Properties

Label 405.3.n.a.179.26
Level $405$
Weight $3$
Character 405.179
Analytic conductor $11.035$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(44,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.44"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([5, 9])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.n (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 179.26
Character \(\chi\) \(=\) 405.179
Dual form 405.3.n.a.224.26

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.03789 + 0.741730i) q^{2} +(0.538636 + 0.451970i) q^{4} +(4.99552 - 0.211680i) q^{5} +(2.32404 + 2.76969i) q^{7} +(-3.57490 - 6.19192i) q^{8} +(10.3373 + 3.27394i) q^{10} +(8.70004 - 1.53405i) q^{11} +(3.15234 + 8.66099i) q^{13} +(2.68178 + 7.36812i) q^{14} +(-3.18091 - 18.0399i) q^{16} +(9.89182 - 17.1331i) q^{17} +(12.1652 + 21.0707i) q^{19} +(2.78644 + 2.14380i) q^{20} +(18.8675 + 3.32686i) q^{22} +(-4.74988 - 3.98563i) q^{23} +(24.9104 - 2.11490i) q^{25} +19.9883i q^{26} +2.54225i q^{28} +(5.21445 - 14.3266i) q^{29} +(-9.90161 - 8.30843i) q^{31} +(1.93215 - 10.9578i) q^{32} +(32.8665 - 27.5783i) q^{34} +(12.1961 + 13.3441i) q^{35} +(9.23883 + 5.33404i) q^{37} +(9.16248 + 51.9630i) q^{38} +(-19.1692 - 30.1751i) q^{40} +(23.8792 + 65.6075i) q^{41} +(-58.3296 + 10.2851i) q^{43} +(5.37950 + 3.10586i) q^{44} +(-6.72346 - 11.6454i) q^{46} +(-12.6408 + 10.6069i) q^{47} +(6.23877 - 35.3818i) q^{49} +(52.3332 + 14.1668i) q^{50} +(-2.21654 + 6.08989i) q^{52} -85.3480 q^{53} +(43.1365 - 9.50501i) q^{55} +(8.84144 - 24.2917i) q^{56} +(21.2529 - 25.3282i) q^{58} +(60.9628 + 10.7494i) q^{59} +(55.8155 - 46.8348i) q^{61} +(-14.0157 - 24.2760i) q^{62} +(-24.5711 + 42.5584i) q^{64} +(17.5809 + 42.5988i) q^{65} +(-7.87234 - 21.6291i) q^{67} +(13.0717 - 4.75773i) q^{68} +(14.9565 + 36.2399i) q^{70} +(-49.0653 - 28.3279i) q^{71} +(-101.360 + 58.5204i) q^{73} +(14.8713 + 17.7229i) q^{74} +(-2.97071 + 16.8478i) q^{76} +(24.4681 + 20.5312i) q^{77} +(-7.55144 - 2.74850i) q^{79} +(-19.7090 - 89.4451i) q^{80} +151.413i q^{82} +(-77.8706 - 28.3426i) q^{83} +(45.7880 - 87.6828i) q^{85} +(-126.498 - 22.3050i) q^{86} +(-40.6005 - 48.3858i) q^{88} +(-102.638 + 59.2583i) q^{89} +(-16.6621 + 28.8595i) q^{91} +(-0.757079 - 4.29361i) q^{92} +(-33.6278 + 12.2395i) q^{94} +(65.2316 + 102.684i) q^{95} +(-30.2613 + 5.33588i) q^{97} +(38.9576 - 67.4766i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q - 12 q^{4} - 3 q^{5} - 3 q^{10} - 6 q^{11} + 48 q^{14} + 12 q^{16} - 6 q^{19} - 63 q^{20} - 15 q^{25} - 96 q^{29} - 102 q^{31} + 12 q^{34} + 252 q^{35} + 117 q^{40} - 96 q^{41} + 666 q^{44} - 6 q^{46}+ \cdots + 543 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.03789 + 0.741730i 1.01894 + 0.370865i 0.796861 0.604163i \(-0.206492\pi\)
0.222082 + 0.975028i \(0.428715\pi\)
\(3\) 0 0
\(4\) 0.538636 + 0.451970i 0.134659 + 0.112992i
\(5\) 4.99552 0.211680i 0.999103 0.0423360i
\(6\) 0 0
\(7\) 2.32404 + 2.76969i 0.332006 + 0.395670i 0.906061 0.423147i \(-0.139075\pi\)
−0.574055 + 0.818817i \(0.694630\pi\)
\(8\) −3.57490 6.19192i −0.446863 0.773990i
\(9\) 0 0
\(10\) 10.3373 + 3.27394i 1.03373 + 0.327394i
\(11\) 8.70004 1.53405i 0.790913 0.139459i 0.236423 0.971650i \(-0.424025\pi\)
0.554489 + 0.832191i \(0.312914\pi\)
\(12\) 0 0
\(13\) 3.15234 + 8.66099i 0.242488 + 0.666230i 0.999911 + 0.0133060i \(0.00423556\pi\)
−0.757424 + 0.652924i \(0.773542\pi\)
\(14\) 2.68178 + 7.36812i 0.191555 + 0.526294i
\(15\) 0 0
\(16\) −3.18091 18.0399i −0.198807 1.12749i
\(17\) 9.89182 17.1331i 0.581872 1.00783i −0.413386 0.910556i \(-0.635654\pi\)
0.995258 0.0972754i \(-0.0310128\pi\)
\(18\) 0 0
\(19\) 12.1652 + 21.0707i 0.640273 + 1.10899i 0.985372 + 0.170419i \(0.0545121\pi\)
−0.345099 + 0.938566i \(0.612155\pi\)
\(20\) 2.78644 + 2.14380i 0.139322 + 0.107190i
\(21\) 0 0
\(22\) 18.8675 + 3.32686i 0.857615 + 0.151221i
\(23\) −4.74988 3.98563i −0.206517 0.173288i 0.533663 0.845697i \(-0.320815\pi\)
−0.740180 + 0.672409i \(0.765260\pi\)
\(24\) 0 0
\(25\) 24.9104 2.11490i 0.996415 0.0845961i
\(26\) 19.9883i 0.768780i
\(27\) 0 0
\(28\) 2.54225i 0.0907948i
\(29\) 5.21445 14.3266i 0.179808 0.494020i −0.816743 0.577002i \(-0.804222\pi\)
0.996551 + 0.0829826i \(0.0264446\pi\)
\(30\) 0 0
\(31\) −9.90161 8.30843i −0.319407 0.268014i 0.468960 0.883219i \(-0.344629\pi\)
−0.788367 + 0.615205i \(0.789073\pi\)
\(32\) 1.93215 10.9578i 0.0603798 0.342431i
\(33\) 0 0
\(34\) 32.8665 27.5783i 0.966663 0.811127i
\(35\) 12.1961 + 13.3441i 0.348460 + 0.381259i
\(36\) 0 0
\(37\) 9.23883 + 5.33404i 0.249698 + 0.144163i 0.619626 0.784897i \(-0.287284\pi\)
−0.369928 + 0.929060i \(0.620618\pi\)
\(38\) 9.16248 + 51.9630i 0.241118 + 1.36745i
\(39\) 0 0
\(40\) −19.1692 30.1751i −0.479230 0.754377i
\(41\) 23.8792 + 65.6075i 0.582419 + 1.60018i 0.784033 + 0.620719i \(0.213159\pi\)
−0.201614 + 0.979465i \(0.564619\pi\)
\(42\) 0 0
\(43\) −58.3296 + 10.2851i −1.35650 + 0.239188i −0.804152 0.594424i \(-0.797380\pi\)
−0.552351 + 0.833612i \(0.686269\pi\)
\(44\) 5.37950 + 3.10586i 0.122261 + 0.0705877i
\(45\) 0 0
\(46\) −6.72346 11.6454i −0.146162 0.253160i
\(47\) −12.6408 + 10.6069i −0.268952 + 0.225678i −0.767282 0.641310i \(-0.778391\pi\)
0.498330 + 0.866988i \(0.333947\pi\)
\(48\) 0 0
\(49\) 6.23877 35.3818i 0.127322 0.722078i
\(50\) 52.3332 + 14.1668i 1.04666 + 0.283337i
\(51\) 0 0
\(52\) −2.21654 + 6.08989i −0.0426257 + 0.117113i
\(53\) −85.3480 −1.61034 −0.805169 0.593045i \(-0.797926\pi\)
−0.805169 + 0.593045i \(0.797926\pi\)
\(54\) 0 0
\(55\) 43.1365 9.50501i 0.784299 0.172818i
\(56\) 8.84144 24.2917i 0.157883 0.433780i
\(57\) 0 0
\(58\) 21.2529 25.3282i 0.366429 0.436693i
\(59\) 60.9628 + 10.7494i 1.03327 + 0.182193i 0.664469 0.747316i \(-0.268658\pi\)
0.368799 + 0.929509i \(0.379769\pi\)
\(60\) 0 0
\(61\) 55.8155 46.8348i 0.915009 0.767784i −0.0580564 0.998313i \(-0.518490\pi\)
0.973065 + 0.230530i \(0.0740459\pi\)
\(62\) −14.0157 24.2760i −0.226060 0.391548i
\(63\) 0 0
\(64\) −24.5711 + 42.5584i −0.383923 + 0.664974i
\(65\) 17.5809 + 42.5988i 0.270476 + 0.655366i
\(66\) 0 0
\(67\) −7.87234 21.6291i −0.117498 0.322822i 0.866977 0.498348i \(-0.166060\pi\)
−0.984475 + 0.175526i \(0.943837\pi\)
\(68\) 13.0717 4.75773i 0.192232 0.0699666i
\(69\) 0 0
\(70\) 14.9565 + 36.2399i 0.213665 + 0.517713i
\(71\) −49.0653 28.3279i −0.691060 0.398984i 0.112949 0.993601i \(-0.463970\pi\)
−0.804009 + 0.594617i \(0.797304\pi\)
\(72\) 0 0
\(73\) −101.360 + 58.5204i −1.38850 + 0.801650i −0.993146 0.116880i \(-0.962711\pi\)
−0.395352 + 0.918530i \(0.629377\pi\)
\(74\) 14.8713 + 17.7229i 0.200963 + 0.239498i
\(75\) 0 0
\(76\) −2.97071 + 16.8478i −0.0390883 + 0.221681i
\(77\) 24.4681 + 20.5312i 0.317768 + 0.266639i
\(78\) 0 0
\(79\) −7.55144 2.74850i −0.0955879 0.0347912i 0.293784 0.955872i \(-0.405086\pi\)
−0.389371 + 0.921081i \(0.627308\pi\)
\(80\) −19.7090 89.4451i −0.246362 1.11806i
\(81\) 0 0
\(82\) 151.413i 1.84649i
\(83\) −77.8706 28.3426i −0.938200 0.341477i −0.172745 0.984967i \(-0.555264\pi\)
−0.765455 + 0.643490i \(0.777486\pi\)
\(84\) 0 0
\(85\) 45.7880 87.6828i 0.538682 1.03156i
\(86\) −126.498 22.3050i −1.47090 0.259360i
\(87\) 0 0
\(88\) −40.6005 48.3858i −0.461370 0.549839i
\(89\) −102.638 + 59.2583i −1.15324 + 0.665823i −0.949675 0.313238i \(-0.898586\pi\)
−0.203565 + 0.979061i \(0.565253\pi\)
\(90\) 0 0
\(91\) −16.6621 + 28.8595i −0.183100 + 0.317138i
\(92\) −0.757079 4.29361i −0.00822912 0.0466696i
\(93\) 0 0
\(94\) −33.6278 + 12.2395i −0.357743 + 0.130208i
\(95\) 65.2316 + 102.684i 0.686649 + 1.08088i
\(96\) 0 0
\(97\) −30.2613 + 5.33588i −0.311972 + 0.0550090i −0.327442 0.944871i \(-0.606187\pi\)
0.0154702 + 0.999880i \(0.495075\pi\)
\(98\) 38.9576 67.4766i 0.397527 0.688537i
\(99\) 0 0
\(100\) 14.3735 + 10.1196i 0.143735 + 0.101196i
\(101\) −69.5507 82.8873i −0.688621 0.820666i 0.302567 0.953128i \(-0.402156\pi\)
−0.991188 + 0.132462i \(0.957712\pi\)
\(102\) 0 0
\(103\) 32.9784 + 5.81498i 0.320179 + 0.0564561i 0.331428 0.943481i \(-0.392470\pi\)
−0.0112492 + 0.999937i \(0.503581\pi\)
\(104\) 42.3588 50.4812i 0.407296 0.485396i
\(105\) 0 0
\(106\) −173.929 63.3051i −1.64084 0.597218i
\(107\) −183.486 −1.71482 −0.857411 0.514632i \(-0.827928\pi\)
−0.857411 + 0.514632i \(0.827928\pi\)
\(108\) 0 0
\(109\) −75.0243 −0.688297 −0.344148 0.938915i \(-0.611832\pi\)
−0.344148 + 0.938915i \(0.611832\pi\)
\(110\) 94.9573 + 12.6255i 0.863248 + 0.114777i
\(111\) 0 0
\(112\) 42.5722 50.7356i 0.380109 0.452996i
\(113\) 31.4551 178.391i 0.278364 1.57868i −0.449705 0.893177i \(-0.648471\pi\)
0.728069 0.685504i \(-0.240418\pi\)
\(114\) 0 0
\(115\) −24.5718 18.9048i −0.213668 0.164390i
\(116\) 9.28387 5.36004i 0.0800333 0.0462073i
\(117\) 0 0
\(118\) 116.262 + 67.1239i 0.985272 + 0.568847i
\(119\) 70.4425 12.4209i 0.591954 0.104377i
\(120\) 0 0
\(121\) −40.3654 + 14.6918i −0.333599 + 0.121420i
\(122\) 148.484 54.0439i 1.21709 0.442983i
\(123\) 0 0
\(124\) −1.57821 8.95045i −0.0127275 0.0721811i
\(125\) 123.993 15.8381i 0.991941 0.126704i
\(126\) 0 0
\(127\) 107.545 62.0910i 0.846809 0.488905i −0.0127639 0.999919i \(-0.504063\pi\)
0.859573 + 0.511013i \(0.170730\pi\)
\(128\) −115.734 + 97.1127i −0.904175 + 0.758693i
\(129\) 0 0
\(130\) 4.23112 + 99.8518i 0.0325471 + 0.768091i
\(131\) −79.4604 + 94.6972i −0.606568 + 0.722880i −0.978699 0.205301i \(-0.934183\pi\)
0.372131 + 0.928180i \(0.378627\pi\)
\(132\) 0 0
\(133\) −30.0869 + 82.6631i −0.226217 + 0.621527i
\(134\) 49.9167i 0.372513i
\(135\) 0 0
\(136\) −141.449 −1.04007
\(137\) 178.739 + 65.0558i 1.30467 + 0.474860i 0.898514 0.438946i \(-0.144648\pi\)
0.406153 + 0.913805i \(0.366870\pi\)
\(138\) 0 0
\(139\) 183.719 + 154.158i 1.32172 + 1.10905i 0.985938 + 0.167110i \(0.0534436\pi\)
0.335778 + 0.941941i \(0.391001\pi\)
\(140\) 0.538144 + 12.6999i 0.00384389 + 0.0907133i
\(141\) 0 0
\(142\) −78.9778 94.1221i −0.556182 0.662832i
\(143\) 40.7119 + 70.5151i 0.284699 + 0.493112i
\(144\) 0 0
\(145\) 23.0162 72.6724i 0.158732 0.501189i
\(146\) −249.967 + 44.0759i −1.71210 + 0.301890i
\(147\) 0 0
\(148\) 2.56555 + 7.04878i 0.0173348 + 0.0476269i
\(149\) −86.2208 236.890i −0.578663 1.58986i −0.790435 0.612545i \(-0.790146\pi\)
0.211772 0.977319i \(-0.432077\pi\)
\(150\) 0 0
\(151\) 32.4942 + 184.284i 0.215194 + 1.22042i 0.880570 + 0.473916i \(0.157160\pi\)
−0.665377 + 0.746508i \(0.731729\pi\)
\(152\) 86.9788 150.652i 0.572229 0.991129i
\(153\) 0 0
\(154\) 34.6346 + 59.9890i 0.224900 + 0.389539i
\(155\) −51.2224 39.4090i −0.330467 0.254251i
\(156\) 0 0
\(157\) 87.5981 + 15.4459i 0.557949 + 0.0983815i 0.445510 0.895277i \(-0.353022\pi\)
0.112440 + 0.993659i \(0.464134\pi\)
\(158\) −13.3503 11.2023i −0.0844958 0.0709004i
\(159\) 0 0
\(160\) 7.33257 55.1489i 0.0458286 0.344680i
\(161\) 22.4185i 0.139245i
\(162\) 0 0
\(163\) 95.4121i 0.585350i −0.956212 0.292675i \(-0.905455\pi\)
0.956212 0.292675i \(-0.0945454\pi\)
\(164\) −16.7904 + 46.1313i −0.102381 + 0.281288i
\(165\) 0 0
\(166\) −137.669 115.518i −0.829330 0.695891i
\(167\) −16.2091 + 91.9261i −0.0970602 + 0.550456i 0.897036 + 0.441957i \(0.145716\pi\)
−0.994097 + 0.108499i \(0.965396\pi\)
\(168\) 0 0
\(169\) 64.3861 54.0263i 0.380983 0.319682i
\(170\) 158.348 144.725i 0.931457 0.851324i
\(171\) 0 0
\(172\) −36.0670 20.8233i −0.209692 0.121066i
\(173\) 9.71927 + 55.1207i 0.0561808 + 0.318617i 0.999927 0.0120526i \(-0.00383655\pi\)
−0.943747 + 0.330670i \(0.892725\pi\)
\(174\) 0 0
\(175\) 63.7505 + 64.0789i 0.364288 + 0.366165i
\(176\) −55.3482 152.068i −0.314478 0.864022i
\(177\) 0 0
\(178\) −253.119 + 44.6317i −1.42202 + 0.250740i
\(179\) 43.6437 + 25.1977i 0.243820 + 0.140769i 0.616931 0.787017i \(-0.288376\pi\)
−0.373111 + 0.927787i \(0.621709\pi\)
\(180\) 0 0
\(181\) −120.436 208.601i −0.665390 1.15249i −0.979179 0.202997i \(-0.934932\pi\)
0.313789 0.949493i \(-0.398402\pi\)
\(182\) −55.3613 + 46.4537i −0.304183 + 0.255240i
\(183\) 0 0
\(184\) −7.69828 + 43.6591i −0.0418385 + 0.237278i
\(185\) 47.2818 + 24.6906i 0.255577 + 0.133463i
\(186\) 0 0
\(187\) 59.7761 164.233i 0.319658 0.878254i
\(188\) −11.6027 −0.0617167
\(189\) 0 0
\(190\) 56.7708 + 257.642i 0.298794 + 1.35601i
\(191\) −112.920 + 310.246i −0.591206 + 1.62432i 0.177065 + 0.984199i \(0.443340\pi\)
−0.768271 + 0.640125i \(0.778883\pi\)
\(192\) 0 0
\(193\) −55.0909 + 65.6548i −0.285445 + 0.340180i −0.889645 0.456652i \(-0.849048\pi\)
0.604200 + 0.796833i \(0.293493\pi\)
\(194\) −65.6268 11.5718i −0.338282 0.0596483i
\(195\) 0 0
\(196\) 19.3519 16.2382i 0.0987344 0.0828480i
\(197\) 81.4582 + 141.090i 0.413493 + 0.716191i 0.995269 0.0971578i \(-0.0309752\pi\)
−0.581776 + 0.813349i \(0.697642\pi\)
\(198\) 0 0
\(199\) −90.2959 + 156.397i −0.453748 + 0.785915i −0.998615 0.0526075i \(-0.983247\pi\)
0.544867 + 0.838522i \(0.316580\pi\)
\(200\) −102.148 146.682i −0.510738 0.733412i
\(201\) 0 0
\(202\) −80.2564 220.503i −0.397309 1.09160i
\(203\) 51.7988 18.8532i 0.255166 0.0928729i
\(204\) 0 0
\(205\) 133.177 + 322.689i 0.649643 + 1.57409i
\(206\) 62.8930 + 36.3113i 0.305306 + 0.176269i
\(207\) 0 0
\(208\) 146.216 84.4176i 0.702960 0.405854i
\(209\) 138.161 + 164.654i 0.661058 + 0.787818i
\(210\) 0 0
\(211\) 27.1933 154.221i 0.128878 0.730906i −0.850050 0.526702i \(-0.823428\pi\)
0.978928 0.204204i \(-0.0654605\pi\)
\(212\) −45.9715 38.5747i −0.216847 0.181956i
\(213\) 0 0
\(214\) −373.923 136.097i −1.74731 0.635967i
\(215\) −289.209 + 63.7265i −1.34516 + 0.296402i
\(216\) 0 0
\(217\) 46.7335i 0.215362i
\(218\) −152.891 55.6478i −0.701335 0.255265i
\(219\) 0 0
\(220\) 27.5308 + 14.3766i 0.125140 + 0.0653483i
\(221\) 179.572 + 31.6634i 0.812544 + 0.143273i
\(222\) 0 0
\(223\) 7.70503 + 9.18250i 0.0345517 + 0.0411771i 0.783044 0.621967i \(-0.213666\pi\)
−0.748492 + 0.663144i \(0.769222\pi\)
\(224\) 34.8401 20.1149i 0.155536 0.0897988i
\(225\) 0 0
\(226\) 196.420 340.209i 0.869114 1.50535i
\(227\) 33.5298 + 190.157i 0.147709 + 0.837697i 0.965152 + 0.261689i \(0.0842793\pi\)
−0.817444 + 0.576008i \(0.804610\pi\)
\(228\) 0 0
\(229\) 413.128 150.366i 1.80405 0.656622i 0.806163 0.591694i \(-0.201540\pi\)
0.997890 0.0649279i \(-0.0206817\pi\)
\(230\) −36.0523 56.7515i −0.156749 0.246746i
\(231\) 0 0
\(232\) −107.350 + 18.9287i −0.462716 + 0.0815893i
\(233\) 79.8540 138.311i 0.342721 0.593611i −0.642216 0.766524i \(-0.721985\pi\)
0.984937 + 0.172913i \(0.0553181\pi\)
\(234\) 0 0
\(235\) −60.9018 + 55.6625i −0.259157 + 0.236862i
\(236\) 27.9784 + 33.3434i 0.118553 + 0.141285i
\(237\) 0 0
\(238\) 152.767 + 26.9369i 0.641877 + 0.113180i
\(239\) 44.1733 52.6436i 0.184825 0.220266i −0.665674 0.746243i \(-0.731856\pi\)
0.850499 + 0.525977i \(0.176300\pi\)
\(240\) 0 0
\(241\) −197.027 71.7120i −0.817539 0.297560i −0.100805 0.994906i \(-0.532142\pi\)
−0.716734 + 0.697346i \(0.754364\pi\)
\(242\) −93.1575 −0.384948
\(243\) 0 0
\(244\) 51.2322 0.209968
\(245\) 23.6763 178.071i 0.0966378 0.726821i
\(246\) 0 0
\(247\) −144.144 + 171.785i −0.583581 + 0.695484i
\(248\) −16.0478 + 91.0118i −0.0647090 + 0.366983i
\(249\) 0 0
\(250\) 264.430 + 59.6928i 1.05772 + 0.238771i
\(251\) −89.5394 + 51.6956i −0.356731 + 0.205959i −0.667646 0.744479i \(-0.732698\pi\)
0.310915 + 0.950438i \(0.399365\pi\)
\(252\) 0 0
\(253\) −47.4383 27.3885i −0.187503 0.108255i
\(254\) 265.219 46.7652i 1.04417 0.184115i
\(255\) 0 0
\(256\) −123.171 + 44.8305i −0.481136 + 0.175119i
\(257\) −101.124 + 36.8062i −0.393480 + 0.143215i −0.531180 0.847259i \(-0.678251\pi\)
0.137700 + 0.990474i \(0.456029\pi\)
\(258\) 0 0
\(259\) 6.69782 + 37.9852i 0.0258603 + 0.146661i
\(260\) −9.78364 + 30.8913i −0.0376294 + 0.118813i
\(261\) 0 0
\(262\) −232.171 + 134.044i −0.886149 + 0.511618i
\(263\) 29.1199 24.4345i 0.110722 0.0929069i −0.585746 0.810495i \(-0.699198\pi\)
0.696468 + 0.717588i \(0.254754\pi\)
\(264\) 0 0
\(265\) −426.357 + 18.0664i −1.60889 + 0.0681753i
\(266\) −122.627 + 146.142i −0.461005 + 0.549404i
\(267\) 0 0
\(268\) 5.53535 15.2083i 0.0206543 0.0567472i
\(269\) 101.363i 0.376814i 0.982091 + 0.188407i \(0.0603323\pi\)
−0.982091 + 0.188407i \(0.939668\pi\)
\(270\) 0 0
\(271\) 198.243 0.731524 0.365762 0.930708i \(-0.380808\pi\)
0.365762 + 0.930708i \(0.380808\pi\)
\(272\) −340.544 123.948i −1.25200 0.455691i
\(273\) 0 0
\(274\) 315.996 + 265.152i 1.15327 + 0.967710i
\(275\) 213.477 56.6135i 0.776280 0.205867i
\(276\) 0 0
\(277\) 242.799 + 289.356i 0.876529 + 1.04461i 0.998642 + 0.0520907i \(0.0165885\pi\)
−0.122113 + 0.992516i \(0.538967\pi\)
\(278\) 260.054 + 450.426i 0.935445 + 1.62024i
\(279\) 0 0
\(280\) 39.0255 123.221i 0.139377 0.440075i
\(281\) 56.2501 9.91841i 0.200178 0.0352968i −0.0726599 0.997357i \(-0.523149\pi\)
0.272838 + 0.962060i \(0.412038\pi\)
\(282\) 0 0
\(283\) 173.966 + 477.966i 0.614719 + 1.68893i 0.719553 + 0.694437i \(0.244347\pi\)
−0.104834 + 0.994490i \(0.533431\pi\)
\(284\) −13.6250 37.4344i −0.0479754 0.131811i
\(285\) 0 0
\(286\) 30.6631 + 173.899i 0.107213 + 0.608038i
\(287\) −126.216 + 218.613i −0.439778 + 0.761717i
\(288\) 0 0
\(289\) −51.1962 88.6744i −0.177149 0.306832i
\(290\) 100.808 131.026i 0.347613 0.451815i
\(291\) 0 0
\(292\) −81.0458 14.2906i −0.277554 0.0489403i
\(293\) −161.315 135.359i −0.550562 0.461976i 0.324569 0.945862i \(-0.394781\pi\)
−0.875131 + 0.483886i \(0.839225\pi\)
\(294\) 0 0
\(295\) 306.816 + 40.7942i 1.04005 + 0.138285i
\(296\) 76.2747i 0.257685i
\(297\) 0 0
\(298\) 546.707i 1.83459i
\(299\) 19.5462 53.7027i 0.0653719 0.179608i
\(300\) 0 0
\(301\) −164.047 137.652i −0.545007 0.457315i
\(302\) −70.4693 + 399.651i −0.233342 + 1.32335i
\(303\) 0 0
\(304\) 341.416 286.482i 1.12308 0.942376i
\(305\) 268.914 245.779i 0.881684 0.805833i
\(306\) 0 0
\(307\) −46.5102 26.8527i −0.151499 0.0874681i 0.422334 0.906440i \(-0.361211\pi\)
−0.573833 + 0.818972i \(0.694544\pi\)
\(308\) 3.89995 + 22.1177i 0.0126622 + 0.0718107i
\(309\) 0 0
\(310\) −75.1545 118.304i −0.242434 0.381626i
\(311\) 108.295 + 297.537i 0.348215 + 0.956712i 0.982932 + 0.183968i \(0.0588942\pi\)
−0.634718 + 0.772744i \(0.718884\pi\)
\(312\) 0 0
\(313\) 100.283 17.6826i 0.320393 0.0564939i −0.0111389 0.999938i \(-0.503546\pi\)
0.331532 + 0.943444i \(0.392435\pi\)
\(314\) 167.058 + 96.4511i 0.532032 + 0.307169i
\(315\) 0 0
\(316\) −2.82524 4.89347i −0.00894065 0.0154857i
\(317\) 389.774 327.059i 1.22957 1.03173i 0.231304 0.972881i \(-0.425701\pi\)
0.998267 0.0588511i \(-0.0187437\pi\)
\(318\) 0 0
\(319\) 23.3882 132.641i 0.0733172 0.415802i
\(320\) −113.736 + 217.802i −0.355427 + 0.680632i
\(321\) 0 0
\(322\) 16.6284 45.6863i 0.0516411 0.141883i
\(323\) 481.343 1.49023
\(324\) 0 0
\(325\) 96.8432 + 209.082i 0.297979 + 0.643328i
\(326\) 70.7700 194.439i 0.217086 0.596438i
\(327\) 0 0
\(328\) 320.871 382.399i 0.978264 1.16585i
\(329\) −58.7554 10.3602i −0.178588 0.0314898i
\(330\) 0 0
\(331\) 177.270 148.747i 0.535559 0.449387i −0.334457 0.942411i \(-0.608553\pi\)
0.870016 + 0.493024i \(0.164109\pi\)
\(332\) −29.1340 50.4615i −0.0877529 0.151992i
\(333\) 0 0
\(334\) −101.217 + 175.312i −0.303044 + 0.524887i
\(335\) −43.9048 106.382i −0.131059 0.317558i
\(336\) 0 0
\(337\) −57.8789 159.021i −0.171748 0.471873i 0.823718 0.567000i \(-0.191896\pi\)
−0.995465 + 0.0951279i \(0.969674\pi\)
\(338\) 171.284 62.3424i 0.506759 0.184445i
\(339\) 0 0
\(340\) 64.2930 26.5343i 0.189097 0.0780422i
\(341\) −98.8899 57.0941i −0.290000 0.167431i
\(342\) 0 0
\(343\) 265.923 153.531i 0.775287 0.447612i
\(344\) 272.207 + 324.404i 0.791300 + 0.943034i
\(345\) 0 0
\(346\) −21.0779 + 119.539i −0.0609188 + 0.345488i
\(347\) 6.55502 + 5.50032i 0.0188905 + 0.0158511i 0.652184 0.758061i \(-0.273853\pi\)
−0.633293 + 0.773912i \(0.718297\pi\)
\(348\) 0 0
\(349\) −397.135 144.545i −1.13792 0.414170i −0.296761 0.954952i \(-0.595906\pi\)
−0.841163 + 0.540782i \(0.818129\pi\)
\(350\) 82.3869 + 177.871i 0.235391 + 0.508203i
\(351\) 0 0
\(352\) 98.2973i 0.279254i
\(353\) 349.306 + 127.137i 0.989535 + 0.360161i 0.785540 0.618811i \(-0.212385\pi\)
0.203995 + 0.978972i \(0.434607\pi\)
\(354\) 0 0
\(355\) −251.103 131.126i −0.707332 0.369369i
\(356\) −82.0677 14.4707i −0.230527 0.0406482i
\(357\) 0 0
\(358\) 70.2510 + 83.7219i 0.196232 + 0.233860i
\(359\) −615.787 + 355.525i −1.71528 + 0.990320i −0.788239 + 0.615369i \(0.789007\pi\)
−0.927045 + 0.374950i \(0.877660\pi\)
\(360\) 0 0
\(361\) −115.483 + 200.023i −0.319899 + 0.554081i
\(362\) −90.7088 514.435i −0.250577 1.42109i
\(363\) 0 0
\(364\) −22.0184 + 8.01405i −0.0604902 + 0.0220166i
\(365\) −493.960 + 313.796i −1.35331 + 0.859714i
\(366\) 0 0
\(367\) 597.597 105.372i 1.62833 0.287118i 0.716469 0.697619i \(-0.245757\pi\)
0.911860 + 0.410501i \(0.134646\pi\)
\(368\) −56.7912 + 98.3652i −0.154324 + 0.267297i
\(369\) 0 0
\(370\) 78.0412 + 85.3870i 0.210922 + 0.230776i
\(371\) −198.352 236.387i −0.534643 0.637162i
\(372\) 0 0
\(373\) 15.9903 + 2.81952i 0.0428694 + 0.00755902i 0.195042 0.980795i \(-0.437516\pi\)
−0.152172 + 0.988354i \(0.548627\pi\)
\(374\) 243.634 290.351i 0.651427 0.776340i
\(375\) 0 0
\(376\) 110.866 + 40.3520i 0.294857 + 0.107319i
\(377\) 140.520 0.372732
\(378\) 0 0
\(379\) −202.525 −0.534367 −0.267184 0.963646i \(-0.586093\pi\)
−0.267184 + 0.963646i \(0.586093\pi\)
\(380\) −11.2739 + 84.7921i −0.0296682 + 0.223137i
\(381\) 0 0
\(382\) −460.237 + 548.489i −1.20481 + 1.43584i
\(383\) 113.044 641.106i 0.295155 1.67391i −0.371417 0.928466i \(-0.621128\pi\)
0.666572 0.745441i \(-0.267761\pi\)
\(384\) 0 0
\(385\) 126.577 + 97.3845i 0.328771 + 0.252947i
\(386\) −160.967 + 92.9344i −0.417013 + 0.240763i
\(387\) 0 0
\(388\) −18.7115 10.8031i −0.0482254 0.0278430i
\(389\) 127.502 22.4820i 0.327768 0.0577943i −0.00734304 0.999973i \(-0.502337\pi\)
0.335111 + 0.942179i \(0.391226\pi\)
\(390\) 0 0
\(391\) −115.271 + 41.9553i −0.294811 + 0.107303i
\(392\) −241.384 + 87.8567i −0.615776 + 0.224124i
\(393\) 0 0
\(394\) 61.3520 + 347.945i 0.155716 + 0.883108i
\(395\) −38.3052 12.1317i −0.0969751 0.0307132i
\(396\) 0 0
\(397\) −131.369 + 75.8460i −0.330904 + 0.191048i −0.656243 0.754550i \(-0.727855\pi\)
0.325338 + 0.945598i \(0.394522\pi\)
\(398\) −300.017 + 251.744i −0.753812 + 0.632523i
\(399\) 0 0
\(400\) −117.390 442.653i −0.293476 1.10663i
\(401\) 164.397 195.920i 0.409966 0.488579i −0.521065 0.853517i \(-0.674465\pi\)
0.931032 + 0.364938i \(0.118910\pi\)
\(402\) 0 0
\(403\) 40.7460 111.949i 0.101107 0.277788i
\(404\) 76.0809i 0.188319i
\(405\) 0 0
\(406\) 119.544 0.294443
\(407\) 88.5609 + 32.2335i 0.217594 + 0.0791978i
\(408\) 0 0
\(409\) −475.249 398.781i −1.16198 0.975015i −0.162047 0.986783i \(-0.551809\pi\)
−0.999931 + 0.0117684i \(0.996254\pi\)
\(410\) 32.0510 + 756.384i 0.0781732 + 1.84484i
\(411\) 0 0
\(412\) 15.1352 + 18.0374i 0.0367358 + 0.0437801i
\(413\) 111.908 + 193.830i 0.270963 + 0.469322i
\(414\) 0 0
\(415\) −395.003 125.102i −0.951816 0.301451i
\(416\) 100.996 17.8083i 0.242779 0.0428085i
\(417\) 0 0
\(418\) 159.428 + 438.024i 0.381406 + 1.04791i
\(419\) −52.8741 145.270i −0.126191 0.346707i 0.860469 0.509504i \(-0.170171\pi\)
−0.986660 + 0.162796i \(0.947949\pi\)
\(420\) 0 0
\(421\) 52.5666 + 298.120i 0.124861 + 0.708124i 0.981390 + 0.192025i \(0.0615053\pi\)
−0.856529 + 0.516099i \(0.827384\pi\)
\(422\) 169.807 294.115i 0.402387 0.696955i
\(423\) 0 0
\(424\) 305.111 + 528.467i 0.719601 + 1.24639i
\(425\) 210.174 447.713i 0.494527 1.05344i
\(426\) 0 0
\(427\) 259.436 + 45.7455i 0.607578 + 0.107132i
\(428\) −98.8322 82.9301i −0.230916 0.193762i
\(429\) 0 0
\(430\) −636.643 84.6478i −1.48057 0.196855i
\(431\) 194.130i 0.450418i −0.974311 0.225209i \(-0.927694\pi\)
0.974311 0.225209i \(-0.0723064\pi\)
\(432\) 0 0
\(433\) 697.839i 1.61164i −0.592162 0.805819i \(-0.701725\pi\)
0.592162 0.805819i \(-0.298275\pi\)
\(434\) 34.6637 95.2376i 0.0798702 0.219441i
\(435\) 0 0
\(436\) −40.4108 33.9087i −0.0926854 0.0777723i
\(437\) 26.1968 148.569i 0.0599469 0.339976i
\(438\) 0 0
\(439\) 307.468 257.996i 0.700382 0.587691i −0.221500 0.975160i \(-0.571095\pi\)
0.921882 + 0.387470i \(0.126651\pi\)
\(440\) −213.063 233.118i −0.484234 0.529813i
\(441\) 0 0
\(442\) 342.462 + 197.720i 0.774801 + 0.447331i
\(443\) −0.222903 1.26415i −0.000503168 0.00285361i 0.984555 0.175075i \(-0.0560167\pi\)
−0.985058 + 0.172221i \(0.944906\pi\)
\(444\) 0 0
\(445\) −500.188 + 317.752i −1.12402 + 0.714050i
\(446\) 8.89104 + 24.4279i 0.0199351 + 0.0547711i
\(447\) 0 0
\(448\) −174.978 + 30.8533i −0.390575 + 0.0688689i
\(449\) −581.893 335.956i −1.29597 0.748231i −0.316268 0.948670i \(-0.602430\pi\)
−0.979706 + 0.200439i \(0.935763\pi\)
\(450\) 0 0
\(451\) 308.395 + 534.156i 0.683803 + 1.18438i
\(452\) 97.5702 81.8711i 0.215863 0.181131i
\(453\) 0 0
\(454\) −72.7153 + 412.389i −0.160166 + 0.908345i
\(455\) −77.1266 + 147.695i −0.169509 + 0.324605i
\(456\) 0 0
\(457\) −96.5574 + 265.289i −0.211285 + 0.580502i −0.999386 0.0350451i \(-0.988843\pi\)
0.788100 + 0.615547i \(0.211065\pi\)
\(458\) 953.439 2.08174
\(459\) 0 0
\(460\) −4.69087 21.2885i −0.0101975 0.0462794i
\(461\) 97.1395 266.889i 0.210715 0.578934i −0.788640 0.614855i \(-0.789214\pi\)
0.999355 + 0.0359213i \(0.0114366\pi\)
\(462\) 0 0
\(463\) −462.859 + 551.614i −0.999695 + 1.19139i −0.0182133 + 0.999834i \(0.505798\pi\)
−0.981482 + 0.191556i \(0.938647\pi\)
\(464\) −275.036 48.4963i −0.592750 0.104518i
\(465\) 0 0
\(466\) 265.323 222.632i 0.569363 0.477752i
\(467\) −192.068 332.672i −0.411281 0.712359i 0.583750 0.811934i \(-0.301585\pi\)
−0.995030 + 0.0995750i \(0.968252\pi\)
\(468\) 0 0
\(469\) 41.6101 72.0708i 0.0887209 0.153669i
\(470\) −165.398 + 68.2611i −0.351910 + 0.145236i
\(471\) 0 0
\(472\) −151.377 415.905i −0.320714 0.881154i
\(473\) −491.692 + 178.961i −1.03952 + 0.378354i
\(474\) 0 0
\(475\) 347.602 + 499.151i 0.731793 + 1.05085i
\(476\) 43.5568 + 25.1475i 0.0915058 + 0.0528309i
\(477\) 0 0
\(478\) 129.067 74.5171i 0.270015 0.155894i
\(479\) −200.228 238.622i −0.418012 0.498167i 0.515412 0.856943i \(-0.327639\pi\)
−0.933424 + 0.358775i \(0.883194\pi\)
\(480\) 0 0
\(481\) −17.0741 + 96.8321i −0.0354971 + 0.201314i
\(482\) −348.328 292.282i −0.722671 0.606393i
\(483\) 0 0
\(484\) −28.3826 10.3304i −0.0586416 0.0213438i
\(485\) −150.041 + 33.0612i −0.309363 + 0.0681673i
\(486\) 0 0
\(487\) 144.089i 0.295871i −0.988997 0.147936i \(-0.952737\pi\)
0.988997 0.147936i \(-0.0472629\pi\)
\(488\) −489.532 178.175i −1.00314 0.365113i
\(489\) 0 0
\(490\) 180.330 345.327i 0.368021 0.704749i
\(491\) −135.820 23.9487i −0.276618 0.0487753i 0.0336179 0.999435i \(-0.489297\pi\)
−0.310236 + 0.950659i \(0.600408\pi\)
\(492\) 0 0
\(493\) −193.879 231.056i −0.393263 0.468673i
\(494\) −421.167 + 243.161i −0.852566 + 0.492229i
\(495\) 0 0
\(496\) −118.387 + 205.052i −0.238683 + 0.413411i
\(497\) −35.5706 201.731i −0.0715706 0.405897i
\(498\) 0 0
\(499\) −449.216 + 163.501i −0.900232 + 0.327658i −0.750346 0.661045i \(-0.770113\pi\)
−0.149886 + 0.988703i \(0.547891\pi\)
\(500\) 73.9452 + 47.5099i 0.147890 + 0.0950198i
\(501\) 0 0
\(502\) −220.815 + 38.9357i −0.439871 + 0.0775611i
\(503\) −293.589 + 508.511i −0.583676 + 1.01096i 0.411363 + 0.911472i \(0.365053\pi\)
−0.995039 + 0.0994853i \(0.968280\pi\)
\(504\) 0 0
\(505\) −364.987 399.342i −0.722747 0.790777i
\(506\) −76.3590 91.0011i −0.150907 0.179844i
\(507\) 0 0
\(508\) 85.9908 + 15.1625i 0.169273 + 0.0298474i
\(509\) 76.4269 91.0820i 0.150151 0.178943i −0.685726 0.727860i \(-0.740515\pi\)
0.835877 + 0.548917i \(0.184960\pi\)
\(510\) 0 0
\(511\) −397.649 144.733i −0.778179 0.283234i
\(512\) 320.062 0.625121
\(513\) 0 0
\(514\) −233.380 −0.454047
\(515\) 165.975 + 22.0680i 0.322282 + 0.0428504i
\(516\) 0 0
\(517\) −93.7036 + 111.672i −0.181245 + 0.215999i
\(518\) −14.5254 + 82.3775i −0.0280413 + 0.159030i
\(519\) 0 0
\(520\) 200.918 261.146i 0.386381 0.502205i
\(521\) 617.263 356.377i 1.18477 0.684025i 0.227654 0.973742i \(-0.426895\pi\)
0.957112 + 0.289717i \(0.0935613\pi\)
\(522\) 0 0
\(523\) −632.955 365.437i −1.21024 0.698731i −0.247427 0.968906i \(-0.579585\pi\)
−0.962811 + 0.270175i \(0.912918\pi\)
\(524\) −85.6005 + 15.0937i −0.163360 + 0.0288047i
\(525\) 0 0
\(526\) 77.4668 28.1956i 0.147275 0.0536038i
\(527\) −240.294 + 87.4600i −0.455967 + 0.165958i
\(528\) 0 0
\(529\) −85.1837 483.101i −0.161028 0.913234i
\(530\) −882.267 279.424i −1.66466 0.527216i
\(531\) 0 0
\(532\) −53.5671 + 30.9270i −0.100690 + 0.0581334i
\(533\) −492.951 + 413.635i −0.924861 + 0.776050i
\(534\) 0 0
\(535\) −916.607 + 38.8403i −1.71328 + 0.0725987i
\(536\) −105.783 + 126.067i −0.197355 + 0.235199i
\(537\) 0 0
\(538\) −75.1838 + 206.566i −0.139747 + 0.383951i
\(539\) 317.394i 0.588857i
\(540\) 0 0
\(541\) −163.171 −0.301610 −0.150805 0.988564i \(-0.548187\pi\)
−0.150805 + 0.988564i \(0.548187\pi\)
\(542\) 403.996 + 147.043i 0.745381 + 0.271296i
\(543\) 0 0
\(544\) −168.629 141.496i −0.309979 0.260104i
\(545\) −374.785 + 15.8811i −0.687679 + 0.0291397i
\(546\) 0 0
\(547\) 429.435 + 511.781i 0.785074 + 0.935615i 0.999151 0.0412022i \(-0.0131188\pi\)
−0.214077 + 0.976817i \(0.568674\pi\)
\(548\) 66.8723 + 115.826i 0.122030 + 0.211362i
\(549\) 0 0
\(550\) 477.033 + 42.9703i 0.867334 + 0.0781278i
\(551\) 365.306 64.4133i 0.662987 0.116903i
\(552\) 0 0
\(553\) −9.93740 27.3028i −0.0179700 0.0493721i
\(554\) 280.172 + 769.765i 0.505725 + 1.38947i
\(555\) 0 0
\(556\) 29.2827 + 166.070i 0.0526667 + 0.298688i
\(557\) −429.574 + 744.043i −0.771227 + 1.33581i 0.165663 + 0.986182i \(0.447024\pi\)
−0.936891 + 0.349623i \(0.886310\pi\)
\(558\) 0 0
\(559\) −272.954 472.770i −0.488289 0.845742i
\(560\) 201.931 262.462i 0.360590 0.468682i
\(561\) 0 0
\(562\) 121.988 + 21.5098i 0.217061 + 0.0382736i
\(563\) −51.6792 43.3640i −0.0917926 0.0770232i 0.595737 0.803180i \(-0.296860\pi\)
−0.687529 + 0.726157i \(0.741305\pi\)
\(564\) 0 0
\(565\) 119.373 897.813i 0.211279 1.58905i
\(566\) 1103.08i 1.94890i
\(567\) 0 0
\(568\) 405.078i 0.713165i
\(569\) −16.2220 + 44.5695i −0.0285096 + 0.0783295i −0.953131 0.302558i \(-0.902159\pi\)
0.924621 + 0.380888i \(0.124382\pi\)
\(570\) 0 0
\(571\) 595.231 + 499.458i 1.04244 + 0.874707i 0.992278 0.124034i \(-0.0395832\pi\)
0.0501575 + 0.998741i \(0.484028\pi\)
\(572\) −9.94176 + 56.3825i −0.0173807 + 0.0985708i
\(573\) 0 0
\(574\) −419.366 + 351.890i −0.730602 + 0.613048i
\(575\) −126.751 89.2379i −0.220436 0.155196i
\(576\) 0 0
\(577\) −675.220 389.839i −1.17023 0.675630i −0.216492 0.976284i \(-0.569462\pi\)
−0.953733 + 0.300654i \(0.902795\pi\)
\(578\) −38.5595 218.682i −0.0667120 0.378342i
\(579\) 0 0
\(580\) 45.2431 28.7414i 0.0780053 0.0495541i
\(581\) −102.475 281.547i −0.176376 0.484590i
\(582\) 0 0
\(583\) −742.531 + 130.928i −1.27364 + 0.224577i
\(584\) 724.707 + 418.410i 1.24094 + 0.716455i
\(585\) 0 0
\(586\) −228.341 395.498i −0.389660 0.674912i
\(587\) −80.5262 + 67.5695i −0.137183 + 0.115110i −0.708797 0.705412i \(-0.750762\pi\)
0.571614 + 0.820522i \(0.306317\pi\)
\(588\) 0 0
\(589\) 54.6098 309.708i 0.0927161 0.525819i
\(590\) 594.998 + 310.708i 1.00847 + 0.526625i
\(591\) 0 0
\(592\) 66.8374 183.634i 0.112901 0.310193i
\(593\) 56.8607 0.0958864 0.0479432 0.998850i \(-0.484733\pi\)
0.0479432 + 0.998850i \(0.484733\pi\)
\(594\) 0 0
\(595\) 349.267 76.9601i 0.587004 0.129345i
\(596\) 60.6253 166.567i 0.101720 0.279474i
\(597\) 0 0
\(598\) 79.6658 94.9420i 0.133220 0.158766i
\(599\) −356.770 62.9081i −0.595609 0.105022i −0.132286 0.991212i \(-0.542232\pi\)
−0.463323 + 0.886190i \(0.653343\pi\)
\(600\) 0 0
\(601\) −189.072 + 158.650i −0.314596 + 0.263977i −0.786389 0.617732i \(-0.788052\pi\)
0.471792 + 0.881710i \(0.343607\pi\)
\(602\) −232.209 402.197i −0.385729 0.668102i
\(603\) 0 0
\(604\) −65.7882 + 113.948i −0.108921 + 0.188656i
\(605\) −198.536 + 81.9378i −0.328159 + 0.135434i
\(606\) 0 0
\(607\) −237.324 652.041i −0.390978 1.07420i −0.966556 0.256456i \(-0.917445\pi\)
0.575578 0.817747i \(-0.304777\pi\)
\(608\) 254.394 92.5917i 0.418411 0.152289i
\(609\) 0 0
\(610\) 730.317 301.408i 1.19724 0.494112i
\(611\) −131.714 76.0450i −0.215571 0.124460i
\(612\) 0 0
\(613\) 820.457 473.691i 1.33843 0.772742i 0.351855 0.936055i \(-0.385551\pi\)
0.986574 + 0.163312i \(0.0522178\pi\)
\(614\) −74.8651 89.2207i −0.121930 0.145311i
\(615\) 0 0
\(616\) 39.6562 224.902i 0.0643770 0.365100i
\(617\) 752.232 + 631.198i 1.21918 + 1.02301i 0.998867 + 0.0475809i \(0.0151512\pi\)
0.220310 + 0.975430i \(0.429293\pi\)
\(618\) 0 0
\(619\) 25.3213 + 9.21619i 0.0409067 + 0.0148888i 0.362392 0.932026i \(-0.381960\pi\)
−0.321486 + 0.946914i \(0.604182\pi\)
\(620\) −9.77859 44.3781i −0.0157719 0.0715775i
\(621\) 0 0
\(622\) 686.673i 1.10398i
\(623\) −402.663 146.557i −0.646329 0.235245i
\(624\) 0 0
\(625\) 616.054 105.366i 0.985687 0.168586i
\(626\) 217.481 + 38.3478i 0.347414 + 0.0612584i
\(627\) 0 0
\(628\) 40.2024 + 47.9114i 0.0640166 + 0.0762920i
\(629\) 182.778 105.527i 0.290584 0.167769i
\(630\) 0 0
\(631\) −127.491 + 220.821i −0.202046 + 0.349955i −0.949188 0.314711i \(-0.898093\pi\)
0.747141 + 0.664665i \(0.231426\pi\)
\(632\) 9.97721 + 56.5835i 0.0157867 + 0.0895309i
\(633\) 0 0
\(634\) 1036.90 377.402i 1.63550 0.595272i
\(635\) 524.098 332.942i 0.825352 0.524318i
\(636\) 0 0
\(637\) 326.108 57.5017i 0.511944 0.0902695i
\(638\) 146.046 252.959i 0.228912 0.396488i
\(639\) 0 0
\(640\) −557.597 + 509.627i −0.871245 + 0.796292i
\(641\) 425.457 + 507.040i 0.663739 + 0.791014i 0.987917 0.154983i \(-0.0495321\pi\)
−0.324178 + 0.945996i \(0.605088\pi\)
\(642\) 0 0
\(643\) 110.331 + 19.4543i 0.171587 + 0.0302555i 0.258782 0.965936i \(-0.416679\pi\)
−0.0871943 + 0.996191i \(0.527790\pi\)
\(644\) 10.1325 12.0754i 0.0157336 0.0187506i
\(645\) 0 0
\(646\) 980.922 + 357.027i 1.51846 + 0.552673i
\(647\) 10.7396 0.0165990 0.00829952 0.999966i \(-0.497358\pi\)
0.00829952 + 0.999966i \(0.497358\pi\)
\(648\) 0 0
\(649\) 546.869 0.842633
\(650\) 42.2732 + 497.916i 0.0650358 + 0.766024i
\(651\) 0 0
\(652\) 43.1234 51.3924i 0.0661401 0.0788227i
\(653\) 135.331 767.498i 0.207244 1.17534i −0.686624 0.727013i \(-0.740908\pi\)
0.893869 0.448329i \(-0.147981\pi\)
\(654\) 0 0
\(655\) −376.900 + 489.882i −0.575420 + 0.747911i
\(656\) 1107.59 639.469i 1.68840 0.974801i
\(657\) 0 0
\(658\) −112.052 64.6934i −0.170292 0.0983182i
\(659\) −735.143 + 129.626i −1.11554 + 0.196700i −0.700883 0.713276i \(-0.747211\pi\)
−0.414660 + 0.909976i \(0.636099\pi\)
\(660\) 0 0
\(661\) 509.948 185.606i 0.771480 0.280796i 0.0738649 0.997268i \(-0.476467\pi\)
0.697615 + 0.716472i \(0.254244\pi\)
\(662\) 471.586 171.643i 0.712365 0.259280i
\(663\) 0 0
\(664\) 102.885 + 583.490i 0.154947 + 0.878750i
\(665\) −132.801 + 419.314i −0.199702 + 0.630547i
\(666\) 0 0
\(667\) −81.8684 + 47.2667i −0.122741 + 0.0708647i
\(668\) −50.2786 + 42.1888i −0.0752674 + 0.0631568i
\(669\) 0 0
\(670\) −10.5664 249.360i −0.0157707 0.372179i
\(671\) 413.750 493.089i 0.616618 0.734856i
\(672\) 0 0
\(673\) −256.931 + 705.911i −0.381769 + 1.04890i 0.588842 + 0.808248i \(0.299584\pi\)
−0.970611 + 0.240654i \(0.922638\pi\)
\(674\) 366.997i 0.544506i
\(675\) 0 0
\(676\) 59.0990 0.0874245
\(677\) 89.4060 + 32.5411i 0.132062 + 0.0480667i 0.407206 0.913336i \(-0.366503\pi\)
−0.275144 + 0.961403i \(0.588725\pi\)
\(678\) 0 0
\(679\) −85.1072 71.4135i −0.125342 0.105174i
\(680\) −706.612 + 29.9420i −1.03914 + 0.0440323i
\(681\) 0 0
\(682\) −159.178 189.701i −0.233399 0.278154i
\(683\) −207.041 358.606i −0.303135 0.525045i 0.673709 0.738996i \(-0.264700\pi\)
−0.976844 + 0.213951i \(0.931367\pi\)
\(684\) 0 0
\(685\) 906.666 + 287.152i 1.32360 + 0.419200i
\(686\) 655.800 115.635i 0.955977 0.168565i
\(687\) 0 0
\(688\) 371.083 + 1019.54i 0.539365 + 1.48189i
\(689\) −269.046 739.197i −0.390487 1.07286i
\(690\) 0 0
\(691\) −36.2485 205.575i −0.0524580 0.297504i 0.947280 0.320408i \(-0.103820\pi\)
−0.999738 + 0.0229038i \(0.992709\pi\)
\(692\) −19.6777 + 34.0829i −0.0284360 + 0.0492527i
\(693\) 0 0
\(694\) 9.27863 + 16.0711i 0.0133698 + 0.0231572i
\(695\) 950.401 + 731.210i 1.36748 + 1.05210i
\(696\) 0 0
\(697\) 1360.27 + 239.853i 1.95161 + 0.344121i
\(698\) −702.103 589.134i −1.00588 0.844032i
\(699\) 0 0
\(700\) 5.37661 + 63.3285i 0.00768088 + 0.0904693i
\(701\) 128.633i 0.183499i −0.995782 0.0917494i \(-0.970754\pi\)
0.995782 0.0917494i \(-0.0292459\pi\)
\(702\) 0 0
\(703\) 259.558i 0.369215i
\(704\) −148.483 + 407.953i −0.210913 + 0.579478i
\(705\) 0 0
\(706\) 617.544 + 518.181i 0.874708 + 0.733967i
\(707\) 67.9331 385.268i 0.0960864 0.544933i
\(708\) 0 0
\(709\) −30.2527 + 25.3851i −0.0426696 + 0.0358040i −0.663873 0.747845i \(-0.731088\pi\)
0.621203 + 0.783649i \(0.286644\pi\)
\(710\) −414.459 453.471i −0.583745 0.638691i
\(711\) 0 0
\(712\) 733.845 + 423.685i 1.03068 + 0.595064i
\(713\) 13.9172 + 78.9282i 0.0195192 + 0.110699i
\(714\) 0 0
\(715\) 218.304 + 343.641i 0.305320 + 0.480617i
\(716\) 12.1195 + 33.2981i 0.0169267 + 0.0465057i
\(717\) 0 0
\(718\) −1518.61 + 267.771i −2.11505 + 0.372941i
\(719\) 1187.82 + 685.786i 1.65204 + 0.953806i 0.976232 + 0.216728i \(0.0695386\pi\)
0.675808 + 0.737077i \(0.263795\pi\)
\(720\) 0 0
\(721\) 60.5376 + 104.854i 0.0839633 + 0.145429i
\(722\) −383.705 + 321.967i −0.531448 + 0.445937i
\(723\) 0 0
\(724\) 29.4101 166.793i 0.0406217 0.230377i
\(725\) 99.5946 367.908i 0.137372 0.507460i
\(726\) 0 0
\(727\) 290.996 799.505i 0.400270 1.09973i −0.561882 0.827217i \(-0.689922\pi\)
0.962152 0.272515i \(-0.0878553\pi\)
\(728\) 238.261 0.327282
\(729\) 0 0
\(730\) −1239.38 + 273.095i −1.69779 + 0.374103i
\(731\) −400.770 + 1101.11i −0.548249 + 1.50630i
\(732\) 0 0
\(733\) 440.220 524.633i 0.600573 0.715735i −0.377028 0.926202i \(-0.623054\pi\)
0.977601 + 0.210467i \(0.0674985\pi\)
\(734\) 1295.99 + 228.518i 1.76566 + 0.311333i
\(735\) 0 0
\(736\) −52.8512 + 44.3474i −0.0718087 + 0.0602546i
\(737\) −101.670 176.097i −0.137951 0.238938i
\(738\) 0 0
\(739\) 439.434 761.121i 0.594633 1.02993i −0.398966 0.916966i \(-0.630631\pi\)
0.993599 0.112968i \(-0.0360359\pi\)
\(740\) 14.3083 + 34.6692i 0.0193356 + 0.0468503i
\(741\) 0 0
\(742\) −228.884 628.854i −0.308469 0.847512i
\(743\) 403.184 146.747i 0.542643 0.197506i −0.0561318 0.998423i \(-0.517877\pi\)
0.598775 + 0.800918i \(0.295654\pi\)
\(744\) 0 0
\(745\) −480.862 1165.14i −0.645453 1.56394i
\(746\) 30.4950 + 17.6063i 0.0408780 + 0.0236009i
\(747\) 0 0
\(748\) 106.426 61.4452i 0.142281 0.0821459i
\(749\) −426.430 508.199i −0.569332 0.678503i
\(750\) 0 0
\(751\) −75.6930 + 429.277i −0.100790 + 0.571607i 0.892029 + 0.451978i \(0.149281\pi\)
−0.992819 + 0.119629i \(0.961830\pi\)
\(752\) 231.555 + 194.298i 0.307919 + 0.258375i
\(753\) 0 0
\(754\) 286.364 + 104.228i 0.379793 + 0.138233i
\(755\) 201.335 + 913.715i 0.266668 + 1.21022i
\(756\) 0 0
\(757\) 387.406i 0.511765i 0.966708 + 0.255883i \(0.0823660\pi\)
−0.966708 + 0.255883i \(0.917634\pi\)
\(758\) −412.723 150.219i −0.544490 0.198178i
\(759\) 0 0
\(760\) 402.614 770.994i 0.529755 1.01447i
\(761\) 819.711 + 144.537i 1.07715 + 0.189931i 0.683955 0.729524i \(-0.260259\pi\)
0.393195 + 0.919455i \(0.371370\pi\)
\(762\) 0 0
\(763\) −174.360 207.794i −0.228519 0.272338i
\(764\) −201.045 + 116.073i −0.263148 + 0.151928i
\(765\) 0 0
\(766\) 705.899 1222.65i 0.921539 1.59615i
\(767\) 99.0753 + 561.884i 0.129172 + 0.732573i
\(768\) 0 0
\(769\) −527.601 + 192.031i −0.686087 + 0.249715i −0.661459 0.749981i \(-0.730062\pi\)
−0.0246284 + 0.999697i \(0.507840\pi\)
\(770\) 185.716 + 292.344i 0.241190 + 0.379668i
\(771\) 0 0
\(772\) −59.3480 + 10.4646i −0.0768756 + 0.0135552i
\(773\) −189.771 + 328.693i −0.245499 + 0.425217i −0.962272 0.272090i \(-0.912285\pi\)
0.716773 + 0.697307i \(0.245618\pi\)
\(774\) 0 0
\(775\) −264.224 186.025i −0.340935 0.240033i
\(776\) 141.220 + 168.300i 0.181985 + 0.216881i
\(777\) 0 0
\(778\) 276.509 + 48.7560i 0.355410 + 0.0626684i
\(779\) −1091.90 + 1301.28i −1.40167 + 1.67045i
\(780\) 0 0
\(781\) −470.326 171.185i −0.602210 0.219187i
\(782\) −266.029 −0.340191
\(783\) 0 0
\(784\) −658.128 −0.839449
\(785\) 440.867 + 58.6175i 0.561614 + 0.0746720i
\(786\) 0 0
\(787\) −646.804 + 770.831i −0.821860 + 0.979455i −0.999990 0.00455231i \(-0.998551\pi\)
0.178130 + 0.984007i \(0.442995\pi\)
\(788\) −19.8919 + 112.813i −0.0252436 + 0.143163i
\(789\) 0 0
\(790\) −69.0631 53.1351i −0.0874217 0.0672596i
\(791\) 567.190 327.468i 0.717055 0.413992i
\(792\) 0 0
\(793\) 581.585 + 335.778i 0.733399 + 0.423428i
\(794\) −323.972 + 57.1251i −0.408026 + 0.0719459i
\(795\) 0 0
\(796\) −119.323 + 43.4302i −0.149904 + 0.0545605i
\(797\) 11.4218 4.15721i 0.0143310 0.00521607i −0.334845 0.942273i \(-0.608684\pi\)
0.349176 + 0.937057i \(0.386462\pi\)
\(798\) 0 0
\(799\) 56.6886 + 321.497i 0.0709494 + 0.402374i
\(800\) 24.9561 277.049i 0.0311951 0.346311i
\(801\) 0 0
\(802\) 480.341 277.325i 0.598929 0.345792i
\(803\) −792.066 + 664.622i −0.986383 + 0.827674i
\(804\) 0 0
\(805\) −4.74554 111.992i −0.00589508 0.139120i
\(806\) 166.071 197.916i 0.206044 0.245553i
\(807\) 0 0
\(808\) −264.594 + 726.966i −0.327468 + 0.899711i
\(809\) 1078.95i 1.33368i −0.745199 0.666842i \(-0.767646\pi\)
0.745199 0.666842i \(-0.232354\pi\)
\(810\) 0 0
\(811\) 1043.57 1.28677 0.643386 0.765542i \(-0.277529\pi\)
0.643386 + 0.765542i \(0.277529\pi\)
\(812\) 36.4218 + 13.2564i 0.0448544 + 0.0163257i
\(813\) 0 0
\(814\) 156.568 + 131.376i 0.192344 + 0.161396i
\(815\) −20.1968 476.633i −0.0247814 0.584825i
\(816\) 0 0
\(817\) −926.304 1103.93i −1.13379 1.35120i
\(818\) −672.715 1165.18i −0.822390 1.42442i
\(819\) 0 0
\(820\) −74.1117 + 234.004i −0.0903802 + 0.285370i
\(821\) −381.096 + 67.1976i −0.464186 + 0.0818484i −0.400850 0.916144i \(-0.631285\pi\)
−0.0633359 + 0.997992i \(0.520174\pi\)
\(822\) 0 0
\(823\) 338.120 + 928.977i 0.410838 + 1.12877i 0.956746 + 0.290924i \(0.0939627\pi\)
−0.545908 + 0.837845i \(0.683815\pi\)
\(824\) −81.8887 224.987i −0.0993795 0.273043i
\(825\) 0 0
\(826\) 84.2859 + 478.009i 0.102041 + 0.578703i
\(827\) −24.4367 + 42.3257i −0.0295486 + 0.0511798i −0.880422 0.474192i \(-0.842740\pi\)
0.850873 + 0.525372i \(0.176074\pi\)
\(828\) 0 0
\(829\) −546.065 945.813i −0.658704 1.14091i −0.980952 0.194253i \(-0.937772\pi\)
0.322248 0.946655i \(-0.395562\pi\)
\(830\) −712.180 547.930i −0.858048 0.660156i
\(831\) 0 0
\(832\) −446.054 78.6513i −0.536122 0.0945328i
\(833\) −544.489 456.880i −0.653648 0.548476i
\(834\) 0 0
\(835\) −61.5137 + 462.650i −0.0736691 + 0.554072i
\(836\) 151.133i 0.180781i
\(837\) 0 0
\(838\) 335.263i 0.400075i
\(839\) −34.5885 + 95.0311i −0.0412259 + 0.113267i −0.958597 0.284765i \(-0.908084\pi\)
0.917372 + 0.398032i \(0.130307\pi\)
\(840\) 0 0
\(841\) 466.183 + 391.174i 0.554320 + 0.465130i
\(842\) −114.000 + 646.525i −0.135392 + 0.767844i
\(843\) 0 0
\(844\) 84.3506 70.7785i 0.0999414 0.0838608i
\(845\) 310.205 283.519i 0.367107 0.335525i
\(846\) 0 0
\(847\) −134.503 77.6553i −0.158799 0.0916827i
\(848\) 271.485 + 1539.67i 0.320147 + 1.81564i
\(849\) 0 0
\(850\) 760.393 756.496i 0.894580 0.889995i
\(851\) −22.6239 62.1586i −0.0265850 0.0730418i
\(852\) 0 0
\(853\) 490.805 86.5422i 0.575387 0.101456i 0.121620 0.992577i \(-0.461191\pi\)
0.453767 + 0.891120i \(0.350080\pi\)
\(854\) 494.769 + 285.655i 0.579355 + 0.334491i
\(855\) 0 0
\(856\) 655.945 + 1136.13i 0.766291 + 1.32725i
\(857\) 599.546 503.079i 0.699587 0.587024i −0.222069 0.975031i \(-0.571281\pi\)
0.921656 + 0.388007i \(0.126837\pi\)
\(858\) 0 0
\(859\) −105.854 + 600.327i −0.123229 + 0.698867i 0.859115 + 0.511783i \(0.171015\pi\)
−0.982344 + 0.187084i \(0.940096\pi\)
\(860\) −184.581 96.3884i −0.214629 0.112080i
\(861\) 0 0
\(862\) 143.992 395.615i 0.167044 0.458950i
\(863\) −72.8410 −0.0844044 −0.0422022 0.999109i \(-0.513437\pi\)
−0.0422022 + 0.999109i \(0.513437\pi\)
\(864\) 0 0
\(865\) 60.2207 + 273.299i 0.0696194 + 0.315953i
\(866\) 517.608 1422.12i 0.597700 1.64217i
\(867\) 0 0
\(868\) 21.1221 25.1724i 0.0243343 0.0290004i
\(869\) −69.9142 12.3278i −0.0804536 0.0141861i
\(870\) 0 0
\(871\) 162.513 136.364i 0.186582 0.156561i
\(872\) 268.205 + 464.544i 0.307574 + 0.532734i
\(873\) 0 0
\(874\) 163.584 283.336i 0.187167 0.324184i
\(875\) 332.031 + 306.612i 0.379464 + 0.350414i
\(876\) 0 0
\(877\) −544.678 1496.49i −0.621070 1.70638i −0.704353 0.709849i \(-0.748763\pi\)
0.0832836 0.996526i \(-0.473459\pi\)
\(878\) 817.948 297.709i 0.931603 0.339076i
\(879\) 0 0
\(880\) −308.682 747.941i −0.350775 0.849933i
\(881\) −597.963 345.234i −0.678732 0.391866i 0.120645 0.992696i \(-0.461504\pi\)
−0.799377 + 0.600830i \(0.794837\pi\)
\(882\) 0 0
\(883\) −858.918 + 495.896i −0.972727 + 0.561604i −0.900066 0.435753i \(-0.856482\pi\)
−0.0726604 + 0.997357i \(0.523149\pi\)
\(884\) 82.4132 + 98.2163i 0.0932276 + 0.111104i
\(885\) 0 0
\(886\) 0.483404 2.74152i 0.000545603 0.00309427i
\(887\) 861.700 + 723.052i 0.971477 + 0.815166i 0.982782 0.184770i \(-0.0591542\pi\)
−0.0113051 + 0.999936i \(0.503599\pi\)
\(888\) 0 0
\(889\) 421.912 + 153.563i 0.474591 + 0.172737i
\(890\) −1255.01 + 276.538i −1.41013 + 0.310717i
\(891\) 0 0
\(892\) 8.42847i 0.00944895i
\(893\) −377.271 137.315i −0.422476 0.153769i
\(894\) 0 0
\(895\) 223.357 + 116.637i 0.249561 + 0.130321i
\(896\) −537.944 94.8540i −0.600384 0.105864i
\(897\) 0 0
\(898\) −936.642 1116.25i −1.04303 1.24304i
\(899\) −170.663 + 98.5322i −0.189836 + 0.109602i
\(900\) 0 0
\(901\) −844.247 + 1462.28i −0.937011 + 1.62295i
\(902\) 232.275 + 1317.30i 0.257511 + 1.46042i
\(903\) 0 0
\(904\) −1217.03 + 442.963i −1.34627 + 0.490003i
\(905\) −645.795 1016.57i −0.713585 1.12329i
\(906\) 0 0
\(907\) −784.120 + 138.261i −0.864520 + 0.152438i −0.588287 0.808652i \(-0.700197\pi\)
−0.276233 + 0.961091i \(0.589086\pi\)
\(908\) −67.8849 + 117.580i −0.0747631 + 0.129493i
\(909\) 0 0
\(910\) −266.725 + 243.779i −0.293105 + 0.267889i
\(911\) 254.988 + 303.883i 0.279899 + 0.333571i 0.887617 0.460582i \(-0.152359\pi\)
−0.607718 + 0.794153i \(0.707915\pi\)
\(912\) 0 0
\(913\) −720.956 127.124i −0.789656 0.139238i
\(914\) −393.546 + 469.010i −0.430575 + 0.513140i
\(915\) 0 0
\(916\) 290.487 + 105.729i 0.317125 + 0.115424i
\(917\) −446.951 −0.487406
\(918\) 0 0
\(919\) 1270.39 1.38236 0.691179 0.722684i \(-0.257092\pi\)
0.691179 + 0.722684i \(0.257092\pi\)
\(920\) −29.2151 + 219.729i −0.0317556 + 0.238836i
\(921\) 0 0
\(922\) 395.918 471.837i 0.429413 0.511754i
\(923\) 90.6767 514.253i 0.0982412 0.557154i
\(924\) 0 0
\(925\) 241.424 + 113.334i 0.260999 + 0.122523i
\(926\) −1352.40 + 780.809i −1.46048 + 0.843207i
\(927\) 0 0
\(928\) −146.913 84.8200i −0.158311 0.0914008i
\(929\) −482.079 + 85.0036i −0.518923 + 0.0915001i −0.426974 0.904264i \(-0.640421\pi\)
−0.0919483 + 0.995764i \(0.529309\pi\)
\(930\) 0 0
\(931\) 821.416 298.971i 0.882294 0.321129i
\(932\) 105.525 38.4079i 0.113224 0.0412102i
\(933\) 0 0
\(934\) −144.660 820.409i −0.154882 0.878382i
\(935\) 263.848 833.085i 0.282190 0.891000i
\(936\) 0 0
\(937\) −417.683 + 241.149i −0.445766 + 0.257363i −0.706040 0.708172i \(-0.749520\pi\)
0.260274 + 0.965535i \(0.416187\pi\)
\(938\) 138.254 116.009i 0.147392 0.123677i
\(939\) 0 0
\(940\) −57.9617 + 2.45607i −0.0616614 + 0.00261284i
\(941\) 167.759 199.928i 0.178278 0.212463i −0.669504 0.742809i \(-0.733493\pi\)
0.847782 + 0.530345i \(0.177938\pi\)
\(942\) 0 0
\(943\) 148.064 406.802i 0.157014 0.431391i
\(944\) 1133.95i 1.20122i
\(945\) 0 0
\(946\) −1134.75 −1.19953
\(947\) 161.848 + 58.9078i 0.170906 + 0.0622046i 0.426056 0.904697i \(-0.359903\pi\)
−0.255150 + 0.966901i \(0.582125\pi\)
\(948\) 0 0
\(949\) −826.367 693.404i −0.870776 0.730668i
\(950\) 338.137 + 1275.04i 0.355934 + 1.34215i
\(951\) 0 0
\(952\) −328.734 391.770i −0.345309 0.411524i
\(953\) 825.741 + 1430.23i 0.866465 + 1.50076i 0.865585 + 0.500761i \(0.166947\pi\)
0.000879492 1.00000i \(0.499720\pi\)
\(954\) 0 0
\(955\) −498.422 + 1573.74i −0.521908 + 1.64790i
\(956\) 47.5867 8.39081i 0.0497768 0.00877700i
\(957\) 0 0
\(958\) −231.048 634.800i −0.241178 0.662630i
\(959\) 235.214 + 646.245i 0.245270 + 0.673874i
\(960\) 0 0
\(961\) −137.864 781.867i −0.143459 0.813597i
\(962\) −106.618 + 184.668i −0.110830 + 0.191963i
\(963\) 0 0
\(964\) −73.7143 127.677i −0.0764671 0.132445i
\(965\) −261.310 + 339.641i −0.270787 + 0.351960i
\(966\) 0 0
\(967\) 1336.23 + 235.614i 1.38183 + 0.243654i 0.814657 0.579943i \(-0.196925\pi\)
0.567175 + 0.823597i \(0.308036\pi\)
\(968\) 235.273 + 197.418i 0.243051 + 0.203944i
\(969\) 0 0
\(970\) −330.289 43.9151i −0.340504 0.0452733i
\(971\) 563.556i 0.580387i −0.956968 0.290194i \(-0.906280\pi\)
0.956968 0.290194i \(-0.0937197\pi\)
\(972\) 0 0
\(973\) 867.114i 0.891175i
\(974\) 106.875 293.638i 0.109728 0.301476i
\(975\) 0 0
\(976\) −1022.44 857.927i −1.04758 0.879024i
\(977\) −28.6746 + 162.622i −0.0293497 + 0.166450i −0.995960 0.0898018i \(-0.971377\pi\)
0.966610 + 0.256252i \(0.0824877\pi\)
\(978\) 0 0
\(979\) −802.052 + 673.002i −0.819257 + 0.687438i
\(980\) 93.2356 85.2146i 0.0951384 0.0869537i
\(981\) 0 0
\(982\) −259.021 149.546i −0.263769 0.152287i
\(983\) 72.9652 + 413.806i 0.0742271 + 0.420963i 0.999165 + 0.0408456i \(0.0130052\pi\)
−0.924938 + 0.380117i \(0.875884\pi\)
\(984\) 0 0
\(985\) 436.792 + 687.573i 0.443443 + 0.698044i
\(986\) −223.722 614.671i −0.226898 0.623398i
\(987\) 0 0
\(988\) −155.283 + 27.3806i −0.157169 + 0.0277131i
\(989\) 318.051 + 183.627i 0.321589 + 0.185669i
\(990\) 0 0
\(991\) −402.904 697.851i −0.406564 0.704189i 0.587939 0.808906i \(-0.299940\pi\)
−0.994502 + 0.104717i \(0.966606\pi\)
\(992\) −110.174 + 92.4466i −0.111062 + 0.0931921i
\(993\) 0 0
\(994\) 77.1409 437.488i 0.0776066 0.440129i
\(995\) −417.969 + 800.398i −0.420069 + 0.804420i
\(996\) 0 0
\(997\) −667.318 + 1833.44i −0.669326 + 1.83896i −0.140804 + 0.990037i \(0.544969\pi\)
−0.528522 + 0.848920i \(0.677253\pi\)
\(998\) −1036.72 −1.03880
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.n.a.179.26 204
3.2 odd 2 135.3.n.a.104.9 yes 204
5.4 even 2 inner 405.3.n.a.179.9 204
15.14 odd 2 135.3.n.a.104.26 yes 204
27.7 even 9 135.3.n.a.74.26 yes 204
27.20 odd 18 inner 405.3.n.a.224.9 204
135.34 even 18 135.3.n.a.74.9 204
135.74 odd 18 inner 405.3.n.a.224.26 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.n.a.74.9 204 135.34 even 18
135.3.n.a.74.26 yes 204 27.7 even 9
135.3.n.a.104.9 yes 204 3.2 odd 2
135.3.n.a.104.26 yes 204 15.14 odd 2
405.3.n.a.179.9 204 5.4 even 2 inner
405.3.n.a.179.26 204 1.1 even 1 trivial
405.3.n.a.224.9 204 27.20 odd 18 inner
405.3.n.a.224.26 204 135.74 odd 18 inner