 + 223.309i 1.62574 + 0.286661i
\(780\) 0 0
\(781\) −265.952 + 223.160i −0.340528 + 0.285737i
\(782\) −1360.08 + 1360.08i −1.73924 + 1.73924i
\(783\) 0 0
\(784\) 931.288i 1.18787i
\(785\) 21.9343 130.075i 0.0279418 0.165700i
\(786\) 0 0
\(787\) 183.306 + 261.788i 0.232917 + 0.332640i 0.918548 0.395309i \(-0.129363\pi\)
−0.685631 + 0.727949i \(0.740474\pi\)
\(788\) −623.769 290.868i −0.791585 0.369122i
\(789\) 0 0
\(790\) 255.010 308.564i 0.322797 0.390588i
\(791\) 97.1832 + 168.326i 0.122861 + 0.212802i
\(792\) 0 0
\(793\) −599.596 + 160.661i −0.756111 + 0.202599i
\(794\) 46.8729 128.782i 0.0590339 0.162194i
\(795\) 0 0
\(796\) −476.387 399.736i −0.598476 0.502181i
\(797\) 606.547 53.0660i 0.761037 0.0665821i 0.299972 0.953948i \(-0.403023\pi\)
0.461066 + 0.887366i \(0.347467\pi\)
\(798\) 0 0
\(799\) 308.192 846.751i 0.385722 1.05976i
\(800\) 82.5667 + 804.938i 0.103208 + 1.00617i
\(801\) 0 0
\(802\) 1434.66 + 384.417i 1.78886 + 0.479322i
\(803\) 230.138 328.672i 0.286598 0.409305i
\(804\) 0 0
\(805\) 276.291 76.2501i 0.343218 0.0947206i
\(806\) 212.540 1205.37i 0.263697 1.49550i
\(807\) 0 0
\(808\) 50.4147 + 4.41071i 0.0623944 + 0.00545880i
\(809\) 610.430i 0.754549i −0.926102 0.377274i \(-0.876861\pi\)
0.926102 0.377274i \(-0.123139\pi\)
\(810\) 0 0
\(811\) −1157.70 −1.42749 −0.713746 0.700404i \(-0.753003\pi\)
−0.713746 + 0.700404i \(0.753003\pi\)
\(812\) 3.01136 34.4200i 0.00370857 0.0423892i
\(813\) 0 0
\(814\) −639.087 112.688i −0.785119 0.138438i
\(815\) 891.829 + 506.047i 1.09427 + 0.620916i
\(816\) 0 0
\(817\) 1153.58 + 807.746i 1.41197 + 0.988673i
\(818\) −216.325 + 807.334i −0.264456 + 0.986961i
\(819\) 0 0
\(820\) −385.955 265.971i −0.470677 0.324355i
\(821\) 431.833 + 157.175i 0.525985 + 0.191443i 0.591345 0.806419i \(-0.298597\pi\)
−0.0653599 + 0.997862i \(0.520820\pi\)
\(822\) 0 0
\(823\) 124.102 + 1418.50i 0.150793 + 1.72357i 0.575129 + 0.818062i \(0.304952\pi\)
−0.424337 + 0.905504i \(0.639493\pi\)
\(824\) −65.9300 + 78.5724i −0.0800122 + 0.0953548i
\(825\) 0 0
\(826\) −47.1171 17.1492i −0.0570425 0.0207618i
\(827\) −147.921 552.049i −0.178865 0.667532i −0.995861 0.0908891i \(-0.971029\pi\)
0.816996 0.576643i \(-0.195638\pi\)
\(828\) 0 0
\(829\) 265.795 153.457i 0.320621 0.185111i −0.331048 0.943614i \(-0.607402\pi\)
0.651669 + 0.758503i \(0.274069\pi\)
\(830\) 53.9217 + 567.438i 0.0649659 + 0.683660i
\(831\) 0 0
\(832\) 9.37680 20.1086i 0.0112702 0.0241690i
\(833\) 776.598 543.780i 0.932291 0.652797i
\(834\) 0 0
\(835\) 160.997 954.739i 0.192810 1.14340i
\(836\) −547.012 −0.654321
\(837\) 0 0
\(838\) 599.866 + 599.866i 0.715831 + 0.715831i
\(839\) 116.028 + 138.277i 0.138293 + 0.164811i 0.830746 0.556652i \(-0.187914\pi\)
−0.692453 + 0.721463i \(0.743470\pi\)
\(840\) 0 0
\(841\) 128.167 726.873i 0.152399 0.864296i
\(842\) 679.436 1457.06i 0.806931 1.73047i
\(843\) 0 0
\(844\) 198.881 35.0681i 0.235641 0.0415499i
\(845\) 825.011 392.244i 0.976345 0.464194i
\(846\) 0 0
\(847\) −23.1645 86.4510i −0.0273489 0.102067i
\(848\) 119.634 + 256.556i 0.141078 + 0.302542i
\(849\) 0 0
\(850\) 959.552 829.920i 1.12888 0.976376i
\(851\) −958.423 804.213i −1.12623 0.945021i
\(852\) 0 0
\(853\) −85.4401 183.227i −0.100164 0.214803i 0.849839 0.527042i \(-0.176699\pi\)
−0.950004 + 0.312239i \(0.898921\pi\)
\(854\) −108.400 62.5847i −0.126932 0.0732842i
\(855\) 0 0
\(856\) 220.463 + 381.853i 0.257550 + 0.446090i
\(857\) 734.080 + 514.009i 0.856570 + 0.599777i 0.917219 0.398382i \(-0.130428\pi\)
−0.0606495 + 0.998159i \(0.519317\pi\)
\(858\) 0 0
\(859\) 168.173 + 462.051i 0.195777 + 0.537894i 0.998272 0.0587657i \(-0.0187165\pi\)
−0.802494 + 0.596660i \(0.796494\pi\)
\(860\) −259.961 442.592i −0.302281 0.514642i
\(861\) 0 0
\(862\) −51.1334 + 584.457i −0.0593194 + 0.678024i
\(863\) −535.726 535.726i −0.620771 0.620771i 0.324957 0.945729i \(-0.394650\pi\)
−0.945729 + 0.324957i \(0.894650\pi\)
\(864\) 0 0
\(865\) 877.043 + 1029.49i 1.01392 + 1.19016i
\(866\) 1592.96 1336.65i 1.83944 1.54347i
\(867\) 0 0
\(868\) 72.8228 50.9911i 0.0838973 0.0587455i
\(869\) 86.1052 + 236.572i 0.0990854 + 0.272235i
\(870\) 0 0
\(871\) −300.942 1706.73i −0.345513 1.95950i
\(872\) −494.499 132.501i −0.567086 0.151950i
\(873\) 0 0
\(874\) −2535.55 1463.90i −2.90109 1.67495i
\(875\) −185.393 + 36.9945i −0.211877 + 0.0422795i
\(876\) 0 0
\(877\) −275.094 + 24.0676i −0.313676 + 0.0274431i −0.242907 0.970050i \(-0.578101\pi\)
−0.0707694 + 0.997493i \(0.522545\pi\)
\(878\) 56.4848 + 645.624i 0.0643335 + 0.735335i
\(879\) 0 0
\(880\) −712.792 325.916i −0.809991 0.370359i
\(881\) 300.344 520.212i 0.340913 0.590478i −0.643690 0.765287i \(-0.722597\pi\)
0.984603 + 0.174808i \(0.0559305\pi\)
\(882\) 0 0
\(883\) 258.323 964.073i 0.292551 1.09182i −0.650592 0.759428i \(-0.725479\pi\)
0.943143 0.332388i \(-0.107854\pi\)
\(884\) −844.121 + 148.841i −0.954887 + 0.168372i
\(885\) 0 0
\(886\) 279.953 101.895i 0.315974 0.115005i
\(887\) 126.896 + 181.226i 0.143061 + 0.204313i 0.884288 0.466942i \(-0.154644\pi\)
−0.741226 + 0.671255i \(0.765756\pi\)
\(888\) 0 0
\(889\) 77.1050 + 91.8901i 0.0867323 + 0.103363i
\(890\) 247.226 + 290.198i 0.277782 + 0.326066i
\(891\) 0 0
\(892\) 606.869 606.869i 0.680347 0.680347i
\(893\) 1366.39 + 119.544i 1.53012 + 0.133868i
\(894\) 0 0
\(895\) 444.277 + 115.491i 0.496399 + 0.129040i
\(896\) −179.789 + 65.4379i −0.200658 + 0.0730334i
\(897\) 0 0
\(898\) −1158.00 + 1653.79i −1.28953 + 1.84164i
\(899\) −229.319 + 132.397i −0.255082 + 0.147272i
\(900\) 0 0
\(901\) 144.087 249.566i 0.159919 0.276987i
\(902\) 741.707 345.864i 0.822291 0.383441i
\(903\) 0 0
\(904\) 361.059 430.293i 0.399401 0.475988i
\(905\) −32.1421 31.6651i −0.0355161 0.0349890i
\(906\) 0 0
\(907\) 1021.43 476.303i 1.12617 0.525141i 0.231930 0.972732i \(-0.425496\pi\)
0.894238 + 0.447591i \(0.147718\pi\)
\(908\) −23.9050 + 6.40533i −0.0263271 + 0.00705433i
\(909\) 0 0
\(910\) 334.104 + 118.783i 0.367148 + 0.130531i
\(911\) 40.7800 + 231.275i 0.0447639 + 0.253869i 0.998975 0.0452652i \(-0.0144133\pi\)
−0.954211 + 0.299134i \(0.903302\pi\)
\(912\) 0 0
\(913\) −324.890 151.499i −0.355849 0.165935i
\(914\) −1976.54 348.517i −2.16251 0.381309i
\(915\) 0 0
\(916\) 334.068 280.316i 0.364703 0.306022i
\(917\) 185.966 185.966i 0.202798 0.202798i
\(918\) 0 0
\(919\) 1188.19i 1.29291i 0.762951 + 0.646456i \(0.223750\pi\)
−0.762951 + 0.646456i \(0.776250\pi\)
\(920\) −480.160 674.943i −0.521913 0.733634i
\(921\) 0 0
\(922\) −794.515 1134.68i −0.861730 1.23068i
\(923\) −750.487 349.958i −0.813095 0.379152i
\(924\) 0 0
\(925\) 592.177 + 574.729i 0.640192 + 0.621329i
\(926\) 921.187 + 1595.54i 0.994802 + 1.72305i
\(927\) 0 0
\(928\) −317.158 + 84.9822i −0.341765 + 0.0915756i
\(929\) −67.6920 + 185.982i −0.0728654 + 0.200196i −0.970779 0.239976i \(-0.922860\pi\)
0.897913 + 0.440172i \(0.145083\pi\)
\(930\) 0 0
\(931\) 1105.47 + 927.601i 1.18740 + 0.996349i
\(932\) −133.041 + 11.6396i −0.142748 + 0.0124888i
\(933\) 0 0
\(934\) −174.575 + 479.641i −0.186911 + 0.513535i
\(935\) 144.420 + 784.698i 0.154460 + 0.839249i
\(936\) 0 0
\(937\) 305.720 + 81.9174i 0.326275 + 0.0874252i 0.418239 0.908337i \(-0.362648\pi\)
−0.0919634 + 0.995762i \(0.529314\pi\)
\(938\) 200.441 286.260i 0.213690 0.305181i
\(939\) 0 0
\(940\) −434.811 246.723i −0.462565 0.262471i
\(941\) −66.2170 + 375.536i −0.0703688 + 0.399081i 0.929196 + 0.369587i \(0.120501\pi\)
−0.999565 + 0.0294943i \(0.990610\pi\)
\(942\) 0 0
\(943\) 1571.79 + 137.514i 1.66680 + 0.145826i
\(944\) 264.345i 0.280026i
\(945\) 0 0
\(946\) 896.197 0.947354
\(947\) 18.7132 213.893i 0.0197605 0.225864i −0.979893 0.199526i \(-0.936060\pi\)
0.999653 0.0263379i \(-0.00838460\pi\)
\(948\) 0 0
\(949\) 942.469 + 166.183i 0.993118 + 0.175114i
\(950\) 1598.26 + 1083.87i 1.68238 + 1.14091i
\(951\) 0 0
\(952\) 109.894 + 76.9485i 0.115435 + 0.0808282i
\(953\) 219.916 820.738i 0.230762 0.861215i −0.749252 0.662285i \(-0.769587\pi\)
0.980014 0.198930i \(-0.0637465\pi\)
\(954\) 0 0
\(955\) −314.094 + 455.787i −0.328894 + 0.477264i
\(956\) 315.726 + 114.915i 0.330258 + 0.120204i
\(957\) 0 0
\(958\) −18.5307 211.807i −0.0193431 0.221093i
\(959\) 75.8050 90.3408i 0.0790459 0.0942032i
\(960\) 0 0
\(961\) 262.821 + 95.6592i 0.273487 + 0.0995413i
\(962\) −400.611 1495.10i −0.416435 1.55416i
\(963\) 0 0
\(964\) 651.593 376.197i 0.675926 0.390246i
\(965\) −637.275 + 771.109i −0.660389 + 0.799077i
\(966\) 0 0
\(967\) 592.483 1270.58i 0.612702 1.31394i −0.317974 0.948100i \(-0.603002\pi\)
0.930676 0.365845i \(-0.119220\pi\)
\(968\) −211.875 + 148.357i −0.218879 + 0.153261i
\(969\) 0 0
\(970\) −878.661 1235.10i −0.905836 1.27330i
\(971\) 1406.37 1.44838 0.724188 0.689603i \(-0.242215\pi\)
0.724188 + 0.689603i \(0.242215\pi\)
\(972\) 0 0
\(973\) 49.4455 + 49.4455i 0.0508176 + 0.0508176i
\(974\) 302.980 + 361.077i 0.311067 + 0.370716i
\(975\) 0 0
\(976\) −114.590 + 649.872i −0.117408 + 0.665852i
\(977\) 288.383 618.440i 0.295172 0.632999i −0.701662 0.712510i \(-0.747558\pi\)
0.996834 + 0.0795115i \(0.0253360\pi\)
\(978\) 0 0
\(979\) −236.117 + 41.6338i −0.241182 + 0.0425269i
\(980\) −225.849 475.030i −0.230458 0.484724i
\(981\) 0 0
\(982\) 133.667 + 498.853i 0.136118 + 0.507997i
\(983\) −91.7729 196.808i −0.0933601 0.200211i 0.854082 0.520138i \(-0.174119\pi\)
−0.947442 + 0.319927i \(0.896342\pi\)
\(984\) 0 0
\(985\) −1528.05 + 11.4234i −1.55132 + 0.0115973i
\(986\) 394.364 + 330.910i 0.399963 + 0.335609i
\(987\) 0 0
\(988\) −551.395 1182.47i −0.558093 1.19683i
\(989\) 1496.34 + 863.910i 1.51298 + 0.873519i
\(990\) 0 0
\(991\) −386.026 668.617i −0.389532 0.674689i 0.602855 0.797851i \(-0.294030\pi\)
−0.992387 + 0.123162i \(0.960697\pi\)
\(992\) −692.042 484.573i −0.697623 0.488481i
\(993\) 0 0
\(994\) −57.1087 156.905i −0.0574535 0.157852i
\(995\) −1336.31 347.378i −1.34303 0.349123i
\(996\) 0 0
\(997\) 49.5772 566.670i 0.0497264 0.568375i −0.929936 0.367722i \(-0.880138\pi\)
0.979662 0.200654i \(-0.0643066\pi\)
\(998\) 502.501 + 502.501i 0.503508 + 0.503508i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.s.a.118.27 408
3.2 odd 2 135.3.r.a.103.8 yes 408
5.2 odd 4 inner 405.3.s.a.37.27 408
15.2 even 4 135.3.r.a.22.8 408
27.11 odd 18 135.3.r.a.43.8 yes 408
27.16 even 9 inner 405.3.s.a.208.27 408
135.92 even 36 135.3.r.a.97.8 yes 408
135.97 odd 36 inner 405.3.s.a.127.27 408
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.r.a.22.8 408 15.2 even 4
135.3.r.a.43.8 yes 408 27.11 odd 18
135.3.r.a.97.8 yes 408 135.92 even 36
135.3.r.a.103.8 yes 408 3.2 odd 2
405.3.s.a.37.27 408 5.2 odd 4 inner
405.3.s.a.118.27 408 1.1 even 1 trivial
405.3.s.a.127.27 408 135.97 odd 36 inner
405.3.s.a.208.27 408 27.16 even 9 inner