Properties

Label 405.3.s.a.118.17
Level $405$
Weight $3$
Character 405.118
Analytic conductor $11.035$
Analytic rank $0$
Dimension $408$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(37,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.37"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([28, 9])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.s (of order \(36\), degree \(12\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(408\)
Relative dimension: \(34\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 118.17
Character \(\chi\) \(=\) 405.118
Dual form 405.3.s.a.127.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.00242499 - 0.0277177i) q^{2} +(3.93847 + 0.694458i) q^{4} +(-2.37496 + 4.39995i) q^{5} +(-3.04016 - 2.12874i) q^{7} +(0.0576046 - 0.214983i) q^{8} +(0.116197 + 0.0764983i) q^{10} +(-3.20314 - 1.16585i) q^{11} +(1.03393 + 11.8179i) q^{13} +(-0.0663761 + 0.0791040i) q^{14} +(15.0264 + 5.46915i) q^{16} +(7.97341 + 29.7572i) q^{17} +(2.81936 - 1.62776i) q^{19} +(-12.4093 + 15.6798i) q^{20} +(-0.0400822 + 0.0859566i) q^{22} +(-13.0837 + 9.16134i) q^{23} +(-13.7191 - 20.8994i) q^{25} +0.330073 q^{26} +(-10.4952 - 10.4952i) q^{28} +(-27.8129 - 33.1461i) q^{29} +(-8.79682 + 49.8892i) q^{31} +(0.564275 - 1.21009i) q^{32} +(0.844136 - 0.148844i) q^{34} +(16.5866 - 8.32085i) q^{35} +(3.64899 + 13.6182i) q^{37} +(-0.0382809 - 0.0820936i) q^{38} +(0.809107 + 0.764035i) q^{40} +(-9.67690 - 8.11988i) q^{41} +(32.4393 + 69.5664i) q^{43} +(-11.8058 - 6.81610i) q^{44} +(0.222203 + 0.384868i) q^{46} +(38.7099 + 27.1050i) q^{47} +(-12.0480 - 33.1015i) q^{49} +(-0.612553 + 0.329582i) q^{50} +(-4.13494 + 47.2625i) q^{52} +(-15.4300 - 15.4300i) q^{53} +(12.7370 - 11.3248i) q^{55} +(-0.632771 + 0.530958i) q^{56} +(-0.986180 + 0.690531i) q^{58} +(9.94222 + 27.3160i) q^{59} +(-3.58125 - 20.3103i) q^{61} +(1.36148 + 0.364808i) q^{62} +(55.3613 + 31.9628i) q^{64} +(-54.4538 - 23.5179i) q^{65} +(7.35361 - 0.643358i) q^{67} +(10.7379 + 122.735i) q^{68} +(-0.190413 - 0.479921i) q^{70} +(44.8146 - 77.6212i) q^{71} +(3.90769 - 14.5837i) q^{73} +(0.386314 - 0.0681177i) q^{74} +(12.2344 - 4.45295i) q^{76} +(7.25626 + 10.3630i) q^{77} +(62.7357 + 74.7655i) q^{79} +(-59.7510 + 53.1262i) q^{80} +(-0.248531 + 0.248531i) q^{82} +(-67.6198 - 5.91597i) q^{83} +(-149.867 - 35.5895i) q^{85} +(2.00689 - 0.730447i) q^{86} +(-0.435154 + 0.621464i) q^{88} +(65.5625 - 37.8526i) q^{89} +(22.0140 - 38.1293i) q^{91} +(-57.8921 + 26.9955i) q^{92} +(0.845159 - 1.00722i) q^{94} +(0.466183 + 16.2709i) q^{95} +(78.7818 - 36.7366i) q^{97} +(-0.946715 + 0.253672i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 408 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 6 q^{8} - 6 q^{10} + 60 q^{11} - 12 q^{13} - 24 q^{16} + 6 q^{17} + 300 q^{20} - 12 q^{22} + 156 q^{23} + 6 q^{25} + 48 q^{26} - 24 q^{28} - 24 q^{31} - 72 q^{32}+ \cdots + 1032 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.00242499 0.0277177i 0.00121249 0.0138589i −0.995564 0.0940831i \(-0.970008\pi\)
0.996777 + 0.0802242i \(0.0255636\pi\)
\(3\) 0 0
\(4\) 3.93847 + 0.694458i 0.984617 + 0.173615i
\(5\) −2.37496 + 4.39995i −0.474992 + 0.879990i
\(6\) 0 0
\(7\) −3.04016 2.12874i −0.434308 0.304106i 0.335901 0.941897i \(-0.390959\pi\)
−0.770209 + 0.637792i \(0.779848\pi\)
\(8\) 0.0576046 0.214983i 0.00720058 0.0268729i
\(9\) 0 0
\(10\) 0.116197 + 0.0764983i 0.0116197 + 0.00764983i
\(11\) −3.20314 1.16585i −0.291195 0.105986i 0.192292 0.981338i \(-0.438408\pi\)
−0.483487 + 0.875351i \(0.660630\pi\)
\(12\) 0 0
\(13\) 1.03393 + 11.8179i 0.0795334 + 0.909071i 0.926221 + 0.376981i \(0.123038\pi\)
−0.846688 + 0.532090i \(0.821407\pi\)
\(14\) −0.0663761 + 0.0791040i −0.00474115 + 0.00565028i
\(15\) 0 0
\(16\) 15.0264 + 5.46915i 0.939147 + 0.341822i
\(17\) 7.97341 + 29.7572i 0.469024 + 1.75042i 0.643191 + 0.765706i \(0.277610\pi\)
−0.174167 + 0.984716i \(0.555723\pi\)
\(18\) 0 0
\(19\) 2.81936 1.62776i 0.148387 0.0856715i −0.423968 0.905677i \(-0.639363\pi\)
0.572355 + 0.820006i \(0.306030\pi\)
\(20\) −12.4093 + 15.6798i −0.620465 + 0.783988i
\(21\) 0 0
\(22\) −0.0400822 + 0.0859566i −0.00182192 + 0.00390712i
\(23\) −13.0837 + 9.16134i −0.568858 + 0.398319i −0.822319 0.569027i \(-0.807320\pi\)
0.253461 + 0.967346i \(0.418431\pi\)
\(24\) 0 0
\(25\) −13.7191 20.8994i −0.548765 0.835977i
\(26\) 0.330073 0.0126951
\(27\) 0 0
\(28\) −10.4952 10.4952i −0.374830 0.374830i
\(29\) −27.8129 33.1461i −0.959065 1.14297i −0.989659 0.143438i \(-0.954184\pi\)
0.0305940 0.999532i \(-0.490260\pi\)
\(30\) 0 0
\(31\) −8.79682 + 49.8892i −0.283768 + 1.60933i 0.425884 + 0.904778i \(0.359963\pi\)
−0.709652 + 0.704552i \(0.751148\pi\)
\(32\) 0.564275 1.21009i 0.0176336 0.0378153i
\(33\) 0 0
\(34\) 0.844136 0.148844i 0.0248275 0.00437776i
\(35\) 16.5866 8.32085i 0.473903 0.237739i
\(36\) 0 0
\(37\) 3.64899 + 13.6182i 0.0986213 + 0.368060i 0.997544 0.0700483i \(-0.0223153\pi\)
−0.898922 + 0.438108i \(0.855649\pi\)
\(38\) −0.0382809 0.0820936i −0.00100739 0.00216036i
\(39\) 0 0
\(40\) 0.809107 + 0.764035i 0.0202277 + 0.0191009i
\(41\) −9.67690 8.11988i −0.236022 0.198046i 0.517103 0.855923i \(-0.327010\pi\)
−0.753125 + 0.657877i \(0.771455\pi\)
\(42\) 0 0
\(43\) 32.4393 + 69.5664i 0.754403 + 1.61782i 0.785927 + 0.618319i \(0.212186\pi\)
−0.0315239 + 0.999503i \(0.510036\pi\)
\(44\) −11.8058 6.81610i −0.268315 0.154911i
\(45\) 0 0
\(46\) 0.222203 + 0.384868i 0.00483051 + 0.00836669i
\(47\) 38.7099 + 27.1050i 0.823615 + 0.576701i 0.907634 0.419763i \(-0.137887\pi\)
−0.0840189 + 0.996464i \(0.526776\pi\)
\(48\) 0 0
\(49\) −12.0480 33.1015i −0.245877 0.675542i
\(50\) −0.612553 + 0.329582i −0.0122511 + 0.00659163i
\(51\) 0 0
\(52\) −4.13494 + 47.2625i −0.0795180 + 0.908895i
\(53\) −15.4300 15.4300i −0.291131 0.291131i 0.546396 0.837527i \(-0.315999\pi\)
−0.837527 + 0.546396i \(0.815999\pi\)
\(54\) 0 0
\(55\) 12.7370 11.3248i 0.231582 0.205906i
\(56\) −0.632771 + 0.530958i −0.0112995 + 0.00948139i
\(57\) 0 0
\(58\) −0.986180 + 0.690531i −0.0170031 + 0.0119057i
\(59\) 9.94222 + 27.3160i 0.168512 + 0.462983i 0.994989 0.0999878i \(-0.0318804\pi\)
−0.826476 + 0.562971i \(0.809658\pi\)
\(60\) 0 0
\(61\) −3.58125 20.3103i −0.0587089 0.332955i 0.941280 0.337627i \(-0.109624\pi\)
−0.999989 + 0.00467160i \(0.998513\pi\)
\(62\) 1.36148 + 0.364808i 0.0219594 + 0.00588400i
\(63\) 0 0
\(64\) 55.3613 + 31.9628i 0.865020 + 0.499419i
\(65\) −54.4538 23.5179i −0.837751 0.361813i
\(66\) 0 0
\(67\) 7.35361 0.643358i 0.109755 0.00960235i −0.0321457 0.999483i \(-0.510234\pi\)
0.141901 + 0.989881i \(0.454679\pi\)
\(68\) 10.7379 + 122.735i 0.157910 + 1.80492i
\(69\) 0 0
\(70\) −0.190413 0.479921i −0.00272018 0.00685601i
\(71\) 44.8146 77.6212i 0.631192 1.09326i −0.356117 0.934441i \(-0.615899\pi\)
0.987308 0.158815i \(-0.0507672\pi\)
\(72\) 0 0
\(73\) 3.90769 14.5837i 0.0535300 0.199777i −0.933982 0.357320i \(-0.883691\pi\)
0.987512 + 0.157543i \(0.0503573\pi\)
\(74\) 0.386314 0.0681177i 0.00522047 0.000920509i
\(75\) 0 0
\(76\) 12.2344 4.45295i 0.160979 0.0585914i
\(77\) 7.25626 + 10.3630i 0.0942371 + 0.134585i
\(78\) 0 0
\(79\) 62.7357 + 74.7655i 0.794123 + 0.946399i 0.999479 0.0322886i \(-0.0102796\pi\)
−0.205356 + 0.978687i \(0.565835\pi\)
\(80\) −59.7510 + 53.1262i −0.746887 + 0.664077i
\(81\) 0 0
\(82\) −0.248531 + 0.248531i −0.00303087 + 0.00303087i
\(83\) −67.6198 5.91597i −0.814697 0.0712767i −0.327812 0.944743i \(-0.606311\pi\)
−0.486885 + 0.873466i \(0.661867\pi\)
\(84\) 0 0
\(85\) −149.867 35.5895i −1.76314 0.418700i
\(86\) 2.00689 0.730447i 0.0233359 0.00849356i
\(87\) 0 0
\(88\) −0.435154 + 0.621464i −0.00494493 + 0.00706209i
\(89\) 65.5625 37.8526i 0.736658 0.425310i −0.0841951 0.996449i \(-0.526832\pi\)
0.820853 + 0.571140i \(0.193499\pi\)
\(90\) 0 0
\(91\) 22.0140 38.1293i 0.241912 0.419003i
\(92\) −57.8921 + 26.9955i −0.629262 + 0.293430i
\(93\) 0 0
\(94\) 0.845159 1.00722i 0.00899105 0.0107151i
\(95\) 0.466183 + 16.2709i 0.00490719 + 0.171273i
\(96\) 0 0
\(97\) 78.7818 36.7366i 0.812184 0.378727i 0.0282724 0.999600i \(-0.490999\pi\)
0.783911 + 0.620873i \(0.213222\pi\)
\(98\) −0.946715 + 0.253672i −0.00966036 + 0.00258849i
\(99\) 0 0
\(100\) −39.5185 91.8391i −0.395185 0.918391i
\(101\) 13.5497 + 76.8441i 0.134155 + 0.760832i 0.975444 + 0.220247i \(0.0706862\pi\)
−0.841289 + 0.540586i \(0.818203\pi\)
\(102\) 0 0
\(103\) −117.501 54.7918i −1.14079 0.531959i −0.241972 0.970283i \(-0.577794\pi\)
−0.898817 + 0.438324i \(0.855572\pi\)
\(104\) 2.60022 + 0.458488i 0.0250021 + 0.00440854i
\(105\) 0 0
\(106\) −0.465101 + 0.390266i −0.00438774 + 0.00368175i
\(107\) 101.087 101.087i 0.944741 0.944741i −0.0538098 0.998551i \(-0.517136\pi\)
0.998551 + 0.0538098i \(0.0171365\pi\)
\(108\) 0 0
\(109\) 187.977i 1.72456i −0.506433 0.862280i \(-0.669036\pi\)
0.506433 0.862280i \(-0.330964\pi\)
\(110\) −0.283011 0.380503i −0.00257283 0.00345912i
\(111\) 0 0
\(112\) −34.0401 48.6142i −0.303929 0.434056i
\(113\) 129.461 + 60.3689i 1.14568 + 0.534238i 0.900334 0.435199i \(-0.143322\pi\)
0.245342 + 0.969437i \(0.421100\pi\)
\(114\) 0 0
\(115\) −9.23603 79.3256i −0.0803133 0.689788i
\(116\) −86.5216 149.860i −0.745876 1.29190i
\(117\) 0 0
\(118\) 0.781247 0.209335i 0.00662074 0.00177402i
\(119\) 39.1049 107.440i 0.328612 0.902855i
\(120\) 0 0
\(121\) −83.7905 70.3085i −0.692483 0.581062i
\(122\) −0.571638 + 0.0500119i −0.00468556 + 0.000409933i
\(123\) 0 0
\(124\) −69.2920 + 190.378i −0.558806 + 1.53531i
\(125\) 124.539 10.7281i 0.996310 0.0858246i
\(126\) 0 0
\(127\) −19.2524 5.15868i −0.151594 0.0406195i 0.182224 0.983257i \(-0.441670\pi\)
−0.333818 + 0.942638i \(0.608337\pi\)
\(128\) 4.08352 5.83187i 0.0319025 0.0455614i
\(129\) 0 0
\(130\) −0.783911 + 1.45230i −0.00603008 + 0.0111716i
\(131\) 6.20196 35.1730i 0.0473432 0.268497i −0.951943 0.306275i \(-0.900917\pi\)
0.999286 + 0.0377789i \(0.0120283\pi\)
\(132\) 0 0
\(133\) −12.0364 1.05305i −0.0904990 0.00791764i
\(134\) 0.205385i 0.00153273i
\(135\) 0 0
\(136\) 6.85660 0.0504162
\(137\) 8.26760 94.4991i 0.0603474 0.689774i −0.904415 0.426653i \(-0.859693\pi\)
0.964763 0.263121i \(-0.0847519\pi\)
\(138\) 0 0
\(139\) 152.945 + 26.9683i 1.10032 + 0.194017i 0.694186 0.719796i \(-0.255765\pi\)
0.406137 + 0.913812i \(0.366876\pi\)
\(140\) 71.1043 21.2527i 0.507888 0.151805i
\(141\) 0 0
\(142\) −2.04281 1.43039i −0.0143860 0.0100732i
\(143\) 10.4661 39.0599i 0.0731893 0.273146i
\(144\) 0 0
\(145\) 211.896 43.6546i 1.46135 0.301066i
\(146\) −0.394750 0.143677i −0.00270377 0.000984092i
\(147\) 0 0
\(148\) 4.91415 + 56.1690i 0.0332037 + 0.379520i
\(149\) 11.5658 13.7835i 0.0776225 0.0925070i −0.725836 0.687868i \(-0.758547\pi\)
0.803458 + 0.595361i \(0.202991\pi\)
\(150\) 0 0
\(151\) −13.4319 4.88880i −0.0889528 0.0323762i 0.297160 0.954828i \(-0.403960\pi\)
−0.386113 + 0.922451i \(0.626183\pi\)
\(152\) −0.187533 0.699882i −0.00123377 0.00460449i
\(153\) 0 0
\(154\) 0.304835 0.175997i 0.00197945 0.00114284i
\(155\) −198.618 157.191i −1.28141 1.01413i
\(156\) 0 0
\(157\) −30.1378 + 64.6307i −0.191960 + 0.411661i −0.978606 0.205745i \(-0.934038\pi\)
0.786645 + 0.617405i \(0.211816\pi\)
\(158\) 2.22446 1.55759i 0.0140789 0.00985813i
\(159\) 0 0
\(160\) 3.98421 + 5.35670i 0.0249013 + 0.0334794i
\(161\) 59.2787 0.368191
\(162\) 0 0
\(163\) −135.434 135.434i −0.830886 0.830886i 0.156752 0.987638i \(-0.449898\pi\)
−0.987638 + 0.156752i \(0.949898\pi\)
\(164\) −32.4732 38.7001i −0.198008 0.235976i
\(165\) 0 0
\(166\) −0.327954 + 1.85992i −0.00197563 + 0.0112043i
\(167\) 34.4311 73.8378i 0.206174 0.442143i −0.775845 0.630924i \(-0.782676\pi\)
0.982019 + 0.188781i \(0.0604538\pi\)
\(168\) 0 0
\(169\) 27.8383 4.90864i 0.164723 0.0290452i
\(170\) −1.34988 + 4.06765i −0.00794050 + 0.0239274i
\(171\) 0 0
\(172\) 79.4503 + 296.513i 0.461921 + 1.72391i
\(173\) 40.9591 + 87.8371i 0.236758 + 0.507729i 0.988406 0.151836i \(-0.0485184\pi\)
−0.751648 + 0.659565i \(0.770741\pi\)
\(174\) 0 0
\(175\) −2.78119 + 92.7419i −0.0158925 + 0.529954i
\(176\) −41.7553 35.0369i −0.237246 0.199073i
\(177\) 0 0
\(178\) −0.890198 1.90904i −0.00500111 0.0107249i
\(179\) 184.581 + 106.568i 1.03118 + 0.595350i 0.917321 0.398147i \(-0.130347\pi\)
0.113855 + 0.993497i \(0.463680\pi\)
\(180\) 0 0
\(181\) −111.535 193.184i −0.616214 1.06731i −0.990170 0.139867i \(-0.955332\pi\)
0.373956 0.927446i \(-0.378001\pi\)
\(182\) −1.00347 0.702640i −0.00551359 0.00386066i
\(183\) 0 0
\(184\) 1.21585 + 3.34052i 0.00660789 + 0.0181550i
\(185\) −68.5857 16.2874i −0.370733 0.0880398i
\(186\) 0 0
\(187\) 9.15238 104.612i 0.0489432 0.559424i
\(188\) 133.634 + 133.634i 0.710822 + 0.710822i
\(189\) 0 0
\(190\) 0.452123 + 0.0265352i 0.00237960 + 0.000139659i
\(191\) −119.862 + 100.576i −0.627549 + 0.526576i −0.900166 0.435546i \(-0.856555\pi\)
0.272617 + 0.962123i \(0.412111\pi\)
\(192\) 0 0
\(193\) −188.322 + 131.865i −0.975763 + 0.683237i −0.948628 0.316395i \(-0.897528\pi\)
−0.0271359 + 0.999632i \(0.508639\pi\)
\(194\) −0.827209 2.27274i −0.00426396 0.0117151i
\(195\) 0 0
\(196\) −24.4629 138.736i −0.124811 0.707838i
\(197\) 65.4230 + 17.5300i 0.332096 + 0.0889849i 0.421014 0.907054i \(-0.361674\pi\)
−0.0889180 + 0.996039i \(0.528341\pi\)
\(198\) 0 0
\(199\) 30.0472 + 17.3478i 0.150991 + 0.0871747i 0.573592 0.819141i \(-0.305550\pi\)
−0.422601 + 0.906316i \(0.638883\pi\)
\(200\) −5.28331 + 1.74548i −0.0264166 + 0.00872739i
\(201\) 0 0
\(202\) 2.16280 0.189220i 0.0107069 0.000936735i
\(203\) 13.9961 + 159.976i 0.0689461 + 0.788058i
\(204\) 0 0
\(205\) 58.7093 23.2935i 0.286387 0.113627i
\(206\) −1.80364 + 3.12400i −0.00875554 + 0.0151650i
\(207\) 0 0
\(208\) −49.0977 + 183.235i −0.236046 + 0.880937i
\(209\) −10.9285 + 1.92700i −0.0522896 + 0.00922007i
\(210\) 0 0
\(211\) −23.7166 + 8.63213i −0.112401 + 0.0409106i −0.397608 0.917555i \(-0.630160\pi\)
0.285207 + 0.958466i \(0.407937\pi\)
\(212\) −50.0550 71.4859i −0.236108 0.337198i
\(213\) 0 0
\(214\) −2.55677 3.04704i −0.0119475 0.0142385i
\(215\) −383.131 22.4860i −1.78200 0.104586i
\(216\) 0 0
\(217\) 132.945 132.945i 0.612649 0.612649i
\(218\) −5.21029 0.455841i −0.0239004 0.00209102i
\(219\) 0 0
\(220\) 58.0289 35.7571i 0.263768 0.162532i
\(221\) −343.424 + 124.996i −1.55395 + 0.565593i
\(222\) 0 0
\(223\) −193.818 + 276.801i −0.869140 + 1.24126i 0.100059 + 0.994981i \(0.468097\pi\)
−0.969199 + 0.246279i \(0.920792\pi\)
\(224\) −4.29145 + 2.47767i −0.0191583 + 0.0110610i
\(225\) 0 0
\(226\) 1.98723 3.44198i 0.00879305 0.0152300i
\(227\) 314.339 146.579i 1.38475 0.645721i 0.419673 0.907675i \(-0.362145\pi\)
0.965080 + 0.261954i \(0.0843669\pi\)
\(228\) 0 0
\(229\) 188.298 224.405i 0.822263 0.979935i −0.177729 0.984080i \(-0.556875\pi\)
0.999991 + 0.00414481i \(0.00131934\pi\)
\(230\) −2.22112 + 0.0636380i −0.00965705 + 0.000276687i
\(231\) 0 0
\(232\) −8.72802 + 4.06994i −0.0376208 + 0.0175428i
\(233\) −288.534 + 77.3125i −1.23834 + 0.331813i −0.817823 0.575469i \(-0.804819\pi\)
−0.420521 + 0.907283i \(0.638153\pi\)
\(234\) 0 0
\(235\) −211.195 + 105.948i −0.898702 + 0.450844i
\(236\) 20.1873 + 114.488i 0.0855393 + 0.485118i
\(237\) 0 0
\(238\) −2.88315 1.34444i −0.0121141 0.00564890i
\(239\) 187.530 + 33.0665i 0.784643 + 0.138354i 0.551596 0.834112i \(-0.314019\pi\)
0.233047 + 0.972465i \(0.425130\pi\)
\(240\) 0 0
\(241\) 180.472 151.434i 0.748845 0.628356i −0.186352 0.982483i \(-0.559667\pi\)
0.935197 + 0.354127i \(0.115222\pi\)
\(242\) −2.15198 + 2.15198i −0.00889249 + 0.00889249i
\(243\) 0 0
\(244\) 82.4783i 0.338026i
\(245\) 174.259 + 25.6044i 0.711260 + 0.104508i
\(246\) 0 0
\(247\) 22.1518 + 31.6360i 0.0896833 + 0.128081i
\(248\) 10.2186 + 4.76502i 0.0412041 + 0.0192138i
\(249\) 0 0
\(250\) 0.00464688 3.47795i 1.85875e−5 0.0139118i
\(251\) 171.937 + 297.803i 0.685007 + 1.18647i 0.973435 + 0.228966i \(0.0735343\pi\)
−0.288427 + 0.957502i \(0.593132\pi\)
\(252\) 0 0
\(253\) 52.5898 14.0914i 0.207865 0.0556972i
\(254\) −0.189674 + 0.521124i −0.000746747 + 0.00205167i
\(255\) 0 0
\(256\) 195.728 + 164.235i 0.764562 + 0.641544i
\(257\) −132.871 + 11.6247i −0.517007 + 0.0452323i −0.342674 0.939454i \(-0.611333\pi\)
−0.174333 + 0.984687i \(0.555777\pi\)
\(258\) 0 0
\(259\) 17.8961 49.1692i 0.0690971 0.189843i
\(260\) −198.132 130.440i −0.762048 0.501693i
\(261\) 0 0
\(262\) −0.959877 0.257198i −0.00366365 0.000981672i
\(263\) 69.8930 99.8176i 0.265753 0.379535i −0.663991 0.747740i \(-0.731139\pi\)
0.929744 + 0.368206i \(0.120028\pi\)
\(264\) 0 0
\(265\) 104.537 31.2455i 0.394478 0.117908i
\(266\) −0.0583761 + 0.331067i −0.000219459 + 0.00124461i
\(267\) 0 0
\(268\) 29.4087 + 2.57293i 0.109734 + 0.00960049i
\(269\) 95.8193i 0.356206i −0.984012 0.178103i \(-0.943004\pi\)
0.984012 0.178103i \(-0.0569960\pi\)
\(270\) 0 0
\(271\) 113.483 0.418755 0.209378 0.977835i \(-0.432856\pi\)
0.209378 + 0.977835i \(0.432856\pi\)
\(272\) −42.9350 + 490.749i −0.157849 + 1.80423i
\(273\) 0 0
\(274\) −2.59925 0.458318i −0.00948631 0.00167269i
\(275\) 19.5787 + 82.9382i 0.0711953 + 0.301593i
\(276\) 0 0
\(277\) 332.818 + 233.042i 1.20151 + 0.841306i 0.990679 0.136217i \(-0.0434945\pi\)
0.210830 + 0.977523i \(0.432383\pi\)
\(278\) 1.11839 4.17388i 0.00402298 0.0150140i
\(279\) 0 0
\(280\) −0.833381 4.04516i −0.00297636 0.0144470i
\(281\) −103.770 37.7692i −0.369288 0.134410i 0.150708 0.988578i \(-0.451845\pi\)
−0.519997 + 0.854168i \(0.674067\pi\)
\(282\) 0 0
\(283\) 8.27217 + 94.5514i 0.0292303 + 0.334104i 0.996704 + 0.0811303i \(0.0258530\pi\)
−0.967473 + 0.252974i \(0.918591\pi\)
\(284\) 230.406 274.587i 0.811287 0.966855i
\(285\) 0 0
\(286\) −1.05727 0.384815i −0.00369675 0.00134551i
\(287\) 12.1342 + 45.2853i 0.0422793 + 0.157789i
\(288\) 0 0
\(289\) −571.632 + 330.032i −1.97797 + 1.14198i
\(290\) −0.696161 5.97913i −0.00240055 0.0206177i
\(291\) 0 0
\(292\) 25.5181 54.7237i 0.0873907 0.187410i
\(293\) −143.570 + 100.529i −0.490001 + 0.343103i −0.792321 0.610104i \(-0.791128\pi\)
0.302320 + 0.953206i \(0.402239\pi\)
\(294\) 0 0
\(295\) −143.802 21.1292i −0.487463 0.0716246i
\(296\) 3.13789 0.0106010
\(297\) 0 0
\(298\) −0.354001 0.354001i −0.00118792 0.00118792i
\(299\) −121.796 145.150i −0.407343 0.485453i
\(300\) 0 0
\(301\) 49.4681 280.547i 0.164346 0.932051i
\(302\) −0.168078 + 0.360445i −0.000556551 + 0.00119353i
\(303\) 0 0
\(304\) 51.2672 9.03979i 0.168642 0.0297361i
\(305\) 97.8694 + 32.4788i 0.320883 + 0.106488i
\(306\) 0 0
\(307\) 114.100 + 425.826i 0.371660 + 1.38706i 0.858163 + 0.513377i \(0.171606\pi\)
−0.486503 + 0.873679i \(0.661728\pi\)
\(308\) 21.3819 + 45.8536i 0.0694217 + 0.148875i
\(309\) 0 0
\(310\) −4.83861 + 5.12405i −0.0156084 + 0.0165292i
\(311\) −150.000 125.865i −0.482315 0.404710i 0.368948 0.929450i \(-0.379718\pi\)
−0.851263 + 0.524740i \(0.824163\pi\)
\(312\) 0 0
\(313\) −175.366 376.073i −0.560274 1.20151i −0.958728 0.284324i \(-0.908231\pi\)
0.398454 0.917188i \(-0.369547\pi\)
\(314\) 1.71833 + 0.992079i 0.00547239 + 0.00315949i
\(315\) 0 0
\(316\) 195.161 + 338.029i 0.617598 + 1.06971i
\(317\) −63.5215 44.4782i −0.200383 0.140310i 0.469078 0.883157i \(-0.344586\pi\)
−0.669461 + 0.742847i \(0.733475\pi\)
\(318\) 0 0
\(319\) 50.4453 + 138.597i 0.158136 + 0.434474i
\(320\) −272.116 + 167.676i −0.850362 + 0.523988i
\(321\) 0 0
\(322\) 0.143750 1.64307i 0.000446429 0.00510270i
\(323\) 70.9174 + 70.9174i 0.219559 + 0.219559i
\(324\) 0 0
\(325\) 232.803 183.740i 0.716317 0.565354i
\(326\) −4.08236 + 3.42551i −0.0125226 + 0.0105077i
\(327\) 0 0
\(328\) −2.30307 + 1.61263i −0.00702157 + 0.00491655i
\(329\) −59.9847 164.807i −0.182324 0.500932i
\(330\) 0 0
\(331\) 68.7150 + 389.702i 0.207598 + 1.17735i 0.893299 + 0.449464i \(0.148385\pi\)
−0.685701 + 0.727884i \(0.740504\pi\)
\(332\) −262.210 70.2590i −0.789790 0.211623i
\(333\) 0 0
\(334\) −1.96312 1.13341i −0.00587760 0.00339344i
\(335\) −14.6338 + 33.8835i −0.0436830 + 0.101145i
\(336\) 0 0
\(337\) −459.782 + 40.2257i −1.36434 + 0.119364i −0.745684 0.666300i \(-0.767877\pi\)
−0.618653 + 0.785664i \(0.712321\pi\)
\(338\) −0.0685488 0.783517i −0.000202807 0.00231810i
\(339\) 0 0
\(340\) −565.529 244.244i −1.66332 0.718366i
\(341\) 86.3407 149.546i 0.253199 0.438553i
\(342\) 0 0
\(343\) −80.9046 + 301.940i −0.235873 + 0.880292i
\(344\) 16.8243 2.96657i 0.0489078 0.00862376i
\(345\) 0 0
\(346\) 2.53397 0.922290i 0.00732361 0.00266558i
\(347\) 220.327 + 314.659i 0.634947 + 0.906799i 0.999705 0.0243038i \(-0.00773691\pi\)
−0.364757 + 0.931103i \(0.618848\pi\)
\(348\) 0 0
\(349\) 266.611 + 317.734i 0.763928 + 0.910414i 0.998090 0.0617837i \(-0.0196789\pi\)
−0.234162 + 0.972198i \(0.575234\pi\)
\(350\) 2.56385 + 0.301986i 0.00732528 + 0.000862818i
\(351\) 0 0
\(352\) −3.21823 + 3.21823i −0.00914271 + 0.00914271i
\(353\) 509.636 + 44.5873i 1.44373 + 0.126310i 0.781927 0.623370i \(-0.214237\pi\)
0.661800 + 0.749680i \(0.269793\pi\)
\(354\) 0 0
\(355\) 235.096 + 381.529i 0.662243 + 1.07473i
\(356\) 284.503 103.551i 0.799166 0.290873i
\(357\) 0 0
\(358\) 3.40142 4.85773i 0.00950116 0.0135691i
\(359\) −569.064 + 328.549i −1.58514 + 0.915179i −0.591044 + 0.806639i \(0.701284\pi\)
−0.994092 + 0.108539i \(0.965383\pi\)
\(360\) 0 0
\(361\) −175.201 + 303.457i −0.485321 + 0.840600i
\(362\) −5.62508 + 2.62302i −0.0155389 + 0.00724591i
\(363\) 0 0
\(364\) 113.180 134.883i 0.310935 0.370558i
\(365\) 54.8869 + 51.8293i 0.150375 + 0.141998i
\(366\) 0 0
\(367\) 233.762 109.005i 0.636952 0.297016i −0.0771898 0.997016i \(-0.524595\pi\)
0.714142 + 0.700001i \(0.246817\pi\)
\(368\) −246.706 + 66.1046i −0.670396 + 0.179632i
\(369\) 0 0
\(370\) −0.617768 + 1.86154i −0.00166964 + 0.00503119i
\(371\) 14.0631 + 79.7559i 0.0379060 + 0.214975i
\(372\) 0 0
\(373\) 596.261 + 278.041i 1.59855 + 0.745418i 0.998511 0.0545499i \(-0.0173724\pi\)
0.600043 + 0.799968i \(0.295150\pi\)
\(374\) −2.87742 0.507366i −0.00769363 0.00135659i
\(375\) 0 0
\(376\) 8.05699 6.76061i 0.0214282 0.0179804i
\(377\) 362.962 362.962i 0.962763 0.962763i
\(378\) 0 0
\(379\) 513.424i 1.35468i −0.735670 0.677340i \(-0.763133\pi\)
0.735670 0.677340i \(-0.236867\pi\)
\(380\) −9.46343 + 64.4062i −0.0249038 + 0.169490i
\(381\) 0 0
\(382\) 2.49707 + 3.56619i 0.00653684 + 0.00933558i
\(383\) −413.568 192.850i −1.07981 0.503524i −0.200462 0.979701i \(-0.564244\pi\)
−0.879349 + 0.476177i \(0.842022\pi\)
\(384\) 0 0
\(385\) −62.8301 + 7.31542i −0.163195 + 0.0190011i
\(386\) 3.19831 + 5.53963i 0.00828578 + 0.0143514i
\(387\) 0 0
\(388\) 335.792 89.9751i 0.865443 0.231895i
\(389\) −199.989 + 549.466i −0.514111 + 1.41251i 0.362806 + 0.931865i \(0.381819\pi\)
−0.876916 + 0.480643i \(0.840403\pi\)
\(390\) 0 0
\(391\) −376.937 316.288i −0.964034 0.808921i
\(392\) −7.81030 + 0.683313i −0.0199242 + 0.00174314i
\(393\) 0 0
\(394\) 0.644542 1.77087i 0.00163589 0.00449458i
\(395\) −477.959 + 98.4688i −1.21002 + 0.249288i
\(396\) 0 0
\(397\) −462.051 123.806i −1.16386 0.311854i −0.375352 0.926883i \(-0.622478\pi\)
−0.788505 + 0.615028i \(0.789145\pi\)
\(398\) 0.553704 0.790772i 0.00139122 0.00198686i
\(399\) 0 0
\(400\) −91.8463 389.074i −0.229616 0.972685i
\(401\) 106.695 605.096i 0.266072 1.50897i −0.499894 0.866087i \(-0.666628\pi\)
0.765966 0.642882i \(-0.222261\pi\)
\(402\) 0 0
\(403\) −598.682 52.3779i −1.48556 0.129970i
\(404\) 312.058i 0.772420i
\(405\) 0 0
\(406\) 4.46810 0.0110052
\(407\) 4.18854 47.8752i 0.0102913 0.117630i
\(408\) 0 0
\(409\) 426.780 + 75.2529i 1.04347 + 0.183992i 0.669013 0.743251i \(-0.266717\pi\)
0.374460 + 0.927243i \(0.377828\pi\)
\(410\) −0.503272 1.68378i −0.00122749 0.00410677i
\(411\) 0 0
\(412\) −424.725 297.395i −1.03088 0.721833i
\(413\) 27.9228 104.209i 0.0676097 0.252323i
\(414\) 0 0
\(415\) 186.624 283.474i 0.449697 0.683069i
\(416\) 14.8842 + 5.41740i 0.0357793 + 0.0130226i
\(417\) 0 0
\(418\) 0.0269104 + 0.307587i 6.43789e−5 + 0.000735854i
\(419\) 440.574 525.056i 1.05149 1.25312i 0.0850087 0.996380i \(-0.472908\pi\)
0.966481 0.256737i \(-0.0826473\pi\)
\(420\) 0 0
\(421\) 23.5432 + 8.56902i 0.0559221 + 0.0203540i 0.369830 0.929100i \(-0.379416\pi\)
−0.313908 + 0.949454i \(0.601638\pi\)
\(422\) 0.181750 + 0.678302i 0.000430688 + 0.00160735i
\(423\) 0 0
\(424\) −4.20602 + 2.42835i −0.00991986 + 0.00572724i
\(425\) 512.520 574.882i 1.20593 1.35266i
\(426\) 0 0
\(427\) −32.3477 + 69.3699i −0.0757557 + 0.162459i
\(428\) 468.330 327.928i 1.09423 0.766188i
\(429\) 0 0
\(430\) −1.55235 + 10.5650i −0.00361011 + 0.0245697i
\(431\) −127.076 −0.294840 −0.147420 0.989074i \(-0.547097\pi\)
−0.147420 + 0.989074i \(0.547097\pi\)
\(432\) 0 0
\(433\) 207.828 + 207.828i 0.479973 + 0.479973i 0.905123 0.425150i \(-0.139779\pi\)
−0.425150 + 0.905123i \(0.639779\pi\)
\(434\) −3.36254 4.00732i −0.00774778 0.00923345i
\(435\) 0 0
\(436\) 130.542 740.341i 0.299409 1.69803i
\(437\) −21.9754 + 47.1263i −0.0502869 + 0.107841i
\(438\) 0 0
\(439\) −220.046 + 38.8000i −0.501243 + 0.0883826i −0.418552 0.908193i \(-0.637462\pi\)
−0.0826904 + 0.996575i \(0.526351\pi\)
\(440\) −1.70094 3.39061i −0.00386576 0.00770593i
\(441\) 0 0
\(442\) 2.63181 + 9.82204i 0.00595432 + 0.0222218i
\(443\) 8.77681 + 18.8219i 0.0198122 + 0.0424874i 0.915965 0.401258i \(-0.131427\pi\)
−0.896153 + 0.443746i \(0.853649\pi\)
\(444\) 0 0
\(445\) 10.8408 + 378.370i 0.0243613 + 0.850270i
\(446\) 7.20228 + 6.04343i 0.0161486 + 0.0135503i
\(447\) 0 0
\(448\) −100.266 215.022i −0.223809 0.479959i
\(449\) 650.041 + 375.302i 1.44775 + 0.835861i 0.998347 0.0574664i \(-0.0183022\pi\)
0.449406 + 0.893327i \(0.351636\pi\)
\(450\) 0 0
\(451\) 21.5299 + 37.2909i 0.0477382 + 0.0826850i
\(452\) 467.956 + 327.667i 1.03530 + 0.724926i
\(453\) 0 0
\(454\) −3.30056 9.06821i −0.00726995 0.0199740i
\(455\) 115.485 + 187.416i 0.253812 + 0.411903i
\(456\) 0 0
\(457\) 45.5034 520.107i 0.0995699 1.13809i −0.767890 0.640582i \(-0.778693\pi\)
0.867460 0.497507i \(-0.165751\pi\)
\(458\) −5.76337 5.76337i −0.0125838 0.0125838i
\(459\) 0 0
\(460\) 18.7125 318.836i 0.0406794 0.693121i
\(461\) 498.139 417.988i 1.08056 0.906699i 0.0845942 0.996415i \(-0.473041\pi\)
0.995967 + 0.0897167i \(0.0285962\pi\)
\(462\) 0 0
\(463\) 165.786 116.084i 0.358068 0.250722i −0.380675 0.924709i \(-0.624308\pi\)
0.738743 + 0.673987i \(0.235420\pi\)
\(464\) −236.645 650.178i −0.510012 1.40125i
\(465\) 0 0
\(466\) 1.44323 + 8.18499i 0.00309707 + 0.0175644i
\(467\) −33.9068 9.08531i −0.0726056 0.0194546i 0.222333 0.974971i \(-0.428633\pi\)
−0.294939 + 0.955516i \(0.595299\pi\)
\(468\) 0 0
\(469\) −23.7257 13.6980i −0.0505878 0.0292069i
\(470\) 2.42450 + 6.11077i 0.00515851 + 0.0130016i
\(471\) 0 0
\(472\) 6.44521 0.563883i 0.0136551 0.00119467i
\(473\) −22.8039 260.650i −0.0482113 0.551058i
\(474\) 0 0
\(475\) −72.6984 36.5916i −0.153049 0.0770350i
\(476\) 228.626 395.991i 0.480306 0.831914i
\(477\) 0 0
\(478\) 1.37129 5.11771i 0.00286880 0.0107065i
\(479\) −797.108 + 140.552i −1.66411 + 0.293427i −0.924946 0.380099i \(-0.875890\pi\)
−0.739163 + 0.673526i \(0.764779\pi\)
\(480\) 0 0
\(481\) −157.166 + 57.2038i −0.326749 + 0.118927i
\(482\) −3.75976 5.36949i −0.00780032 0.0111400i
\(483\) 0 0
\(484\) −281.180 335.097i −0.580950 0.692349i
\(485\) −25.4648 + 433.884i −0.0525047 + 0.894606i
\(486\) 0 0
\(487\) 75.7890 75.7890i 0.155624 0.155624i −0.625000 0.780625i \(-0.714901\pi\)
0.780625 + 0.625000i \(0.214901\pi\)
\(488\) −4.57266 0.400056i −0.00937021 0.000819787i
\(489\) 0 0
\(490\) 1.13227 4.76796i 0.00231076 0.00973053i
\(491\) −340.188 + 123.818i −0.692848 + 0.252176i −0.664354 0.747418i \(-0.731293\pi\)
−0.0284938 + 0.999594i \(0.509071\pi\)
\(492\) 0 0
\(493\) 764.571 1091.92i 1.55085 2.21485i
\(494\) 0.930595 0.537279i 0.00188380 0.00108761i
\(495\) 0 0
\(496\) −405.035 + 701.542i −0.816604 + 1.41440i
\(497\) −301.479 + 140.582i −0.606597 + 0.282861i
\(498\) 0 0
\(499\) 152.789 182.086i 0.306190 0.364903i −0.590905 0.806741i \(-0.701229\pi\)
0.897095 + 0.441839i \(0.145674\pi\)
\(500\) 497.942 + 44.2348i 0.995885 + 0.0884696i
\(501\) 0 0
\(502\) 8.67137 4.04353i 0.0172736 0.00805483i
\(503\) −316.975 + 84.9331i −0.630168 + 0.168853i −0.559746 0.828664i \(-0.689101\pi\)
−0.0704222 + 0.997517i \(0.522435\pi\)
\(504\) 0 0
\(505\) −370.290 122.884i −0.733248 0.243334i
\(506\) −0.263052 1.49184i −0.000519865 0.00294830i
\(507\) 0 0
\(508\) −72.2427 33.6873i −0.142210 0.0663136i
\(509\) −261.364 46.0856i −0.513486 0.0905414i −0.0890997 0.996023i \(-0.528399\pi\)
−0.424386 + 0.905481i \(0.639510\pi\)
\(510\) 0 0
\(511\) −42.9249 + 36.0182i −0.0840017 + 0.0704858i
\(512\) 25.1635 25.1635i 0.0491476 0.0491476i
\(513\) 0 0
\(514\) 3.71107i 0.00721997i
\(515\) 520.142 386.871i 1.00998 0.751207i
\(516\) 0 0
\(517\) −92.3930 131.951i −0.178710 0.255224i
\(518\) −1.31946 0.615275i −0.00254722 0.00118779i
\(519\) 0 0
\(520\) −8.19274 + 10.3519i −0.0157553 + 0.0199076i
\(521\) 378.245 + 655.139i 0.725997 + 1.25746i 0.958562 + 0.284883i \(0.0919548\pi\)
−0.232565 + 0.972581i \(0.574712\pi\)
\(522\) 0 0
\(523\) 580.072 155.430i 1.10912 0.297189i 0.342649 0.939463i \(-0.388676\pi\)
0.766475 + 0.642275i \(0.222009\pi\)
\(524\) 48.8524 134.221i 0.0932298 0.256147i
\(525\) 0 0
\(526\) −2.59723 2.17933i −0.00493769 0.00414321i
\(527\) −1554.70 + 136.019i −2.95010 + 0.258100i
\(528\) 0 0
\(529\) −93.6744 + 257.368i −0.177078 + 0.486518i
\(530\) −0.612554 2.97329i −0.00115576 0.00560997i
\(531\) 0 0
\(532\) −46.6736 12.5061i −0.0877323 0.0235078i
\(533\) 85.9549 122.756i 0.161266 0.230312i
\(534\) 0 0
\(535\) 204.701 + 684.858i 0.382618 + 1.28011i
\(536\) 0.285291 1.61796i 0.000532259 0.00301859i
\(537\) 0 0
\(538\) −2.65589 0.232361i −0.00493660 0.000431897i
\(539\) 120.075i 0.222774i
\(540\) 0 0
\(541\) −870.344 −1.60877 −0.804384 0.594109i \(-0.797505\pi\)
−0.804384 + 0.594109i \(0.797505\pi\)
\(542\) 0.275194 3.14548i 0.000507738 0.00580347i
\(543\) 0 0
\(544\) 40.5081 + 7.14267i 0.0744634 + 0.0131299i
\(545\) 827.089 + 446.438i 1.51759 + 0.819152i
\(546\) 0 0
\(547\) 17.2226 + 12.0594i 0.0314855 + 0.0220464i 0.589213 0.807978i \(-0.299438\pi\)
−0.557728 + 0.830024i \(0.688327\pi\)
\(548\) 98.1873 366.440i 0.179174 0.668686i
\(549\) 0 0
\(550\) 2.34634 0.341553i 0.00426606 0.000621006i
\(551\) −132.369 48.1782i −0.240233 0.0874378i
\(552\) 0 0
\(553\) −31.5700 360.847i −0.0570886 0.652526i
\(554\) 7.26646 8.65983i 0.0131164 0.0156315i
\(555\) 0 0
\(556\) 583.640 + 212.428i 1.04971 + 0.382064i
\(557\) −205.862 768.287i −0.369590 1.37933i −0.861090 0.508452i \(-0.830218\pi\)
0.491500 0.870878i \(-0.336449\pi\)
\(558\) 0 0
\(559\) −788.590 + 455.292i −1.41071 + 0.814477i
\(560\) 294.744 34.3176i 0.526329 0.0612814i
\(561\) 0 0
\(562\) −1.29852 + 2.78468i −0.00231053 + 0.00495494i
\(563\) −293.859 + 205.762i −0.521952 + 0.365474i −0.804664 0.593730i \(-0.797655\pi\)
0.282713 + 0.959205i \(0.408766\pi\)
\(564\) 0 0
\(565\) −573.086 + 426.250i −1.01431 + 0.754425i
\(566\) 2.64081 0.00466574
\(567\) 0 0
\(568\) −14.1057 14.1057i −0.0248340 0.0248340i
\(569\) −229.931 274.021i −0.404096 0.481583i 0.525168 0.850998i \(-0.324002\pi\)
−0.929264 + 0.369415i \(0.879558\pi\)
\(570\) 0 0
\(571\) −92.1257 + 522.471i −0.161341 + 0.915010i 0.791416 + 0.611278i \(0.209344\pi\)
−0.952757 + 0.303733i \(0.901767\pi\)
\(572\) 68.3457 146.568i 0.119486 0.256238i
\(573\) 0 0
\(574\) 1.28463 0.226515i 0.00223803 0.000394625i
\(575\) 370.964 + 147.757i 0.645155 + 0.256969i
\(576\) 0 0
\(577\) −31.8850 118.997i −0.0552600 0.206233i 0.932776 0.360457i \(-0.117379\pi\)
−0.988036 + 0.154223i \(0.950712\pi\)
\(578\) 7.76154 + 16.6447i 0.0134283 + 0.0287970i
\(579\) 0 0
\(580\) 864.861 24.7794i 1.49114 0.0427231i
\(581\) 192.981 + 161.930i 0.332154 + 0.278710i
\(582\) 0 0
\(583\) 31.4354 + 67.4133i 0.0539200 + 0.115632i
\(584\) −2.91015 1.68018i −0.00498313 0.00287701i
\(585\) 0 0
\(586\) 2.43828 + 4.22322i 0.00416089 + 0.00720687i
\(587\) 245.325 + 171.778i 0.417930 + 0.292638i 0.763564 0.645732i \(-0.223447\pi\)
−0.345635 + 0.938369i \(0.612336\pi\)
\(588\) 0 0
\(589\) 56.4062 + 154.975i 0.0957661 + 0.263115i
\(590\) −0.934371 + 3.93461i −0.00158368 + 0.00666883i
\(591\) 0 0
\(592\) −19.6490 + 224.589i −0.0331909 + 0.379373i
\(593\) 39.9297 + 39.9297i 0.0673351 + 0.0673351i 0.739972 0.672637i \(-0.234839\pi\)
−0.672637 + 0.739972i \(0.734839\pi\)
\(594\) 0 0
\(595\) 379.857 + 427.225i 0.638415 + 0.718025i
\(596\) 55.1235 46.2541i 0.0924890 0.0776075i
\(597\) 0 0
\(598\) −4.31859 + 3.02391i −0.00722172 + 0.00505671i
\(599\) 348.730 + 958.128i 0.582187 + 1.59955i 0.784435 + 0.620212i \(0.212953\pi\)
−0.202247 + 0.979334i \(0.564825\pi\)
\(600\) 0 0
\(601\) −45.2302 256.513i −0.0752582 0.426810i −0.999037 0.0438830i \(-0.986027\pi\)
0.923779 0.382927i \(-0.125084\pi\)
\(602\) −7.65617 2.05147i −0.0127179 0.00340775i
\(603\) 0 0
\(604\) −49.5059 28.5823i −0.0819635 0.0473216i
\(605\) 508.353 201.694i 0.840253 0.333378i
\(606\) 0 0
\(607\) 105.011 9.18728i 0.173000 0.0151356i −0.000326450 1.00000i \(-0.500104\pi\)
0.173327 + 0.984864i \(0.444548\pi\)
\(608\) −0.378842 4.33019i −0.000623096 0.00712202i
\(609\) 0 0
\(610\) 1.13757 2.63396i 0.00186487 0.00431796i
\(611\) −280.301 + 485.495i −0.458758 + 0.794591i
\(612\) 0 0
\(613\) 137.987 514.974i 0.225101 0.840087i −0.757263 0.653110i \(-0.773464\pi\)
0.982364 0.186978i \(-0.0598693\pi\)
\(614\) 12.0796 2.12996i 0.0196736 0.00346899i
\(615\) 0 0
\(616\) 2.64587 0.963018i 0.00429524 0.00156334i
\(617\) −379.147 541.478i −0.614501 0.877598i 0.384462 0.923141i \(-0.374387\pi\)
−0.998962 + 0.0455428i \(0.985498\pi\)
\(618\) 0 0
\(619\) 316.843 + 377.599i 0.511862 + 0.610014i 0.958637 0.284633i \(-0.0918717\pi\)
−0.446774 + 0.894647i \(0.647427\pi\)
\(620\) −673.088 757.022i −1.08563 1.22100i
\(621\) 0 0
\(622\) −3.85244 + 3.85244i −0.00619363 + 0.00619363i
\(623\) −279.899 24.4879i −0.449275 0.0393065i
\(624\) 0 0
\(625\) −248.572 + 573.443i −0.397715 + 0.917509i
\(626\) −10.8492 + 3.94877i −0.0173309 + 0.00630794i
\(627\) 0 0
\(628\) −163.580 + 233.617i −0.260478 + 0.372001i
\(629\) −376.145 + 217.167i −0.598004 + 0.345258i
\(630\) 0 0
\(631\) 22.9586 39.7654i 0.0363844 0.0630197i −0.847260 0.531179i \(-0.821749\pi\)
0.883644 + 0.468159i \(0.155083\pi\)
\(632\) 19.6872 9.18030i 0.0311506 0.0145258i
\(633\) 0 0
\(634\) −1.38687 + 1.65281i −0.00218750 + 0.00260696i
\(635\) 68.4217 72.4581i 0.107751 0.114107i
\(636\) 0 0
\(637\) 378.735 176.607i 0.594560 0.277248i
\(638\) 3.96393 1.06213i 0.00621306 0.00166478i
\(639\) 0 0
\(640\) 15.9617 + 31.8177i 0.0249402 + 0.0497152i
\(641\) 33.0604 + 187.495i 0.0515763 + 0.292504i 0.999676 0.0254707i \(-0.00810844\pi\)
−0.948099 + 0.317975i \(0.896997\pi\)
\(642\) 0 0
\(643\) −690.791 322.121i −1.07432 0.500966i −0.196774 0.980449i \(-0.563046\pi\)
−0.877551 + 0.479483i \(0.840824\pi\)
\(644\) 233.467 + 41.1666i 0.362527 + 0.0639233i
\(645\) 0 0
\(646\) 2.13764 1.79370i 0.00330904 0.00277662i
\(647\) 157.925 157.925i 0.244088 0.244088i −0.574451 0.818539i \(-0.694784\pi\)
0.818539 + 0.574451i \(0.194784\pi\)
\(648\) 0 0
\(649\) 99.0882i 0.152678i
\(650\) −4.52831 6.89834i −0.00696663 0.0106128i
\(651\) 0 0
\(652\) −439.351 627.458i −0.673851 0.962359i
\(653\) −678.708 316.487i −1.03937 0.484665i −0.173446 0.984843i \(-0.555490\pi\)
−0.865923 + 0.500178i \(0.833268\pi\)
\(654\) 0 0
\(655\) 140.030 + 110.823i 0.213787 + 0.169195i
\(656\) −101.000 174.937i −0.153963 0.266672i
\(657\) 0 0
\(658\) −4.71352 + 1.26299i −0.00716341 + 0.00191943i
\(659\) −80.1439 + 220.194i −0.121614 + 0.334133i −0.985529 0.169505i \(-0.945783\pi\)
0.863915 + 0.503638i \(0.168005\pi\)
\(660\) 0 0
\(661\) −544.613 456.985i −0.823923 0.691354i 0.129964 0.991519i \(-0.458514\pi\)
−0.953887 + 0.300165i \(0.902958\pi\)
\(662\) 10.9683 0.959600i 0.0165684 0.00144955i
\(663\) 0 0
\(664\) −5.16705 + 14.1964i −0.00778170 + 0.0213800i
\(665\) 33.2193 50.4585i 0.0499538 0.0758774i
\(666\) 0 0
\(667\) 667.560 + 178.872i 1.00084 + 0.268174i
\(668\) 186.883 266.897i 0.279765 0.399546i
\(669\) 0 0
\(670\) 0.903685 + 0.487782i 0.00134878 + 0.000728033i
\(671\) −12.2074 + 69.2318i −0.0181929 + 0.103177i
\(672\) 0 0
\(673\) 609.916 + 53.3607i 0.906265 + 0.0792879i 0.530750 0.847529i \(-0.321910\pi\)
0.375515 + 0.926816i \(0.377466\pi\)
\(674\) 12.8416i 0.0190529i
\(675\) 0 0
\(676\) 113.049 0.167232
\(677\) −18.3088 + 209.271i −0.0270441 + 0.309115i 0.970610 + 0.240658i \(0.0773632\pi\)
−0.997654 + 0.0684572i \(0.978192\pi\)
\(678\) 0 0
\(679\) −317.712 56.0211i −0.467911 0.0825053i
\(680\) −16.2842 + 30.1687i −0.0239473 + 0.0443657i
\(681\) 0 0
\(682\) −3.93571 2.75581i −0.00577084 0.00404078i
\(683\) 281.554 1050.77i 0.412232 1.53847i −0.378085 0.925771i \(-0.623417\pi\)
0.790317 0.612699i \(-0.209916\pi\)
\(684\) 0 0
\(685\) 396.156 + 260.809i 0.578330 + 0.380743i
\(686\) 8.17290 + 2.97469i 0.0119138 + 0.00433628i
\(687\) 0 0
\(688\) 106.976 + 1222.74i 0.155489 + 1.77724i
\(689\) 166.397 198.304i 0.241504 0.287814i
\(690\) 0 0
\(691\) 1047.01 + 381.079i 1.51520 + 0.551489i 0.959945 0.280189i \(-0.0903971\pi\)
0.555258 + 0.831678i \(0.312619\pi\)
\(692\) 100.317 + 374.388i 0.144967 + 0.541023i
\(693\) 0 0
\(694\) 9.25592 5.34391i 0.0133371 0.00770016i
\(695\) −481.897 + 608.901i −0.693377 + 0.876116i
\(696\) 0 0
\(697\) 164.467 352.700i 0.235964 0.506026i
\(698\) 9.45340 6.61934i 0.0135436 0.00948330i
\(699\) 0 0
\(700\) −75.3590 + 363.330i −0.107656 + 0.519042i
\(701\) 598.694 0.854056 0.427028 0.904238i \(-0.359560\pi\)
0.427028 + 0.904238i \(0.359560\pi\)
\(702\) 0 0
\(703\) 32.4550 + 32.4550i 0.0461664 + 0.0461664i
\(704\) −140.066 166.924i −0.198958 0.237108i
\(705\) 0 0
\(706\) 2.47172 14.0178i 0.00350102 0.0198553i
\(707\) 122.388 262.462i 0.173109 0.371233i
\(708\) 0 0
\(709\) −277.380 + 48.9096i −0.391227 + 0.0689839i −0.365802 0.930693i \(-0.619205\pi\)
−0.0254256 + 0.999677i \(0.508094\pi\)
\(710\) 11.1452 5.59113i 0.0156975 0.00787483i
\(711\) 0 0
\(712\) −4.36096 16.2753i −0.00612495 0.0228586i
\(713\) −341.957 733.328i −0.479603 1.02851i
\(714\) 0 0
\(715\) 147.005 + 138.816i 0.205601 + 0.194148i
\(716\) 652.958 + 547.897i 0.911953 + 0.765219i
\(717\) 0 0
\(718\) 7.72666 + 16.5699i 0.0107614 + 0.0230778i
\(719\) 836.274 + 482.823i 1.16311 + 0.671520i 0.952047 0.305953i \(-0.0989750\pi\)
0.211060 + 0.977473i \(0.432308\pi\)
\(720\) 0 0
\(721\) 240.585 + 416.705i 0.333682 + 0.577954i
\(722\) 7.98627 + 5.59204i 0.0110613 + 0.00774521i
\(723\) 0 0
\(724\) −305.118 838.304i −0.421434 1.15788i
\(725\) −311.166 + 1036.01i −0.429195 + 1.42898i
\(726\) 0 0
\(727\) 22.6711 259.132i 0.0311845 0.356441i −0.964531 0.263970i \(-0.914968\pi\)
0.995715 0.0924706i \(-0.0294764\pi\)
\(728\) −6.92906 6.92906i −0.00951794 0.00951794i
\(729\) 0 0
\(730\) 1.56969 1.39565i 0.00215026 0.00191185i
\(731\) −1811.45 + 1519.98i −2.47804 + 2.07932i
\(732\) 0 0
\(733\) −272.467 + 190.784i −0.371715 + 0.260278i −0.744475 0.667650i \(-0.767300\pi\)
0.372760 + 0.927928i \(0.378411\pi\)
\(734\) −2.45450 6.74367i −0.00334400 0.00918756i
\(735\) 0 0
\(736\) 3.70322 + 21.0020i 0.00503156 + 0.0285354i
\(737\) −24.3047 6.51243i −0.0329779 0.00883640i
\(738\) 0 0
\(739\) −955.178 551.472i −1.29253 0.746241i −0.313426 0.949613i \(-0.601477\pi\)
−0.979102 + 0.203372i \(0.934810\pi\)
\(740\) −258.812 111.777i −0.349745 0.151050i
\(741\) 0 0
\(742\) 2.24475 0.196390i 0.00302527 0.000264677i
\(743\) 111.043 + 1269.23i 0.149453 + 1.70825i 0.587436 + 0.809270i \(0.300137\pi\)
−0.437984 + 0.898983i \(0.644307\pi\)
\(744\) 0 0
\(745\) 33.1786 + 83.6241i 0.0445351 + 0.112247i
\(746\) 9.15258 15.8527i 0.0122689 0.0212503i
\(747\) 0 0
\(748\) 108.695 405.656i 0.145314 0.542321i
\(749\) −522.510 + 92.1326i −0.697610 + 0.123007i
\(750\) 0 0
\(751\) 315.133 114.699i 0.419618 0.152728i −0.123577 0.992335i \(-0.539437\pi\)
0.543195 + 0.839607i \(0.317214\pi\)
\(752\) 433.428 + 618.999i 0.576367 + 0.823137i
\(753\) 0 0
\(754\) −9.18029 10.9406i −0.0121754 0.0145101i
\(755\) 53.4106 47.4888i 0.0707426 0.0628991i
\(756\) 0 0
\(757\) 218.550 218.550i 0.288705 0.288705i −0.547863 0.836568i \(-0.684559\pi\)
0.836568 + 0.547863i \(0.184559\pi\)
\(758\) −14.2309 1.24505i −0.0187743 0.00164254i
\(759\) 0 0
\(760\) 3.52483 + 0.837058i 0.00463794 + 0.00110139i
\(761\) −586.465 + 213.456i −0.770651 + 0.280494i −0.697269 0.716810i \(-0.745601\pi\)
−0.0733821 + 0.997304i \(0.523379\pi\)
\(762\) 0 0
\(763\) −400.154 + 571.479i −0.524448 + 0.748990i
\(764\) −541.918 + 312.877i −0.709317 + 0.409524i
\(765\) 0 0
\(766\) −6.34825 + 10.9955i −0.00828754 + 0.0143544i
\(767\) −312.539 + 145.739i −0.407482 + 0.190012i
\(768\) 0 0
\(769\) −267.715 + 319.050i −0.348134 + 0.414890i −0.911489 0.411325i \(-0.865066\pi\)
0.563355 + 0.826215i \(0.309510\pi\)
\(770\) 0.0504047 + 1.75925i 6.54606e−5 + 0.00228473i
\(771\) 0 0
\(772\) −833.276 + 388.563i −1.07937 + 0.503320i
\(773\) −258.350 + 69.2246i −0.334217 + 0.0895531i −0.422025 0.906584i \(-0.638680\pi\)
0.0878080 + 0.996137i \(0.472014\pi\)
\(774\) 0 0
\(775\) 1163.34 500.588i 1.50108 0.645919i
\(776\) −3.35955 19.0530i −0.00432932 0.0245528i
\(777\) 0 0
\(778\) 14.7450 + 6.87569i 0.0189524 + 0.00883764i
\(779\) −40.4999 7.14122i −0.0519896 0.00916717i
\(780\) 0 0
\(781\) −234.042 + 196.385i −0.299670 + 0.251453i
\(782\) −9.68085 + 9.68085i −0.0123796 + 0.0123796i
\(783\) 0 0
\(784\) 563.288i 0.718479i
\(785\) −212.796 286.100i −0.271077 0.364459i
\(786\) 0 0
\(787\) −78.7629 112.485i −0.100080 0.142929i 0.765989 0.642854i \(-0.222250\pi\)
−0.866069 + 0.499925i \(0.833361\pi\)
\(788\) 245.492 + 114.475i 0.311539 + 0.145273i
\(789\) 0 0
\(790\) 1.57028 + 13.4867i 0.00198770 + 0.0170718i
\(791\) −265.073 459.121i −0.335112 0.580430i
\(792\) 0 0
\(793\) 236.322 63.3223i 0.298010 0.0798516i
\(794\) −4.55209 + 12.5068i −0.00573311 + 0.0157516i
\(795\) 0 0
\(796\) 106.293 + 89.1901i 0.133533 + 0.112048i
\(797\) −275.890 + 24.1372i −0.346160 + 0.0302851i −0.258910 0.965901i \(-0.583363\pi\)
−0.0872500 + 0.996186i \(0.527808\pi\)
\(798\) 0 0
\(799\) −497.917 + 1368.02i −0.623175 + 1.71216i
\(800\) −33.0316 + 4.80836i −0.0412894 + 0.00601045i
\(801\) 0 0
\(802\) −16.5132 4.42469i −0.0205900 0.00551706i
\(803\) −29.5192 + 42.1579i −0.0367612 + 0.0525004i
\(804\) 0 0
\(805\) −140.785 + 260.823i −0.174888 + 0.324004i
\(806\) −2.90359 + 16.4671i −0.00360247 + 0.0204306i
\(807\) 0 0
\(808\) 17.3007 + 1.51362i 0.0214118 + 0.00187329i
\(809\) 977.734i 1.20857i 0.796768 + 0.604286i \(0.206541\pi\)
−0.796768 + 0.604286i \(0.793459\pi\)
\(810\) 0 0
\(811\) 601.353 0.741496 0.370748 0.928734i \(-0.379101\pi\)
0.370748 + 0.928734i \(0.379101\pi\)
\(812\) −55.9734 + 639.779i −0.0689328 + 0.787905i
\(813\) 0 0
\(814\) −1.31683 0.232193i −0.00161773 0.000285250i
\(815\) 917.556 274.253i 1.12584 0.336507i
\(816\) 0 0
\(817\) 204.696 + 143.329i 0.250545 + 0.175434i
\(818\) 3.12077 11.6469i 0.00381513 0.0142382i
\(819\) 0 0
\(820\) 247.401 50.9694i 0.301709 0.0621578i
\(821\) 1124.15 + 409.157i 1.36924 + 0.498364i 0.918900 0.394490i \(-0.129079\pi\)
0.450345 + 0.892855i \(0.351301\pi\)
\(822\) 0 0
\(823\) −28.7895 329.066i −0.0349812 0.399837i −0.993419 0.114536i \(-0.963462\pi\)
0.958438 0.285301i \(-0.0920936\pi\)
\(824\) −18.5479 + 22.1046i −0.0225096 + 0.0268259i
\(825\) 0 0
\(826\) −2.82073 1.02666i −0.00341493 0.00124293i
\(827\) −24.5489 91.6177i −0.0296843 0.110783i 0.949494 0.313785i \(-0.101597\pi\)
−0.979178 + 0.203002i \(0.934930\pi\)
\(828\) 0 0
\(829\) 964.314 556.747i 1.16323 0.671589i 0.211151 0.977454i \(-0.432279\pi\)
0.952075 + 0.305865i \(0.0989456\pi\)
\(830\) −7.40468 5.86022i −0.00892130 0.00706051i
\(831\) 0 0
\(832\) −320.494 + 687.303i −0.385210 + 0.826085i
\(833\) 888.945 622.446i 1.06716 0.747234i
\(834\) 0 0
\(835\) 243.110 + 326.857i 0.291150 + 0.391446i
\(836\) −44.3799 −0.0530860
\(837\) 0 0
\(838\) −13.4850 13.4850i −0.0160918 0.0160918i
\(839\) −148.555 177.041i −0.177062 0.211015i 0.670213 0.742169i \(-0.266203\pi\)
−0.847275 + 0.531154i \(0.821758\pi\)
\(840\) 0 0
\(841\) −179.070 + 1015.56i −0.212925 + 1.20756i
\(842\) 0.294606 0.631784i 0.000349888 0.000750337i
\(843\) 0 0
\(844\) −99.4016 + 17.5272i −0.117774 + 0.0207668i
\(845\) −44.5171 + 134.145i −0.0526829 + 0.158751i
\(846\) 0 0
\(847\) 105.067 + 392.117i 0.124047 + 0.462948i
\(848\) −147.467 316.245i −0.173900 0.372930i
\(849\) 0 0
\(850\) −14.6916 15.5999i −0.0172842 0.0183529i
\(851\) −172.503 144.748i −0.202707 0.170091i
\(852\) 0 0
\(853\) 207.570 + 445.135i 0.243341 + 0.521847i 0.989607 0.143802i \(-0.0459328\pi\)
−0.746265 + 0.665649i \(0.768155\pi\)
\(854\) 1.84433 + 1.06483i 0.00215964 + 0.00124687i
\(855\) 0 0
\(856\) −15.9090 27.5552i −0.0185853 0.0321906i
\(857\) −422.738 296.004i −0.493276 0.345396i 0.300322 0.953838i \(-0.402906\pi\)
−0.793598 + 0.608442i \(0.791795\pi\)
\(858\) 0 0
\(859\) −269.812 741.302i −0.314100 0.862982i −0.991818 0.127660i \(-0.959253\pi\)
0.677718 0.735322i \(-0.262969\pi\)
\(860\) −1493.33 354.629i −1.73643 0.412359i
\(861\) 0 0
\(862\) −0.308158 + 3.52226i −0.000357492 + 0.00408615i
\(863\) −956.689 956.689i −1.10856 1.10856i −0.993340 0.115222i \(-0.963242\pi\)
−0.115222 0.993340i \(-0.536758\pi\)
\(864\) 0 0
\(865\) −483.755 28.3917i −0.559255 0.0328228i
\(866\) 6.26450 5.25654i 0.00723384 0.00606991i
\(867\) 0 0
\(868\) 615.924 431.274i 0.709590 0.496860i
\(869\) −113.786 312.625i −0.130939 0.359752i
\(870\) 0 0
\(871\) 15.2063 + 86.2392i 0.0174584 + 0.0990117i
\(872\) −40.4119 10.8283i −0.0463439 0.0124178i
\(873\) 0 0
\(874\) 1.25294 + 0.723387i 0.00143357 + 0.000827674i
\(875\) −401.455 232.496i −0.458805 0.265709i
\(876\) 0 0
\(877\) −849.409 + 74.3137i −0.968539 + 0.0847362i −0.560434 0.828199i \(-0.689366\pi\)
−0.408105 + 0.912935i \(0.633810\pi\)
\(878\) 0.541839 + 6.19325i 0.000617129 + 0.00705382i
\(879\) 0 0
\(880\) 253.328 100.510i 0.287873 0.114216i
\(881\) 529.633 917.351i 0.601172 1.04126i −0.391472 0.920190i \(-0.628034\pi\)
0.992644 0.121071i \(-0.0386328\pi\)
\(882\) 0 0
\(883\) 199.854 745.867i 0.226336 0.844696i −0.755529 0.655115i \(-0.772620\pi\)
0.981865 0.189581i \(-0.0607131\pi\)
\(884\) −1439.37 + 253.800i −1.62825 + 0.287104i
\(885\) 0 0
\(886\) 0.542984 0.197630i 0.000612849 0.000223059i
\(887\) 590.142 + 842.810i 0.665323 + 0.950180i 0.999969 + 0.00783619i \(0.00249436\pi\)
−0.334646 + 0.942344i \(0.608617\pi\)
\(888\) 0 0
\(889\) 47.5489 + 56.6666i 0.0534859 + 0.0637420i
\(890\) 10.5138 + 0.617060i 0.0118133 + 0.000693326i
\(891\) 0 0
\(892\) −955.573 + 955.573i −1.07127 + 1.07127i
\(893\) 153.258 + 13.4083i 0.171621 + 0.0150149i
\(894\) 0 0
\(895\) −907.264 + 559.051i −1.01370 + 0.624638i
\(896\) −24.8290 + 9.03703i −0.0277110 + 0.0100860i
\(897\) 0 0
\(898\) 11.9788 17.1076i 0.0133395 0.0190507i
\(899\) 1898.30 1095.98i 2.11157 1.21911i
\(900\) 0 0
\(901\) 336.123 582.181i 0.373055 0.646150i
\(902\) 1.08583 0.506330i 0.00120380 0.000561342i
\(903\) 0 0
\(904\) 20.4359 24.3545i 0.0226061 0.0269409i
\(905\) 1114.89 31.9430i 1.23192 0.0352962i
\(906\) 0 0
\(907\) 1212.97 565.619i 1.33735 0.623615i 0.383398 0.923583i \(-0.374754\pi\)
0.953949 + 0.299968i \(0.0969760\pi\)
\(908\) 1339.81 359.000i 1.47556 0.395375i
\(909\) 0 0
\(910\) 5.47479 2.74649i 0.00601625 0.00301812i
\(911\) 24.1338 + 136.870i 0.0264916 + 0.150241i 0.995184 0.0980217i \(-0.0312514\pi\)
−0.968693 + 0.248263i \(0.920140\pi\)
\(912\) 0 0
\(913\) 209.699 + 97.7841i 0.229681 + 0.107102i
\(914\) −14.3058 2.52250i −0.0156519 0.00275985i
\(915\) 0 0
\(916\) 897.447 753.047i 0.979745 0.822104i
\(917\) −93.7292 + 93.7292i −0.102213 + 0.102213i
\(918\) 0 0
\(919\) 995.456i 1.08319i 0.840638 + 0.541597i \(0.182180\pi\)
−0.840638 + 0.541597i \(0.817820\pi\)
\(920\) −17.5857 2.58393i −0.0191149 0.00280862i
\(921\) 0 0
\(922\) −10.3777 14.8209i −0.0112556 0.0160747i
\(923\) 963.656 + 449.360i 1.04405 + 0.486848i
\(924\) 0 0
\(925\) 234.552 263.092i 0.253570 0.284423i
\(926\) −2.81556 4.87670i −0.00304056 0.00526641i
\(927\) 0 0
\(928\) −55.8039 + 14.9526i −0.0601335 + 0.0161127i
\(929\) 475.730 1307.06i 0.512089 1.40695i −0.366968 0.930234i \(-0.619604\pi\)
0.879056 0.476718i \(-0.158174\pi\)
\(930\) 0 0
\(931\) −87.8489 73.7140i −0.0943598 0.0791772i
\(932\) −1190.07 + 104.118i −1.27690 + 0.111715i
\(933\) 0 0
\(934\) −0.334048 + 0.917788i −0.000357653 + 0.000982642i
\(935\) 438.552 + 288.720i 0.469039 + 0.308791i
\(936\) 0 0
\(937\) −84.0579 22.5232i −0.0897096 0.0240376i 0.213685 0.976903i \(-0.431453\pi\)
−0.303395 + 0.952865i \(0.598120\pi\)
\(938\) −0.437212 + 0.624403i −0.000466111 + 0.000665675i
\(939\) 0 0
\(940\) −905.362 + 270.608i −0.963151 + 0.287881i
\(941\) 233.836 1326.15i 0.248498 1.40930i −0.563729 0.825959i \(-0.690634\pi\)
0.812227 0.583341i \(-0.198255\pi\)
\(942\) 0 0
\(943\) 200.999 + 17.5851i 0.213149 + 0.0186481i
\(944\) 464.836i 0.492411i
\(945\) 0 0
\(946\) −7.27993 −0.00769548
\(947\) 116.040 1326.35i 0.122535 1.40058i −0.647252 0.762276i \(-0.724082\pi\)
0.769787 0.638301i \(-0.220363\pi\)
\(948\) 0 0
\(949\) 176.389 + 31.1022i 0.185868 + 0.0327736i
\(950\) −1.19053 + 1.92630i −0.00125319 + 0.00202768i
\(951\) 0 0
\(952\) −20.8451 14.5959i −0.0218961 0.0153318i
\(953\) 47.5657 177.518i 0.0499115 0.186272i −0.936469 0.350749i \(-0.885927\pi\)
0.986381 + 0.164477i \(0.0525936\pi\)
\(954\) 0 0
\(955\) −157.862 766.250i −0.165301 0.802356i
\(956\) 715.616 + 260.463i 0.748553 + 0.272451i
\(957\) 0 0
\(958\) 1.96280 + 22.4349i 0.00204885 + 0.0234184i
\(959\) −226.299 + 269.692i −0.235974 + 0.281222i
\(960\) 0 0
\(961\) −1508.51 549.051i −1.56972 0.571333i
\(962\) 1.20443 + 4.49501i 0.00125201 + 0.00467256i
\(963\) 0 0
\(964\) 815.946 471.087i 0.846417 0.488679i
\(965\) −132.940 1141.78i −0.137761 1.18319i
\(966\) 0 0
\(967\) 80.4459 172.517i 0.0831913 0.178404i −0.860312 0.509768i \(-0.829731\pi\)
0.943503 + 0.331364i \(0.107509\pi\)
\(968\) −19.9419 + 13.9635i −0.0206011 + 0.0144251i
\(969\) 0 0
\(970\) 11.9645 + 1.75799i 0.0123346 + 0.00181236i
\(971\) 544.835 0.561107 0.280554 0.959838i \(-0.409482\pi\)
0.280554 + 0.959838i \(0.409482\pi\)
\(972\) 0 0
\(973\) −407.568 407.568i −0.418877 0.418877i
\(974\) −1.91691 2.28449i −0.00196808 0.00234547i
\(975\) 0 0
\(976\) 57.2667 324.775i 0.0586749 0.332762i
\(977\) 321.165 688.740i 0.328726 0.704954i −0.670595 0.741824i \(-0.733961\pi\)
0.999320 + 0.0368699i \(0.0117387\pi\)
\(978\) 0 0
\(979\) −254.136 + 44.8111i −0.259588 + 0.0457723i
\(980\) 668.531 + 221.857i 0.682174 + 0.226385i
\(981\) 0 0
\(982\) 2.60701 + 9.72950i 0.00265480 + 0.00990784i
\(983\) 132.243 + 283.595i 0.134530 + 0.288499i 0.962019 0.272981i \(-0.0880097\pi\)
−0.827490 + 0.561481i \(0.810232\pi\)
\(984\) 0 0
\(985\) −232.508 + 246.225i −0.236049 + 0.249974i
\(986\) −28.4115 23.8401i −0.0288149 0.0241786i
\(987\) 0 0
\(988\) 65.2742 + 139.981i 0.0660670 + 0.141681i
\(989\) −1061.75 613.001i −1.07356 0.619819i
\(990\) 0 0
\(991\) −633.858 1097.87i −0.639614 1.10784i −0.985517 0.169574i \(-0.945761\pi\)
0.345903 0.938270i \(-0.387573\pi\)
\(992\) 55.4067 + 38.7962i 0.0558535 + 0.0391090i
\(993\) 0 0
\(994\) 3.16552 + 8.69721i 0.00318463 + 0.00874971i
\(995\) −147.690 + 91.0059i −0.148432 + 0.0914632i
\(996\) 0 0
\(997\) 69.9231 799.225i 0.0701335 0.801630i −0.876937 0.480605i \(-0.840417\pi\)
0.947071 0.321025i \(-0.104027\pi\)
\(998\) −4.67651 4.67651i −0.00468588 0.00468588i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.s.a.118.17 408
3.2 odd 2 135.3.r.a.103.18 yes 408
5.2 odd 4 inner 405.3.s.a.37.17 408
15.2 even 4 135.3.r.a.22.18 408
27.11 odd 18 135.3.r.a.43.18 yes 408
27.16 even 9 inner 405.3.s.a.208.17 408
135.92 even 36 135.3.r.a.97.18 yes 408
135.97 odd 36 inner 405.3.s.a.127.17 408
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.r.a.22.18 408 15.2 even 4
135.3.r.a.43.18 yes 408 27.11 odd 18
135.3.r.a.97.18 yes 408 135.92 even 36
135.3.r.a.103.18 yes 408 3.2 odd 2
405.3.s.a.37.17 408 5.2 odd 4 inner
405.3.s.a.118.17 408 1.1 even 1 trivial
405.3.s.a.127.17 408 135.97 odd 36 inner
405.3.s.a.208.17 408 27.16 even 9 inner