Properties

Label 405.3.l.e.298.2
Level $405$
Weight $3$
Character 405.298
Analytic conductor $11.035$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(28,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.28"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([4, 9])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-6,0,0,-6,0,26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 298.2
Root \(-1.09445 + 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 405.298
Dual form 405.3.l.e.352.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.167219 + 0.624069i) q^{2} +(3.10260 - 1.79129i) q^{4} +(0.726456 - 4.94694i) q^{5} +(-1.54050 - 5.74921i) q^{7} +(3.46410 + 3.46410i) q^{8} +(3.20871 - 0.373864i) q^{10} +(0.0476751 - 0.0825757i) q^{11} +(0.884839 - 3.30226i) q^{13} +(3.33030 - 1.92275i) q^{14} +(5.58258 - 9.66930i) q^{16} +(-14.4086 + 14.4086i) q^{17} -25.7477i q^{19} +(-6.60750 - 16.6497i) q^{20} +(0.0595051 + 0.0159443i) q^{22} +(-1.23305 + 4.60180i) q^{23} +(-23.9445 - 7.18747i) q^{25} +2.20880 q^{26} +(-15.0780 - 15.0780i) q^{28} +(-35.6216 - 20.5661i) q^{29} +(18.5000 + 32.0429i) q^{31} +(25.8960 + 6.93882i) q^{32} +(-11.4014 - 6.58258i) q^{34} +(-29.5601 + 3.44420i) q^{35} +(50.6170 - 50.6170i) q^{37} +(16.0684 - 4.30550i) q^{38} +(19.6532 - 14.6202i) q^{40} +(1.13218 + 1.96099i) q^{41} +(-33.7465 + 9.04235i) q^{43} -0.341599i q^{44} -3.07803 q^{46} +(5.97769 + 22.3091i) q^{47} +(11.7550 - 6.78674i) q^{49} +(0.481505 - 16.1449i) q^{50} +(-3.17000 - 11.8306i) q^{52} +(49.0894 + 49.0894i) q^{53} +(-0.373864 - 0.295834i) q^{55} +(14.5794 - 25.2523i) q^{56} +(6.87809 - 25.6694i) q^{58} +(86.6216 - 50.0110i) q^{59} +(27.7477 - 48.0605i) q^{61} +(-16.9035 + 16.9035i) q^{62} -27.3394i q^{64} +(-15.6933 - 6.77620i) q^{65} +(-50.9941 - 13.6638i) q^{67} +(-18.8942 + 70.5141i) q^{68} +(-7.09243 - 17.8716i) q^{70} +39.8770 q^{71} +(39.3739 + 39.3739i) q^{73} +(40.0527 + 23.1244i) q^{74} +(-46.1216 - 79.8849i) q^{76} +(-0.548188 - 0.146887i) q^{77} +(52.0212 + 30.0345i) q^{79} +(-43.7780 - 34.6410i) q^{80} +(-1.03447 + 1.03447i) q^{82} +(-105.717 + 28.3267i) q^{83} +(60.8114 + 81.7458i) q^{85} +(-11.2861 - 19.5481i) q^{86} +(0.451202 - 0.120899i) q^{88} -51.6755i q^{89} -20.3485 q^{91} +(4.41749 + 16.4863i) q^{92} +(-12.9228 + 7.46099i) q^{94} +(-127.373 - 18.7046i) q^{95} +(25.9114 + 96.7027i) q^{97} +(6.20105 + 6.20105i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} - 6 q^{5} + 26 q^{7} + 44 q^{10} - 28 q^{13} - 120 q^{14} + 8 q^{16} - 24 q^{20} + 46 q^{22} - 60 q^{23} + 32 q^{25} + 136 q^{28} - 120 q^{29} + 148 q^{31} + 168 q^{32} + 20 q^{37} + 54 q^{38}+ \cdots - 274 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.167219 + 0.624069i 0.0836094 + 0.312035i 0.995047 0.0994033i \(-0.0316934\pi\)
−0.911438 + 0.411438i \(0.865027\pi\)
\(3\) 0 0
\(4\) 3.10260 1.79129i 0.775650 0.447822i
\(5\) 0.726456 4.94694i 0.145291 0.989389i
\(6\) 0 0
\(7\) −1.54050 5.74921i −0.220071 0.821315i −0.984320 0.176394i \(-0.943557\pi\)
0.764249 0.644921i \(-0.223110\pi\)
\(8\) 3.46410 + 3.46410i 0.433013 + 0.433013i
\(9\) 0 0
\(10\) 3.20871 0.373864i 0.320871 0.0373864i
\(11\) 0.0476751 0.0825757i 0.00433410 0.00750688i −0.863850 0.503749i \(-0.831954\pi\)
0.868184 + 0.496242i \(0.165287\pi\)
\(12\) 0 0
\(13\) 0.884839 3.30226i 0.0680645 0.254020i −0.923507 0.383582i \(-0.874690\pi\)
0.991571 + 0.129562i \(0.0413570\pi\)
\(14\) 3.33030 1.92275i 0.237879 0.137339i
\(15\) 0 0
\(16\) 5.58258 9.66930i 0.348911 0.604332i
\(17\) −14.4086 + 14.4086i −0.847565 + 0.847565i −0.989829 0.142264i \(-0.954562\pi\)
0.142264 + 0.989829i \(0.454562\pi\)
\(18\) 0 0
\(19\) 25.7477i 1.35514i −0.735457 0.677572i \(-0.763032\pi\)
0.735457 0.677572i \(-0.236968\pi\)
\(20\) −6.60750 16.6497i −0.330375 0.832484i
\(21\) 0 0
\(22\) 0.0595051 + 0.0159443i 0.00270478 + 0.000724743i
\(23\) −1.23305 + 4.60180i −0.0536108 + 0.200078i −0.987537 0.157388i \(-0.949693\pi\)
0.933926 + 0.357466i \(0.116359\pi\)
\(24\) 0 0
\(25\) −23.9445 7.18747i −0.957781 0.287499i
\(26\) 2.20880 0.0849539
\(27\) 0 0
\(28\) −15.0780 15.0780i −0.538501 0.538501i
\(29\) −35.6216 20.5661i −1.22833 0.709177i −0.261650 0.965163i \(-0.584267\pi\)
−0.966681 + 0.255986i \(0.917600\pi\)
\(30\) 0 0
\(31\) 18.5000 + 32.0429i 0.596774 + 1.03364i 0.993294 + 0.115617i \(0.0368845\pi\)
−0.396520 + 0.918026i \(0.629782\pi\)
\(32\) 25.8960 + 6.93882i 0.809251 + 0.216838i
\(33\) 0 0
\(34\) −11.4014 6.58258i −0.335334 0.193605i
\(35\) −29.5601 + 3.44420i −0.844575 + 0.0984057i
\(36\) 0 0
\(37\) 50.6170 50.6170i 1.36803 1.36803i 0.504781 0.863248i \(-0.331573\pi\)
0.863248 0.504781i \(-0.168427\pi\)
\(38\) 16.0684 4.30550i 0.422852 0.113303i
\(39\) 0 0
\(40\) 19.6532 14.6202i 0.491331 0.365505i
\(41\) 1.13218 + 1.96099i 0.0276140 + 0.0478289i 0.879502 0.475895i \(-0.157876\pi\)
−0.851888 + 0.523724i \(0.824542\pi\)
\(42\) 0 0
\(43\) −33.7465 + 9.04235i −0.784803 + 0.210287i −0.628901 0.777485i \(-0.716495\pi\)
−0.155902 + 0.987773i \(0.549828\pi\)
\(44\) 0.341599i 0.00776362i
\(45\) 0 0
\(46\) −3.07803 −0.0669137
\(47\) 5.97769 + 22.3091i 0.127185 + 0.474661i 0.999908 0.0135547i \(-0.00431473\pi\)
−0.872723 + 0.488215i \(0.837648\pi\)
\(48\) 0 0
\(49\) 11.7550 6.78674i 0.239898 0.138505i
\(50\) 0.481505 16.1449i 0.00963011 0.322898i
\(51\) 0 0
\(52\) −3.17000 11.8306i −0.0609616 0.227512i
\(53\) 49.0894 + 49.0894i 0.926216 + 0.926216i 0.997459 0.0712434i \(-0.0226967\pi\)
−0.0712434 + 0.997459i \(0.522697\pi\)
\(54\) 0 0
\(55\) −0.373864 0.295834i −0.00679752 0.00537879i
\(56\) 14.5794 25.2523i 0.260347 0.450933i
\(57\) 0 0
\(58\) 6.87809 25.6694i 0.118588 0.442575i
\(59\) 86.6216 50.0110i 1.46816 0.847644i 0.468799 0.883305i \(-0.344687\pi\)
0.999364 + 0.0356610i \(0.0113537\pi\)
\(60\) 0 0
\(61\) 27.7477 48.0605i 0.454881 0.787877i −0.543801 0.839214i \(-0.683015\pi\)
0.998681 + 0.0513379i \(0.0163485\pi\)
\(62\) −16.9035 + 16.9035i −0.272636 + 0.272636i
\(63\) 0 0
\(64\) 27.3394i 0.427178i
\(65\) −15.6933 6.77620i −0.241436 0.104249i
\(66\) 0 0
\(67\) −50.9941 13.6638i −0.761107 0.203938i −0.142668 0.989771i \(-0.545568\pi\)
−0.618439 + 0.785833i \(0.712235\pi\)
\(68\) −18.8942 + 70.5141i −0.277856 + 1.03697i
\(69\) 0 0
\(70\) −7.09243 17.8716i −0.101320 0.255309i
\(71\) 39.8770 0.561647 0.280824 0.959759i \(-0.409392\pi\)
0.280824 + 0.959759i \(0.409392\pi\)
\(72\) 0 0
\(73\) 39.3739 + 39.3739i 0.539368 + 0.539368i 0.923343 0.383975i \(-0.125445\pi\)
−0.383975 + 0.923343i \(0.625445\pi\)
\(74\) 40.0527 + 23.1244i 0.541252 + 0.312492i
\(75\) 0 0
\(76\) −46.1216 79.8849i −0.606863 1.05112i
\(77\) −0.548188 0.146887i −0.00711933 0.00190762i
\(78\) 0 0
\(79\) 52.0212 + 30.0345i 0.658497 + 0.380183i 0.791704 0.610905i \(-0.209194\pi\)
−0.133207 + 0.991088i \(0.542528\pi\)
\(80\) −43.7780 34.6410i −0.547225 0.433013i
\(81\) 0 0
\(82\) −1.03447 + 1.03447i −0.0126155 + 0.0126155i
\(83\) −105.717 + 28.3267i −1.27370 + 0.341286i −0.831446 0.555606i \(-0.812486\pi\)
−0.442251 + 0.896892i \(0.645820\pi\)
\(84\) 0 0
\(85\) 60.8114 + 81.7458i 0.715428 + 0.961715i
\(86\) −11.2861 19.5481i −0.131234 0.227304i
\(87\) 0 0
\(88\) 0.451202 0.120899i 0.00512730 0.00137385i
\(89\) 51.6755i 0.580623i −0.956932 0.290312i \(-0.906241\pi\)
0.956932 0.290312i \(-0.0937590\pi\)
\(90\) 0 0
\(91\) −20.3485 −0.223610
\(92\) 4.41749 + 16.4863i 0.0480162 + 0.179199i
\(93\) 0 0
\(94\) −12.9228 + 7.46099i −0.137477 + 0.0793722i
\(95\) −127.373 18.7046i −1.34076 0.196890i
\(96\) 0 0
\(97\) 25.9114 + 96.7027i 0.267128 + 0.996935i 0.960935 + 0.276774i \(0.0892654\pi\)
−0.693807 + 0.720161i \(0.744068\pi\)
\(98\) 6.20105 + 6.20105i 0.0632760 + 0.0632760i
\(99\) 0 0
\(100\) −87.1652 + 20.5917i −0.871652 + 0.205917i
\(101\) 9.06943 15.7087i 0.0897963 0.155532i −0.817629 0.575746i \(-0.804712\pi\)
0.907425 + 0.420214i \(0.138045\pi\)
\(102\) 0 0
\(103\) −16.4074 + 61.2331i −0.159295 + 0.594496i 0.839404 + 0.543507i \(0.182904\pi\)
−0.998699 + 0.0509890i \(0.983763\pi\)
\(104\) 14.5045 8.37420i 0.139467 0.0805212i
\(105\) 0 0
\(106\) −22.4265 + 38.8439i −0.211571 + 0.366452i
\(107\) 150.617 150.617i 1.40764 1.40764i 0.635703 0.771934i \(-0.280710\pi\)
0.771934 0.635703i \(-0.219290\pi\)
\(108\) 0 0
\(109\) 126.495i 1.16051i 0.814435 + 0.580254i \(0.197047\pi\)
−0.814435 + 0.580254i \(0.802953\pi\)
\(110\) 0.122104 0.282786i 0.00111003 0.00257078i
\(111\) 0 0
\(112\) −64.1908 17.1999i −0.573132 0.153570i
\(113\) −48.5936 + 181.354i −0.430032 + 1.60490i 0.322652 + 0.946518i \(0.395426\pi\)
−0.752683 + 0.658383i \(0.771241\pi\)
\(114\) 0 0
\(115\) 21.8691 + 9.44283i 0.190166 + 0.0821115i
\(116\) −147.359 −1.27034
\(117\) 0 0
\(118\) 45.6951 + 45.6951i 0.387246 + 0.387246i
\(119\) 105.034 + 60.6417i 0.882643 + 0.509594i
\(120\) 0 0
\(121\) 60.4955 + 104.781i 0.499962 + 0.865960i
\(122\) 34.6330 + 9.27988i 0.283877 + 0.0760646i
\(123\) 0 0
\(124\) 114.796 + 66.2777i 0.925776 + 0.534497i
\(125\) −52.9507 + 113.231i −0.423605 + 0.905847i
\(126\) 0 0
\(127\) −58.8693 + 58.8693i −0.463538 + 0.463538i −0.899813 0.436275i \(-0.856297\pi\)
0.436275 + 0.899813i \(0.356297\pi\)
\(128\) 120.646 32.3269i 0.942545 0.252554i
\(129\) 0 0
\(130\) 1.60460 10.9268i 0.0123431 0.0840525i
\(131\) −118.153 204.647i −0.901931 1.56219i −0.824984 0.565155i \(-0.808816\pi\)
−0.0769467 0.997035i \(-0.524517\pi\)
\(132\) 0 0
\(133\) −148.029 + 39.6643i −1.11300 + 0.298228i
\(134\) 34.1087i 0.254543i
\(135\) 0 0
\(136\) −99.8258 −0.734013
\(137\) 18.8942 + 70.5141i 0.137914 + 0.514702i 0.999969 + 0.00788694i \(0.00251052\pi\)
−0.862055 + 0.506815i \(0.830823\pi\)
\(138\) 0 0
\(139\) −138.044 + 79.6996i −0.993121 + 0.573379i −0.906206 0.422837i \(-0.861034\pi\)
−0.0869151 + 0.996216i \(0.527701\pi\)
\(140\) −85.5437 + 63.6367i −0.611026 + 0.454548i
\(141\) 0 0
\(142\) 6.66818 + 24.8860i 0.0469590 + 0.175253i
\(143\) −0.230502 0.230502i −0.00161190 0.00161190i
\(144\) 0 0
\(145\) −127.617 + 161.278i −0.880118 + 1.11226i
\(146\) −17.9880 + 31.1561i −0.123205 + 0.213398i
\(147\) 0 0
\(148\) 66.3748 247.714i 0.448479 1.67374i
\(149\) 72.2341 41.7044i 0.484793 0.279895i −0.237619 0.971358i \(-0.576367\pi\)
0.722412 + 0.691463i \(0.243034\pi\)
\(150\) 0 0
\(151\) 17.3784 30.1003i 0.115089 0.199340i −0.802726 0.596347i \(-0.796618\pi\)
0.917815 + 0.397008i \(0.129951\pi\)
\(152\) 89.1927 89.1927i 0.586794 0.586794i
\(153\) 0 0
\(154\) 0.366669i 0.00238097i
\(155\) 171.954 68.2407i 1.10938 0.440263i
\(156\) 0 0
\(157\) −6.45085 1.72850i −0.0410882 0.0110096i 0.238216 0.971212i \(-0.423437\pi\)
−0.279305 + 0.960203i \(0.590104\pi\)
\(158\) −10.0447 + 37.4872i −0.0635738 + 0.237261i
\(159\) 0 0
\(160\) 53.1383 123.065i 0.332114 0.769159i
\(161\) 28.3562 0.176126
\(162\) 0 0
\(163\) 171.374 + 171.374i 1.05137 + 1.05137i 0.998607 + 0.0527665i \(0.0168039\pi\)
0.0527665 + 0.998607i \(0.483196\pi\)
\(164\) 7.02538 + 4.05610i 0.0428377 + 0.0247323i
\(165\) 0 0
\(166\) −35.3557 61.2378i −0.212986 0.368903i
\(167\) 73.2981 + 19.6402i 0.438911 + 0.117606i 0.471506 0.881863i \(-0.343711\pi\)
−0.0325953 + 0.999469i \(0.510377\pi\)
\(168\) 0 0
\(169\) 136.236 + 78.6561i 0.806132 + 0.465420i
\(170\) −40.8462 + 51.6199i −0.240272 + 0.303647i
\(171\) 0 0
\(172\) −88.5045 + 88.5045i −0.514561 + 0.514561i
\(173\) −202.209 + 54.1816i −1.16884 + 0.313189i −0.790489 0.612476i \(-0.790174\pi\)
−0.378346 + 0.925664i \(0.623507\pi\)
\(174\) 0 0
\(175\) −4.43585 + 148.734i −0.0253477 + 0.849910i
\(176\) −0.532300 0.921970i −0.00302443 0.00523847i
\(177\) 0 0
\(178\) 32.2491 8.64111i 0.181175 0.0485456i
\(179\) 140.296i 0.783777i −0.920013 0.391889i \(-0.871822\pi\)
0.920013 0.391889i \(-0.128178\pi\)
\(180\) 0 0
\(181\) 114.720 0.633815 0.316907 0.948457i \(-0.397356\pi\)
0.316907 + 0.948457i \(0.397356\pi\)
\(182\) −3.40265 12.6989i −0.0186959 0.0697740i
\(183\) 0 0
\(184\) −20.2125 + 11.6697i −0.109851 + 0.0634223i
\(185\) −213.629 287.171i −1.15475 1.55227i
\(186\) 0 0
\(187\) 0.502869 + 1.87673i 0.00268914 + 0.0100360i
\(188\) 58.5083 + 58.5083i 0.311215 + 0.311215i
\(189\) 0 0
\(190\) −9.62614 82.6170i −0.0506639 0.434827i
\(191\) −128.545 + 222.647i −0.673012 + 1.16569i 0.304034 + 0.952661i \(0.401666\pi\)
−0.977046 + 0.213030i \(0.931667\pi\)
\(192\) 0 0
\(193\) 32.3085 120.577i 0.167402 0.624752i −0.830320 0.557287i \(-0.811842\pi\)
0.997722 0.0674648i \(-0.0214910\pi\)
\(194\) −56.0163 + 32.3410i −0.288744 + 0.166706i
\(195\) 0 0
\(196\) 24.3140 42.1131i 0.124051 0.214863i
\(197\) 44.6917 44.6917i 0.226862 0.226862i −0.584519 0.811380i \(-0.698717\pi\)
0.811380 + 0.584519i \(0.198717\pi\)
\(198\) 0 0
\(199\) 297.964i 1.49730i −0.662963 0.748652i \(-0.730701\pi\)
0.662963 0.748652i \(-0.269299\pi\)
\(200\) −58.0481 107.844i −0.290241 0.539222i
\(201\) 0 0
\(202\) 11.3199 + 3.03316i 0.0560391 + 0.0150156i
\(203\) −63.3641 + 236.478i −0.312138 + 1.16492i
\(204\) 0 0
\(205\) 10.5234 4.17624i 0.0513335 0.0203719i
\(206\) −40.9573 −0.198822
\(207\) 0 0
\(208\) −26.9909 26.9909i −0.129764 0.129764i
\(209\) −2.12614 1.22753i −0.0101729 0.00587333i
\(210\) 0 0
\(211\) 67.9864 + 117.756i 0.322210 + 0.558085i 0.980944 0.194292i \(-0.0622409\pi\)
−0.658734 + 0.752376i \(0.728908\pi\)
\(212\) 240.238 + 64.3716i 1.13320 + 0.303640i
\(213\) 0 0
\(214\) 119.182 + 68.8095i 0.556923 + 0.321540i
\(215\) 20.2167 + 173.511i 0.0940310 + 0.807028i
\(216\) 0 0
\(217\) 155.722 155.722i 0.717615 0.717615i
\(218\) −78.9419 + 21.1524i −0.362119 + 0.0970294i
\(219\) 0 0
\(220\) −1.68987 0.248157i −0.00768124 0.00112799i
\(221\) 34.8317 + 60.3303i 0.157610 + 0.272988i
\(222\) 0 0
\(223\) −218.658 + 58.5893i −0.980530 + 0.262732i −0.713268 0.700892i \(-0.752786\pi\)
−0.267262 + 0.963624i \(0.586119\pi\)
\(224\) 159.571i 0.712370i
\(225\) 0 0
\(226\) −121.303 −0.536739
\(227\) −18.5379 69.1844i −0.0816648 0.304777i 0.912997 0.407966i \(-0.133762\pi\)
−0.994662 + 0.103189i \(0.967095\pi\)
\(228\) 0 0
\(229\) −30.8909 + 17.8348i −0.134895 + 0.0778814i −0.565929 0.824454i \(-0.691482\pi\)
0.431034 + 0.902336i \(0.358149\pi\)
\(230\) −2.23605 + 15.2268i −0.00972197 + 0.0662037i
\(231\) 0 0
\(232\) −52.1536 194.640i −0.224800 0.838965i
\(233\) 191.102 + 191.102i 0.820180 + 0.820180i 0.986134 0.165954i \(-0.0530703\pi\)
−0.165954 + 0.986134i \(0.553070\pi\)
\(234\) 0 0
\(235\) 114.704 13.3648i 0.488103 0.0568714i
\(236\) 179.168 310.328i 0.759187 1.31495i
\(237\) 0 0
\(238\) −20.2809 + 75.6892i −0.0852137 + 0.318022i
\(239\) 300.495 173.491i 1.25730 0.725904i 0.284754 0.958601i \(-0.408088\pi\)
0.972549 + 0.232696i \(0.0747548\pi\)
\(240\) 0 0
\(241\) −7.14432 + 12.3743i −0.0296445 + 0.0513457i −0.880467 0.474107i \(-0.842771\pi\)
0.850823 + 0.525453i \(0.176104\pi\)
\(242\) −55.2747 + 55.2747i −0.228408 + 0.228408i
\(243\) 0 0
\(244\) 198.817i 0.814822i
\(245\) −25.0342 63.0815i −0.102180 0.257476i
\(246\) 0 0
\(247\) −85.0258 22.7826i −0.344234 0.0922372i
\(248\) −46.9141 + 175.086i −0.189170 + 0.705991i
\(249\) 0 0
\(250\) −79.5182 14.1105i −0.318073 0.0564422i
\(251\) −399.294 −1.59081 −0.795406 0.606077i \(-0.792742\pi\)
−0.795406 + 0.606077i \(0.792742\pi\)
\(252\) 0 0
\(253\) 0.321211 + 0.321211i 0.00126961 + 0.00126961i
\(254\) −46.5826 26.8945i −0.183396 0.105884i
\(255\) 0 0
\(256\) −14.3303 24.8208i −0.0559777 0.0969563i
\(257\) 337.408 + 90.4083i 1.31287 + 0.351783i 0.846303 0.532701i \(-0.178823\pi\)
0.466570 + 0.884484i \(0.345490\pi\)
\(258\) 0 0
\(259\) −368.983 213.033i −1.42465 0.822520i
\(260\) −60.8282 + 7.08741i −0.233955 + 0.0272593i
\(261\) 0 0
\(262\) 107.956 107.956i 0.412047 0.412047i
\(263\) 21.1855 5.67663i 0.0805532 0.0215842i −0.218317 0.975878i \(-0.570057\pi\)
0.298871 + 0.954294i \(0.403390\pi\)
\(264\) 0 0
\(265\) 278.504 207.181i 1.05096 0.781816i
\(266\) −49.5065 85.7477i −0.186115 0.322360i
\(267\) 0 0
\(268\) −182.690 + 48.9517i −0.681680 + 0.182656i
\(269\) 298.922i 1.11123i 0.831439 + 0.555617i \(0.187518\pi\)
−0.831439 + 0.555617i \(0.812482\pi\)
\(270\) 0 0
\(271\) −21.0091 −0.0775243 −0.0387622 0.999248i \(-0.512341\pi\)
−0.0387622 + 0.999248i \(0.512341\pi\)
\(272\) 58.8841 + 219.758i 0.216486 + 0.807935i
\(273\) 0 0
\(274\) −40.8462 + 23.5826i −0.149074 + 0.0860678i
\(275\) −1.73507 + 1.63457i −0.00630934 + 0.00594390i
\(276\) 0 0
\(277\) 100.752 + 376.011i 0.363725 + 1.35744i 0.869140 + 0.494565i \(0.164673\pi\)
−0.505415 + 0.862876i \(0.668661\pi\)
\(278\) −72.8216 72.8216i −0.261948 0.261948i
\(279\) 0 0
\(280\) −114.330 90.4682i −0.408323 0.323101i
\(281\) 81.1601 140.573i 0.288826 0.500262i −0.684704 0.728822i \(-0.740068\pi\)
0.973530 + 0.228560i \(0.0734017\pi\)
\(282\) 0 0
\(283\) 46.6314 174.031i 0.164775 0.614949i −0.833294 0.552831i \(-0.813548\pi\)
0.998069 0.0621185i \(-0.0197857\pi\)
\(284\) 123.722 71.4311i 0.435642 0.251518i
\(285\) 0 0
\(286\) 0.105305 0.182393i 0.000368199 0.000637739i
\(287\) 9.53000 9.53000i 0.0332056 0.0332056i
\(288\) 0 0
\(289\) 126.216i 0.436733i
\(290\) −121.988 52.6732i −0.420650 0.181632i
\(291\) 0 0
\(292\) 192.691 + 51.6315i 0.659902 + 0.176820i
\(293\) 70.8962 264.588i 0.241967 0.903032i −0.732917 0.680318i \(-0.761842\pi\)
0.974884 0.222714i \(-0.0714916\pi\)
\(294\) 0 0
\(295\) −184.475 464.843i −0.625339 1.57574i
\(296\) 350.685 1.18475
\(297\) 0 0
\(298\) 38.1053 + 38.1053i 0.127870 + 0.127870i
\(299\) 14.1053 + 8.14370i 0.0471749 + 0.0272365i
\(300\) 0 0
\(301\) 103.973 + 180.086i 0.345424 + 0.598292i
\(302\) 21.6907 + 5.81199i 0.0718234 + 0.0192450i
\(303\) 0 0
\(304\) −248.963 143.739i −0.818956 0.472824i
\(305\) −217.595 172.180i −0.713426 0.564526i
\(306\) 0 0
\(307\) 405.347 405.347i 1.32035 1.32035i 0.406854 0.913493i \(-0.366626\pi\)
0.913493 0.406854i \(-0.133374\pi\)
\(308\) −1.96393 + 0.526232i −0.00637638 + 0.00170855i
\(309\) 0 0
\(310\) 71.3409 + 95.9001i 0.230132 + 0.309355i
\(311\) 87.9893 + 152.402i 0.282924 + 0.490038i 0.972104 0.234552i \(-0.0753623\pi\)
−0.689180 + 0.724590i \(0.742029\pi\)
\(312\) 0 0
\(313\) 262.133 70.2383i 0.837486 0.224404i 0.185509 0.982643i \(-0.440607\pi\)
0.651977 + 0.758239i \(0.273940\pi\)
\(314\) 4.31481i 0.0137414i
\(315\) 0 0
\(316\) 215.202 0.681017
\(317\) −101.533 378.928i −0.320294 1.19536i −0.918958 0.394355i \(-0.870968\pi\)
0.598664 0.801000i \(-0.295699\pi\)
\(318\) 0 0
\(319\) −3.39653 + 1.96099i −0.0106474 + 0.00614729i
\(320\) −135.246 19.8609i −0.422645 0.0620652i
\(321\) 0 0
\(322\) 4.74169 + 17.6962i 0.0147257 + 0.0549572i
\(323\) 370.989 + 370.989i 1.14857 + 1.14857i
\(324\) 0 0
\(325\) −44.9220 + 72.7114i −0.138221 + 0.223727i
\(326\) −78.2922 + 135.606i −0.240160 + 0.415969i
\(327\) 0 0
\(328\) −2.87108 + 10.7150i −0.00875330 + 0.0326677i
\(329\) 119.051 68.7340i 0.361856 0.208918i
\(330\) 0 0
\(331\) 151.622 262.616i 0.458071 0.793403i −0.540788 0.841159i \(-0.681874\pi\)
0.998859 + 0.0477564i \(0.0152071\pi\)
\(332\) −277.256 + 277.256i −0.835108 + 0.835108i
\(333\) 0 0
\(334\) 49.0273i 0.146788i
\(335\) −104.639 + 242.339i −0.312356 + 0.723400i
\(336\) 0 0
\(337\) −58.5135 15.6786i −0.173631 0.0465242i 0.170956 0.985279i \(-0.445314\pi\)
−0.344587 + 0.938754i \(0.611981\pi\)
\(338\) −26.3055 + 98.1736i −0.0778271 + 0.290455i
\(339\) 0 0
\(340\) 335.104 + 144.694i 0.985599 + 0.425571i
\(341\) 3.52796 0.0103459
\(342\) 0 0
\(343\) −263.354 263.354i −0.767795 0.767795i
\(344\) −148.225 85.5777i −0.430887 0.248773i
\(345\) 0 0
\(346\) −67.6261 117.132i −0.195451 0.338532i
\(347\) −618.732 165.789i −1.78309 0.477777i −0.791948 0.610588i \(-0.790933\pi\)
−0.991141 + 0.132811i \(0.957600\pi\)
\(348\) 0 0
\(349\) 123.659 + 71.3947i 0.354324 + 0.204569i 0.666588 0.745426i \(-0.267754\pi\)
−0.312264 + 0.949995i \(0.601087\pi\)
\(350\) −93.5622 + 22.1029i −0.267321 + 0.0631511i
\(351\) 0 0
\(352\) 1.80757 1.80757i 0.00513515 0.00513515i
\(353\) −264.219 + 70.7973i −0.748496 + 0.200559i −0.612851 0.790199i \(-0.709977\pi\)
−0.135645 + 0.990758i \(0.543311\pi\)
\(354\) 0 0
\(355\) 28.9689 197.269i 0.0816024 0.555688i
\(356\) −92.5656 160.328i −0.260016 0.450361i
\(357\) 0 0
\(358\) 87.5545 23.4601i 0.244566 0.0655311i
\(359\) 354.888i 0.988546i −0.869307 0.494273i \(-0.835434\pi\)
0.869307 0.494273i \(-0.164566\pi\)
\(360\) 0 0
\(361\) −301.945 −0.836414
\(362\) 19.1834 + 71.5935i 0.0529929 + 0.197772i
\(363\) 0 0
\(364\) −63.1332 + 36.4500i −0.173443 + 0.100137i
\(365\) 223.384 166.177i 0.612010 0.455279i
\(366\) 0 0
\(367\) −61.2471 228.577i −0.166886 0.622827i −0.997792 0.0664143i \(-0.978844\pi\)
0.830906 0.556413i \(-0.187823\pi\)
\(368\) 37.6126 + 37.6126i 0.102208 + 0.102208i
\(369\) 0 0
\(370\) 143.492 181.339i 0.387815 0.490106i
\(371\) 206.603 357.847i 0.556882 0.964548i
\(372\) 0 0
\(373\) −61.0080 + 227.685i −0.163560 + 0.610415i 0.834659 + 0.550767i \(0.185665\pi\)
−0.998219 + 0.0596484i \(0.981002\pi\)
\(374\) −1.08712 + 0.627650i −0.00290674 + 0.00167821i
\(375\) 0 0
\(376\) −56.5735 + 97.9881i −0.150461 + 0.260607i
\(377\) −99.4341 + 99.4341i −0.263751 + 0.263751i
\(378\) 0 0
\(379\) 115.252i 0.304096i 0.988373 + 0.152048i \(0.0485868\pi\)
−0.988373 + 0.152048i \(0.951413\pi\)
\(380\) −428.692 + 170.128i −1.12814 + 0.447705i
\(381\) 0 0
\(382\) −160.442 42.9904i −0.420006 0.112540i
\(383\) −125.277 + 467.540i −0.327094 + 1.22073i 0.585097 + 0.810964i \(0.301057\pi\)
−0.912190 + 0.409767i \(0.865610\pi\)
\(384\) 0 0
\(385\) −1.12487 + 2.60515i −0.00292175 + 0.00676662i
\(386\) 80.6510 0.208940
\(387\) 0 0
\(388\) 253.615 + 253.615i 0.653647 + 0.653647i
\(389\) 289.720 + 167.270i 0.744783 + 0.430000i 0.823806 0.566872i \(-0.191847\pi\)
−0.0790230 + 0.996873i \(0.525180\pi\)
\(390\) 0 0
\(391\) −48.5390 84.0720i −0.124141 0.215018i
\(392\) 64.2304 + 17.2105i 0.163853 + 0.0439043i
\(393\) 0 0
\(394\) 35.3640 + 20.4174i 0.0897564 + 0.0518209i
\(395\) 186.370 235.527i 0.471823 0.596272i
\(396\) 0 0
\(397\) −469.973 + 469.973i −1.18381 + 1.18381i −0.205061 + 0.978749i \(0.565739\pi\)
−0.978749 + 0.205061i \(0.934261\pi\)
\(398\) 185.950 49.8251i 0.467211 0.125189i
\(399\) 0 0
\(400\) −203.170 + 191.402i −0.507925 + 0.478506i
\(401\) 94.6393 + 163.920i 0.236008 + 0.408778i 0.959565 0.281486i \(-0.0908274\pi\)
−0.723557 + 0.690265i \(0.757494\pi\)
\(402\) 0 0
\(403\) 122.184 32.7390i 0.303185 0.0812383i
\(404\) 64.9838i 0.160851i
\(405\) 0 0
\(406\) −158.174 −0.389592
\(407\) −1.76656 6.59291i −0.00434045 0.0161988i
\(408\) 0 0
\(409\) 370.071 213.661i 0.904819 0.522398i 0.0260585 0.999660i \(-0.491704\pi\)
0.878761 + 0.477263i \(0.158371\pi\)
\(410\) 4.36597 + 5.86896i 0.0106487 + 0.0143145i
\(411\) 0 0
\(412\) 58.7806 + 219.372i 0.142671 + 0.532457i
\(413\) −420.964 420.964i −1.01928 1.01928i
\(414\) 0 0
\(415\) 63.3322 + 543.553i 0.152608 + 1.30977i
\(416\) 45.8276 79.3758i 0.110163 0.190807i
\(417\) 0 0
\(418\) 0.410531 1.53212i 0.000982131 0.00366536i
\(419\) −466.301 + 269.219i −1.11289 + 0.642528i −0.939577 0.342339i \(-0.888781\pi\)
−0.173314 + 0.984867i \(0.555448\pi\)
\(420\) 0 0
\(421\) −197.500 + 342.080i −0.469121 + 0.812542i −0.999377 0.0352961i \(-0.988763\pi\)
0.530256 + 0.847838i \(0.322096\pi\)
\(422\) −62.1192 + 62.1192i −0.147202 + 0.147202i
\(423\) 0 0
\(424\) 340.102i 0.802126i
\(425\) 448.569 241.446i 1.05546 0.568108i
\(426\) 0 0
\(427\) −319.055 85.4905i −0.747201 0.200212i
\(428\) 197.506 737.104i 0.461463 1.72220i
\(429\) 0 0
\(430\) −104.902 + 41.6309i −0.243959 + 0.0968160i
\(431\) 60.0895 0.139419 0.0697094 0.997567i \(-0.477793\pi\)
0.0697094 + 0.997567i \(0.477793\pi\)
\(432\) 0 0
\(433\) −192.514 192.514i −0.444604 0.444604i 0.448952 0.893556i \(-0.351798\pi\)
−0.893556 + 0.448952i \(0.851798\pi\)
\(434\) 123.221 + 71.1418i 0.283920 + 0.163921i
\(435\) 0 0
\(436\) 226.590 + 392.465i 0.519701 + 0.900149i
\(437\) 118.486 + 31.7482i 0.271135 + 0.0726503i
\(438\) 0 0
\(439\) −253.170 146.168i −0.576697 0.332956i 0.183123 0.983090i \(-0.441379\pi\)
−0.759820 + 0.650134i \(0.774713\pi\)
\(440\) −0.270303 2.31990i −0.000614326 0.00527250i
\(441\) 0 0
\(442\) −31.8258 + 31.8258i −0.0720040 + 0.0720040i
\(443\) 365.264 97.8721i 0.824523 0.220930i 0.178200 0.983994i \(-0.442973\pi\)
0.646323 + 0.763064i \(0.276306\pi\)
\(444\) 0 0
\(445\) −255.636 37.5399i −0.574462 0.0843594i
\(446\) −73.1275 126.661i −0.163963 0.283992i
\(447\) 0 0
\(448\) −157.180 + 42.1162i −0.350848 + 0.0940094i
\(449\) 101.349i 0.225721i 0.993611 + 0.112860i \(0.0360013\pi\)
−0.993611 + 0.112860i \(0.963999\pi\)
\(450\) 0 0
\(451\) 0.215906 0.000478728
\(452\) 174.090 + 649.714i 0.385155 + 1.43742i
\(453\) 0 0
\(454\) 40.0760 23.1379i 0.0882731 0.0509645i
\(455\) −14.7823 + 100.663i −0.0324885 + 0.221237i
\(456\) 0 0
\(457\) 161.232 + 601.725i 0.352805 + 1.31669i 0.883224 + 0.468950i \(0.155368\pi\)
−0.530420 + 0.847735i \(0.677966\pi\)
\(458\) −16.2957 16.2957i −0.0355802 0.0355802i
\(459\) 0 0
\(460\) 84.7659 9.87651i 0.184274 0.0214707i
\(461\) −291.735 + 505.300i −0.632831 + 1.09610i 0.354139 + 0.935193i \(0.384774\pi\)
−0.986970 + 0.160903i \(0.948559\pi\)
\(462\) 0 0
\(463\) −29.9470 + 111.764i −0.0646803 + 0.241390i −0.990696 0.136096i \(-0.956545\pi\)
0.926015 + 0.377486i \(0.123211\pi\)
\(464\) −397.720 + 229.624i −0.857156 + 0.494879i
\(465\) 0 0
\(466\) −87.3049 + 151.217i −0.187350 + 0.324499i
\(467\) 145.933 145.933i 0.312491 0.312491i −0.533383 0.845874i \(-0.679079\pi\)
0.845874 + 0.533383i \(0.179079\pi\)
\(468\) 0 0
\(469\) 314.225i 0.669989i
\(470\) 27.5212 + 69.3485i 0.0585558 + 0.147550i
\(471\) 0 0
\(472\) 473.309 + 126.823i 1.00277 + 0.268692i
\(473\) −0.862190 + 3.21774i −0.00182281 + 0.00680283i
\(474\) 0 0
\(475\) −185.061 + 616.517i −0.389602 + 1.29793i
\(476\) 434.507 0.912829
\(477\) 0 0
\(478\) 158.519 + 158.519i 0.331630 + 0.331630i
\(479\) 325.761 + 188.078i 0.680086 + 0.392648i 0.799888 0.600150i \(-0.204892\pi\)
−0.119801 + 0.992798i \(0.538226\pi\)
\(480\) 0 0
\(481\) −122.363 211.939i −0.254393 0.440621i
\(482\) −8.91710 2.38933i −0.0185002 0.00495711i
\(483\) 0 0
\(484\) 375.387 + 216.730i 0.775592 + 0.447788i
\(485\) 497.206 57.9321i 1.02517 0.119448i
\(486\) 0 0
\(487\) −402.693 + 402.693i −0.826885 + 0.826885i −0.987085 0.160199i \(-0.948786\pi\)
0.160199 + 0.987085i \(0.448786\pi\)
\(488\) 262.607 70.3654i 0.538130 0.144191i
\(489\) 0 0
\(490\) 35.1810 26.1715i 0.0717980 0.0534111i
\(491\) 174.608 + 302.429i 0.355616 + 0.615945i 0.987223 0.159343i \(-0.0509377\pi\)
−0.631607 + 0.775289i \(0.717604\pi\)
\(492\) 0 0
\(493\) 809.587 216.928i 1.64216 0.440017i
\(494\) 56.8716i 0.115125i
\(495\) 0 0
\(496\) 413.111 0.832884
\(497\) −61.4303 229.261i −0.123602 0.461290i
\(498\) 0 0
\(499\) −462.780 + 267.186i −0.927414 + 0.535443i −0.885993 0.463699i \(-0.846522\pi\)
−0.0414214 + 0.999142i \(0.513189\pi\)
\(500\) 38.5442 + 446.160i 0.0770884 + 0.892320i
\(501\) 0 0
\(502\) −66.7694 249.187i −0.133007 0.496388i
\(503\) −441.936 441.936i −0.878600 0.878600i 0.114790 0.993390i \(-0.463381\pi\)
−0.993390 + 0.114790i \(0.963381\pi\)
\(504\) 0 0
\(505\) −71.1216 56.2777i −0.140835 0.111441i
\(506\) −0.146745 + 0.254170i −0.000290011 + 0.000502313i
\(507\) 0 0
\(508\) −77.1961 + 288.100i −0.151961 + 0.567126i
\(509\) −217.149 + 125.371i −0.426619 + 0.246308i −0.697905 0.716190i \(-0.745884\pi\)
0.271286 + 0.962499i \(0.412551\pi\)
\(510\) 0 0
\(511\) 165.713 287.024i 0.324292 0.561690i
\(512\) 366.369 366.369i 0.715564 0.715564i
\(513\) 0 0
\(514\) 225.684i 0.439074i
\(515\) 290.998 + 125.649i 0.565044 + 0.243980i
\(516\) 0 0
\(517\) 2.12717 + 0.569974i 0.00411445 + 0.00110246i
\(518\) 71.2461 265.894i 0.137541 0.513309i
\(519\) 0 0
\(520\) −30.8898 77.8367i −0.0594035 0.149686i
\(521\) −450.350 −0.864395 −0.432198 0.901779i \(-0.642262\pi\)
−0.432198 + 0.901779i \(0.642262\pi\)
\(522\) 0 0
\(523\) −233.027 233.027i −0.445559 0.445559i 0.448316 0.893875i \(-0.352024\pi\)
−0.893875 + 0.448316i \(0.852024\pi\)
\(524\) −733.163 423.292i −1.39917 0.807809i
\(525\) 0 0
\(526\) 7.08522 + 12.2720i 0.0134700 + 0.0233307i
\(527\) −728.253 195.135i −1.38188 0.370275i
\(528\) 0 0
\(529\) 438.471 + 253.152i 0.828868 + 0.478547i
\(530\) 175.867 + 139.161i 0.331824 + 0.262568i
\(531\) 0 0
\(532\) −388.225 + 388.225i −0.729746 + 0.729746i
\(533\) 7.47748 2.00358i 0.0140290 0.00375907i
\(534\) 0 0
\(535\) −635.678 854.511i −1.18818 1.59722i
\(536\) −129.316 223.982i −0.241261 0.417877i
\(537\) 0 0
\(538\) −186.548 + 49.9853i −0.346743 + 0.0929096i
\(539\) 1.29423i 0.00240118i
\(540\) 0 0
\(541\) −36.3250 −0.0671442 −0.0335721 0.999436i \(-0.510688\pi\)
−0.0335721 + 0.999436i \(0.510688\pi\)
\(542\) −3.51312 13.1111i −0.00648176 0.0241903i
\(543\) 0 0
\(544\) −473.104 + 273.147i −0.869677 + 0.502108i
\(545\) 625.766 + 91.8934i 1.14819 + 0.168612i
\(546\) 0 0
\(547\) −128.305 478.843i −0.234562 0.875398i −0.978346 0.206977i \(-0.933637\pi\)
0.743784 0.668420i \(-0.233029\pi\)
\(548\) 184.932 + 184.932i 0.337468 + 0.337468i
\(549\) 0 0
\(550\) −1.31022 0.809471i −0.00238222 0.00147177i
\(551\) −529.531 + 917.175i −0.961037 + 1.66456i
\(552\) 0 0
\(553\) 92.5359 345.349i 0.167334 0.624501i
\(554\) −217.809 + 125.752i −0.393158 + 0.226990i
\(555\) 0 0
\(556\) −285.530 + 494.552i −0.513543 + 0.889483i
\(557\) 22.1908 22.1908i 0.0398399 0.0398399i −0.686906 0.726746i \(-0.741032\pi\)
0.726746 + 0.686906i \(0.241032\pi\)
\(558\) 0 0
\(559\) 119.441i 0.213669i
\(560\) −131.719 + 305.053i −0.235212 + 0.544738i
\(561\) 0 0
\(562\) 101.299 + 27.1430i 0.180247 + 0.0482972i
\(563\) 61.7007 230.270i 0.109593 0.409006i −0.889233 0.457455i \(-0.848761\pi\)
0.998826 + 0.0484491i \(0.0154279\pi\)
\(564\) 0 0
\(565\) 861.846 + 372.135i 1.52539 + 0.658647i
\(566\) 116.405 0.205662
\(567\) 0 0
\(568\) 138.138 + 138.138i 0.243200 + 0.243200i
\(569\) −500.670 289.062i −0.879913 0.508018i −0.00928322 0.999957i \(-0.502955\pi\)
−0.870630 + 0.491939i \(0.836288\pi\)
\(570\) 0 0
\(571\) −382.716 662.883i −0.670256 1.16092i −0.977832 0.209393i \(-0.932851\pi\)
0.307576 0.951524i \(-0.400482\pi\)
\(572\) −1.12805 0.302260i −0.00197212 0.000528427i
\(573\) 0 0
\(574\) 7.54097 + 4.35378i 0.0131376 + 0.00758499i
\(575\) 62.6001 101.325i 0.108870 0.176218i
\(576\) 0 0
\(577\) 176.644 176.644i 0.306143 0.306143i −0.537269 0.843411i \(-0.680544\pi\)
0.843411 + 0.537269i \(0.180544\pi\)
\(578\) 78.7674 21.1057i 0.136276 0.0365150i
\(579\) 0 0
\(580\) −107.050 + 728.979i −0.184569 + 1.25686i
\(581\) 325.713 + 564.151i 0.560607 + 0.971000i
\(582\) 0 0
\(583\) 6.39394 1.71325i 0.0109673 0.00293868i
\(584\) 272.790i 0.467106i
\(585\) 0 0
\(586\) 176.977 0.302008
\(587\) −141.291 527.304i −0.240700 0.898304i −0.975496 0.220016i \(-0.929389\pi\)
0.734796 0.678288i \(-0.237278\pi\)
\(588\) 0 0
\(589\) 825.033 476.333i 1.40073 0.808715i
\(590\) 259.246 192.856i 0.439401 0.326874i
\(591\) 0 0
\(592\) −206.858 772.005i −0.349423 1.30406i
\(593\) −595.579 595.579i −1.00435 1.00435i −0.999990 0.00435896i \(-0.998612\pi\)
−0.00435896 0.999990i \(-0.501388\pi\)
\(594\) 0 0
\(595\) 376.294 475.546i 0.632427 0.799237i
\(596\) 149.409 258.784i 0.250686 0.434201i
\(597\) 0 0
\(598\) −2.72356 + 10.1645i −0.00455445 + 0.0169974i
\(599\) −384.062 + 221.739i −0.641173 + 0.370181i −0.785066 0.619412i \(-0.787371\pi\)
0.143893 + 0.989593i \(0.454038\pi\)
\(600\) 0 0
\(601\) 163.594 283.354i 0.272204 0.471470i −0.697222 0.716855i \(-0.745581\pi\)
0.969426 + 0.245385i \(0.0789143\pi\)
\(602\) −94.9999 + 94.9999i −0.157807 + 0.157807i
\(603\) 0 0
\(604\) 124.519i 0.206157i
\(605\) 562.294 223.149i 0.929412 0.368841i
\(606\) 0 0
\(607\) 160.611 + 43.0356i 0.264598 + 0.0708988i 0.388679 0.921373i \(-0.372932\pi\)
−0.124081 + 0.992272i \(0.539598\pi\)
\(608\) 178.659 666.764i 0.293847 1.09665i
\(609\) 0 0
\(610\) 71.0664 164.586i 0.116502 0.269813i
\(611\) 78.9596 0.129230
\(612\) 0 0
\(613\) −60.4318 60.4318i −0.0985837 0.0985837i 0.656095 0.754678i \(-0.272207\pi\)
−0.754678 + 0.656095i \(0.772207\pi\)
\(614\) 320.746 + 185.183i 0.522387 + 0.301600i
\(615\) 0 0
\(616\) −1.39015 2.40781i −0.00225674 0.00390878i
\(617\) −392.130 105.071i −0.635544 0.170293i −0.0733596 0.997306i \(-0.523372\pi\)
−0.562184 + 0.827012i \(0.690039\pi\)
\(618\) 0 0
\(619\) −391.642 226.114i −0.632701 0.365290i 0.149097 0.988823i \(-0.452363\pi\)
−0.781797 + 0.623533i \(0.785697\pi\)
\(620\) 411.266 519.743i 0.663333 0.838295i
\(621\) 0 0
\(622\) −80.3958 + 80.3958i −0.129254 + 0.129254i
\(623\) −297.093 + 79.6058i −0.476875 + 0.127778i
\(624\) 0 0
\(625\) 521.680 + 344.201i 0.834689 + 0.550722i
\(626\) 87.6671 + 151.844i 0.140043 + 0.242562i
\(627\) 0 0
\(628\) −23.1107 + 6.19248i −0.0368004 + 0.00986064i
\(629\) 1458.64i 2.31899i
\(630\) 0 0
\(631\) −195.973 −0.310575 −0.155287 0.987869i \(-0.549630\pi\)
−0.155287 + 0.987869i \(0.549630\pi\)
\(632\) 76.1644 + 284.249i 0.120513 + 0.449761i
\(633\) 0 0
\(634\) 219.499 126.728i 0.346212 0.199886i
\(635\) 248.457 + 333.989i 0.391271 + 0.525967i
\(636\) 0 0
\(637\) −12.0103 44.8232i −0.0188545 0.0703661i
\(638\) −1.79175 1.79175i −0.00280839 0.00280839i
\(639\) 0 0
\(640\) −72.2758 620.312i −0.112931 0.969238i
\(641\) 130.750 226.466i 0.203978 0.353300i −0.745829 0.666138i \(-0.767946\pi\)
0.949807 + 0.312838i \(0.101280\pi\)
\(642\) 0 0
\(643\) −258.385 + 964.305i −0.401842 + 1.49970i 0.407963 + 0.912998i \(0.366239\pi\)
−0.809806 + 0.586698i \(0.800428\pi\)
\(644\) 87.9780 50.7941i 0.136612 0.0788729i
\(645\) 0 0
\(646\) −169.486 + 293.559i −0.262363 + 0.454426i
\(647\) −172.569 + 172.569i −0.266722 + 0.266722i −0.827778 0.561056i \(-0.810395\pi\)
0.561056 + 0.827778i \(0.310395\pi\)
\(648\) 0 0
\(649\) 9.53712i 0.0146951i
\(650\) −52.8887 15.8757i −0.0813672 0.0244242i
\(651\) 0 0
\(652\) 838.685 + 224.725i 1.28633 + 0.344670i
\(653\) 286.420 1068.93i 0.438622 1.63696i −0.293626 0.955920i \(-0.594862\pi\)
0.732248 0.681038i \(-0.238471\pi\)
\(654\) 0 0
\(655\) −1098.21 + 435.829i −1.67666 + 0.665388i
\(656\) 25.2818 0.0385394
\(657\) 0 0
\(658\) 62.8023 + 62.8023i 0.0954442 + 0.0954442i
\(659\) 373.508 + 215.645i 0.566780 + 0.327231i 0.755862 0.654731i \(-0.227218\pi\)
−0.189082 + 0.981961i \(0.560551\pi\)
\(660\) 0 0
\(661\) −252.072 436.601i −0.381349 0.660516i 0.609906 0.792473i \(-0.291207\pi\)
−0.991255 + 0.131958i \(0.957874\pi\)
\(662\) 189.245 + 50.7080i 0.285868 + 0.0765981i
\(663\) 0 0
\(664\) −464.341 268.087i −0.699308 0.403746i
\(665\) 88.6803 + 761.106i 0.133354 + 1.14452i
\(666\) 0 0
\(667\) 138.564 138.564i 0.207743 0.207743i
\(668\) 262.596 70.3624i 0.393108 0.105333i
\(669\) 0 0
\(670\) −168.734 24.7785i −0.251842 0.0369828i
\(671\) −2.64575 4.58258i −0.00394300 0.00682947i
\(672\) 0 0
\(673\) −360.737 + 96.6593i −0.536014 + 0.143624i −0.516664 0.856188i \(-0.672826\pi\)
−0.0193499 + 0.999813i \(0.506160\pi\)
\(674\) 39.1382i 0.0580686i
\(675\) 0 0
\(676\) 563.583 0.833702
\(677\) −299.983 1119.55i −0.443107 1.65370i −0.720886 0.693053i \(-0.756265\pi\)
0.277779 0.960645i \(-0.410402\pi\)
\(678\) 0 0
\(679\) 516.047 297.940i 0.760011 0.438793i
\(680\) −72.5190 + 493.832i −0.106646 + 0.726224i
\(681\) 0 0
\(682\) 0.589941 + 2.20169i 0.000865016 + 0.00322828i
\(683\) −390.999 390.999i −0.572473 0.572473i 0.360346 0.932819i \(-0.382659\pi\)
−0.932819 + 0.360346i \(0.882659\pi\)
\(684\) 0 0
\(685\) 362.555 42.2432i 0.529278 0.0616689i
\(686\) 120.313 208.389i 0.175384 0.303774i
\(687\) 0 0
\(688\) −100.959 + 376.785i −0.146743 + 0.547653i
\(689\) 205.542 118.670i 0.298320 0.172235i
\(690\) 0 0
\(691\) 206.234 357.208i 0.298457 0.516943i −0.677326 0.735683i \(-0.736861\pi\)
0.975783 + 0.218740i \(0.0701946\pi\)
\(692\) −530.318 + 530.318i −0.766355 + 0.766355i
\(693\) 0 0
\(694\) 413.855i 0.596332i
\(695\) 293.987 + 740.793i 0.423003 + 1.06589i
\(696\) 0 0
\(697\) −44.5681 11.9420i −0.0639428 0.0171334i
\(698\) −23.8771 + 89.1104i −0.0342078 + 0.127665i
\(699\) 0 0
\(700\) 252.663 + 469.409i 0.360948 + 0.670585i
\(701\) −458.287 −0.653762 −0.326881 0.945066i \(-0.605998\pi\)
−0.326881 + 0.945066i \(0.605998\pi\)
\(702\) 0 0
\(703\) −1303.27 1303.27i −1.85387 1.85387i
\(704\) −2.25757 1.30341i −0.00320677 0.00185143i
\(705\) 0 0
\(706\) −88.3648 153.052i −0.125163 0.216788i
\(707\) −104.284 27.9428i −0.147502 0.0395231i
\(708\) 0 0
\(709\) −560.267 323.470i −0.790221 0.456234i 0.0498194 0.998758i \(-0.484135\pi\)
−0.840040 + 0.542524i \(0.817469\pi\)
\(710\) 127.954 14.9085i 0.180217 0.0209980i
\(711\) 0 0
\(712\) 179.009 179.009i 0.251417 0.251417i
\(713\) −170.267 + 45.6228i −0.238803 + 0.0639871i
\(714\) 0 0
\(715\) −1.30773 + 0.972831i −0.00182899 + 0.00136060i
\(716\) −251.311 435.283i −0.350993 0.607937i
\(717\) 0 0
\(718\) 221.475 59.3439i 0.308460 0.0826517i
\(719\) 98.3936i 0.136848i −0.997656 0.0684239i \(-0.978203\pi\)
0.997656 0.0684239i \(-0.0217970\pi\)
\(720\) 0 0
\(721\) 377.317 0.523325
\(722\) −50.4910 188.435i −0.0699321 0.260990i
\(723\) 0 0
\(724\) 355.932 205.497i 0.491619 0.283836i
\(725\) 705.123 + 748.476i 0.972584 + 1.03238i
\(726\) 0 0
\(727\) −273.252 1019.79i −0.375862 1.40274i −0.852082 0.523409i \(-0.824660\pi\)
0.476220 0.879326i \(-0.342007\pi\)
\(728\) −70.4892 70.4892i −0.0968259 0.0968259i
\(729\) 0 0
\(730\) 141.060 + 111.619i 0.193233 + 0.152903i
\(731\) 355.953 616.528i 0.486939 0.843404i
\(732\) 0 0
\(733\) 29.8832 111.526i 0.0407684 0.152150i −0.942541 0.334090i \(-0.891571\pi\)
0.983310 + 0.181940i \(0.0582378\pi\)
\(734\) 132.406 76.4449i 0.180390 0.104148i
\(735\) 0 0
\(736\) −63.8621 + 110.612i −0.0867692 + 0.150289i
\(737\) −3.55945 + 3.55945i −0.00482965 + 0.00482965i
\(738\) 0 0
\(739\) 427.280i 0.578186i 0.957301 + 0.289093i \(0.0933537\pi\)
−0.957301 + 0.289093i \(0.906646\pi\)
\(740\) −1177.21 508.306i −1.59082 0.686900i
\(741\) 0 0
\(742\) 257.869 + 69.0959i 0.347533 + 0.0931212i
\(743\) 88.4669 330.163i 0.119067 0.444365i −0.880492 0.474061i \(-0.842787\pi\)
0.999559 + 0.0296967i \(0.00945413\pi\)
\(744\) 0 0
\(745\) −153.834 387.634i −0.206489 0.520315i
\(746\) −152.293 −0.204146
\(747\) 0 0
\(748\) 4.92197 + 4.92197i 0.00658017 + 0.00658017i
\(749\) −1097.95 633.904i −1.46589 0.846334i
\(750\) 0 0
\(751\) 521.702 + 903.615i 0.694677 + 1.20322i 0.970290 + 0.241947i \(0.0777859\pi\)
−0.275613 + 0.961269i \(0.588881\pi\)
\(752\) 249.084 + 66.7418i 0.331229 + 0.0887524i
\(753\) 0 0
\(754\) −78.6810 45.4265i −0.104352 0.0602474i
\(755\) −136.280 107.837i −0.180503 0.142830i
\(756\) 0 0
\(757\) 641.252 641.252i 0.847097 0.847097i −0.142673 0.989770i \(-0.545570\pi\)
0.989770 + 0.142673i \(0.0455698\pi\)
\(758\) −71.9254 + 19.2723i −0.0948884 + 0.0254253i
\(759\) 0 0
\(760\) −376.437 506.026i −0.495312 0.665824i
\(761\) 307.586 + 532.754i 0.404186 + 0.700071i 0.994226 0.107303i \(-0.0342214\pi\)
−0.590040 + 0.807374i \(0.700888\pi\)
\(762\) 0 0
\(763\) 727.249 194.866i 0.953144 0.255394i
\(764\) 921.046i 1.20556i
\(765\) 0 0
\(766\) −312.726 −0.408258
\(767\) −88.5033 330.299i −0.115389 0.430637i
\(768\) 0 0
\(769\) 217.822 125.759i 0.283253 0.163536i −0.351642 0.936135i \(-0.614377\pi\)
0.634895 + 0.772598i \(0.281043\pi\)
\(770\) −1.81389 0.266369i −0.00235571 0.000345934i
\(771\) 0 0
\(772\) −115.748 431.977i −0.149932 0.559555i
\(773\) −364.839 364.839i −0.471978 0.471978i 0.430576 0.902554i \(-0.358310\pi\)
−0.902554 + 0.430576i \(0.858310\pi\)
\(774\) 0 0
\(775\) −212.666 900.221i −0.274408 1.16158i
\(776\) −245.228 + 424.748i −0.316016 + 0.547355i
\(777\) 0 0
\(778\) −55.9414 + 208.776i −0.0719042 + 0.268350i
\(779\) 50.4909 29.1509i 0.0648150 0.0374210i
\(780\) 0 0
\(781\) 1.90114 3.29287i 0.00243424 0.00421622i
\(782\) 44.3501 44.3501i 0.0567137 0.0567137i
\(783\) 0 0
\(784\) 151.550i 0.193304i
\(785\) −13.2371 + 30.6563i −0.0168625 + 0.0390526i
\(786\) 0 0
\(787\) −908.273 243.371i −1.15410 0.309239i −0.369490 0.929235i \(-0.620468\pi\)
−0.784605 + 0.619996i \(0.787134\pi\)
\(788\) 58.6049 218.716i 0.0743717 0.277559i
\(789\) 0 0
\(790\) 178.150 + 76.9231i 0.225506 + 0.0973710i
\(791\) 1117.50 1.41277
\(792\) 0 0
\(793\) −134.156 134.156i −0.169175 0.169175i
\(794\) −371.884 214.707i −0.468367 0.270412i
\(795\) 0 0
\(796\) −533.739 924.462i −0.670526 1.16138i
\(797\) −1123.49 301.039i −1.40965 0.377716i −0.527852 0.849336i \(-0.677003\pi\)
−0.881802 + 0.471621i \(0.843669\pi\)
\(798\) 0 0
\(799\) −407.573 235.312i −0.510103 0.294508i
\(800\) −570.195 352.274i −0.712744 0.440342i
\(801\) 0 0
\(802\) −86.4720 + 86.4720i −0.107820 + 0.107820i
\(803\) 5.12848 1.37417i 0.00638665 0.00171130i
\(804\) 0 0
\(805\) 20.5995 140.277i 0.0255895 0.174257i
\(806\) 40.8628 + 70.7765i 0.0506983 + 0.0878120i
\(807\) 0 0
\(808\) 85.8340 22.9992i 0.106230 0.0284643i
\(809\) 753.586i 0.931504i 0.884915 + 0.465752i \(0.154216\pi\)
−0.884915 + 0.465752i \(0.845784\pi\)
\(810\) 0 0
\(811\) 568.270 0.700703 0.350352 0.936618i \(-0.386062\pi\)
0.350352 + 0.936618i \(0.386062\pi\)
\(812\) 227.007 + 847.200i 0.279565 + 1.04335i
\(813\) 0 0
\(814\) 3.81903 2.20492i 0.00469168 0.00270874i
\(815\) 972.273 723.281i 1.19297 0.887462i
\(816\) 0 0
\(817\) 232.820 + 868.896i 0.284969 + 1.06352i
\(818\) 195.222 + 195.222i 0.238657 + 0.238657i
\(819\) 0 0
\(820\) 25.1689 31.8076i 0.0306938 0.0387897i
\(821\) −298.755 + 517.458i −0.363891 + 0.630278i −0.988598 0.150582i \(-0.951885\pi\)
0.624706 + 0.780860i \(0.285219\pi\)
\(822\) 0 0
\(823\) −24.1596 + 90.1649i −0.0293555 + 0.109556i −0.979049 0.203624i \(-0.934728\pi\)
0.949694 + 0.313181i \(0.101395\pi\)
\(824\) −268.955 + 155.281i −0.326401 + 0.188448i
\(825\) 0 0
\(826\) 192.317 333.104i 0.232830 0.403273i
\(827\) −7.50861 + 7.50861i −0.00907934 + 0.00907934i −0.711632 0.702553i \(-0.752044\pi\)
0.702553 + 0.711632i \(0.252044\pi\)
\(828\) 0 0
\(829\) 161.036i 0.194254i −0.995272 0.0971269i \(-0.969035\pi\)
0.995272 0.0971269i \(-0.0309653\pi\)
\(830\) −328.625 + 130.416i −0.395933 + 0.157128i
\(831\) 0 0
\(832\) −90.2819 24.1910i −0.108512 0.0290757i
\(833\) −71.5854 + 267.160i −0.0859369 + 0.320721i
\(834\) 0 0
\(835\) 150.407 348.334i 0.180128 0.417166i
\(836\) −8.79541 −0.0105208
\(837\) 0 0
\(838\) −245.986 245.986i −0.293539 0.293539i
\(839\) 80.9864 + 46.7575i 0.0965272 + 0.0557300i 0.547487 0.836814i \(-0.315585\pi\)
−0.450959 + 0.892545i \(0.648918\pi\)
\(840\) 0 0
\(841\) 425.432 + 736.870i 0.505864 + 0.876183i
\(842\) −246.507 66.0514i −0.292764 0.0784459i
\(843\) 0 0
\(844\) 421.869 + 243.566i 0.499845 + 0.288586i
\(845\) 488.077 616.813i 0.577606 0.729957i
\(846\) 0 0
\(847\) 509.216 509.216i 0.601199 0.601199i
\(848\) 748.706 200.615i 0.882908 0.236575i
\(849\) 0 0
\(850\) 225.688 + 239.564i 0.265515 + 0.281840i
\(851\) 170.516 + 295.343i 0.200372 + 0.347054i
\(852\) 0 0
\(853\) 151.946 40.7138i 0.178131 0.0477301i −0.168651 0.985676i \(-0.553941\pi\)
0.346782 + 0.937946i \(0.387274\pi\)
\(854\) 213.408i 0.249892i
\(855\) 0 0
\(856\) 1043.51 1.21905
\(857\) 26.8424 + 100.177i 0.0313214 + 0.116893i 0.979817 0.199898i \(-0.0640612\pi\)
−0.948495 + 0.316791i \(0.897395\pi\)
\(858\) 0 0
\(859\) 431.090 248.890i 0.501851 0.289744i −0.227626 0.973749i \(-0.573096\pi\)
0.729478 + 0.684004i \(0.239763\pi\)
\(860\) 373.532 + 502.122i 0.434340 + 0.583862i
\(861\) 0 0
\(862\) 10.0481 + 37.5000i 0.0116567 + 0.0435035i
\(863\) 597.165 + 597.165i 0.691965 + 0.691965i 0.962664 0.270699i \(-0.0872549\pi\)
−0.270699 + 0.962664i \(0.587255\pi\)
\(864\) 0 0
\(865\) 121.138 + 1039.67i 0.140044 + 1.20194i
\(866\) 87.9499 152.334i 0.101559 0.175905i
\(867\) 0 0
\(868\) 204.201 762.088i 0.235254 0.877982i
\(869\) 4.96023 2.86379i 0.00570798 0.00329550i
\(870\) 0 0
\(871\) −90.2432 + 156.306i −0.103609 + 0.179456i
\(872\) −438.193 + 438.193i −0.502515 + 0.502515i
\(873\) 0 0
\(874\) 79.2523i 0.0906777i
\(875\) 732.558 + 129.993i 0.837209 + 0.148563i
\(876\) 0 0
\(877\) 860.660 + 230.613i 0.981368 + 0.262957i 0.713621 0.700532i \(-0.247054\pi\)
0.267748 + 0.963489i \(0.413721\pi\)
\(878\) 48.8840 182.438i 0.0556765 0.207788i
\(879\) 0 0
\(880\) −4.94763 + 1.96349i −0.00562230 + 0.00223123i
\(881\) 1619.10 1.83780 0.918902 0.394487i \(-0.129078\pi\)
0.918902 + 0.394487i \(0.129078\pi\)
\(882\) 0 0
\(883\) 881.301 + 881.301i 0.998076 + 0.998076i 0.999998 0.00192213i \(-0.000611833\pi\)
−0.00192213 + 0.999998i \(0.500612\pi\)
\(884\) 216.138 + 124.787i 0.244500 + 0.141162i
\(885\) 0 0
\(886\) 122.158 + 211.584i 0.137876 + 0.238808i
\(887\) −353.303 94.6674i −0.398313 0.106728i 0.0541016 0.998535i \(-0.482771\pi\)
−0.452414 + 0.891808i \(0.649437\pi\)
\(888\) 0 0
\(889\) 429.140 + 247.764i 0.482722 + 0.278700i
\(890\) −19.3196 165.812i −0.0217074 0.186305i
\(891\) 0 0
\(892\) −573.459 + 573.459i −0.642891 + 0.642891i
\(893\) 574.407 153.912i 0.643233 0.172354i
\(894\) 0 0
\(895\) −694.037 101.919i −0.775460 0.113876i
\(896\) −371.709 643.818i −0.414853 0.718547i
\(897\) 0 0
\(898\) −63.2485 + 16.9474i −0.0704327 + 0.0188724i
\(899\) 1521.89i 1.69287i
\(900\) 0 0
\(901\) −1414.62 −1.57006
\(902\) 0.0361036 + 0.134740i 4.00262e−5 + 0.000149380i
\(903\) 0 0
\(904\) −796.561 + 459.895i −0.881152 + 0.508733i
\(905\) 83.3393 567.516i 0.0920877 0.627089i
\(906\) 0 0
\(907\) −27.7508 103.567i −0.0305963 0.114187i 0.948939 0.315460i \(-0.102159\pi\)
−0.979535 + 0.201273i \(0.935492\pi\)
\(908\) −181.445 181.445i −0.199829 0.199829i
\(909\) 0 0
\(910\) −65.2924 + 7.60756i −0.0717499 + 0.00835995i
\(911\) −422.343 + 731.520i −0.463604 + 0.802985i −0.999137 0.0415286i \(-0.986777\pi\)
0.535533 + 0.844514i \(0.320111\pi\)
\(912\) 0 0
\(913\) −2.70096 + 10.0801i −0.00295834 + 0.0110407i
\(914\) −348.557 + 201.240i −0.381354 + 0.220175i
\(915\) 0 0
\(916\) −63.8947 + 110.669i −0.0697540 + 0.120818i
\(917\) −994.544 + 994.544i −1.08456 + 1.08456i
\(918\) 0 0
\(919\) 298.720i 0.325049i 0.986704 + 0.162525i \(0.0519637\pi\)
−0.986704 + 0.162525i \(0.948036\pi\)
\(920\) 43.0459 + 108.468i 0.0467890 + 0.117900i
\(921\) 0 0
\(922\) −364.126 97.5673i −0.394931 0.105821i
\(923\) 35.2847 131.684i 0.0382283 0.142670i
\(924\) 0 0
\(925\) −1575.81 + 848.192i −1.70358 + 0.916965i
\(926\) −74.7559 −0.0807299
\(927\) 0 0
\(928\) −779.753 779.753i −0.840251 0.840251i
\(929\) 959.561 + 554.003i 1.03290 + 0.596343i 0.917813 0.397012i \(-0.129953\pi\)
0.115084 + 0.993356i \(0.463286\pi\)
\(930\) 0 0
\(931\) −174.743 302.664i −0.187694 0.325096i
\(932\) 935.231 + 250.594i 1.00347 + 0.268878i
\(933\) 0 0
\(934\) 115.475 + 66.6697i 0.123635 + 0.0713808i
\(935\) 9.64940 1.12430i 0.0103202 0.00120246i
\(936\) 0 0
\(937\) −895.973 + 895.973i −0.956214 + 0.956214i −0.999081 0.0428666i \(-0.986351\pi\)
0.0428666 + 0.999081i \(0.486351\pi\)
\(938\) −196.098 + 52.5443i −0.209060 + 0.0560174i
\(939\) 0 0
\(940\) 331.941 246.934i 0.353129 0.262695i
\(941\) 647.160 + 1120.91i 0.687737 + 1.19119i 0.972568 + 0.232617i \(0.0747290\pi\)
−0.284832 + 0.958578i \(0.591938\pi\)
\(942\) 0 0
\(943\) −10.4201 + 2.79205i −0.0110499 + 0.00296082i
\(944\) 1116.76i 1.18301i
\(945\) 0 0
\(946\) −2.15226 −0.00227512
\(947\) 57.4999 + 214.593i 0.0607179 + 0.226602i 0.989617 0.143731i \(-0.0459100\pi\)
−0.928899 + 0.370334i \(0.879243\pi\)
\(948\) 0 0
\(949\) 164.862 95.1833i 0.173722 0.100299i
\(950\) −415.695 12.3977i −0.437574 0.0130502i
\(951\) 0 0
\(952\) 153.781 + 573.919i 0.161535 + 0.602856i
\(953\) 342.541 + 342.541i 0.359435 + 0.359435i 0.863605 0.504170i \(-0.168201\pi\)
−0.504170 + 0.863605i \(0.668201\pi\)
\(954\) 0 0
\(955\) 1008.04 + 797.650i 1.05554 + 0.835235i
\(956\) 621.545 1076.55i 0.650152 1.12610i
\(957\) 0 0
\(958\) −62.9005 + 234.748i −0.0656581 + 0.245039i
\(959\) 376.294 217.253i 0.392382 0.226542i
\(960\) 0 0
\(961\) −204.000 + 353.338i −0.212279 + 0.367678i
\(962\) 111.803 111.803i 0.116219 0.116219i
\(963\) 0 0
\(964\) 51.1901i 0.0531018i
\(965\) −573.017 247.422i −0.593801 0.256396i
\(966\) 0 0
\(967\) −1133.35 303.679i −1.17202 0.314043i −0.380266 0.924877i \(-0.624167\pi\)
−0.791758 + 0.610834i \(0.790834\pi\)
\(968\) −153.410 + 572.535i −0.158482 + 0.591462i
\(969\) 0 0
\(970\) 119.296 + 300.604i 0.122985 + 0.309901i
\(971\) −1454.35 −1.49779 −0.748894 0.662690i \(-0.769415\pi\)
−0.748894 + 0.662690i \(0.769415\pi\)
\(972\) 0 0
\(973\) 670.866 + 670.866i 0.689482 + 0.689482i
\(974\) −318.646 183.970i −0.327152 0.188881i
\(975\) 0 0
\(976\) −309.808 536.602i −0.317426 0.549798i
\(977\) 23.1393 + 6.20014i 0.0236840 + 0.00634610i 0.270642 0.962680i \(-0.412764\pi\)
−0.246958 + 0.969026i \(0.579431\pi\)
\(978\) 0 0
\(979\) −4.26714 2.46363i −0.00435867 0.00251648i
\(980\) −190.668 150.873i −0.194559 0.153952i
\(981\) 0 0
\(982\) −159.539 + 159.539i −0.162463 + 0.162463i
\(983\) 405.117 108.551i 0.412123 0.110428i −0.0467995 0.998904i \(-0.514902\pi\)
0.458923 + 0.888476i \(0.348236\pi\)
\(984\) 0 0
\(985\) −188.621 253.554i −0.191493 0.257415i
\(986\) 270.756 + 468.964i 0.274601 + 0.475622i
\(987\) 0 0
\(988\) −304.611 + 81.6203i −0.308311 + 0.0826117i
\(989\) 166.444i 0.168296i
\(990\) 0 0
\(991\) −632.405 −0.638148 −0.319074 0.947730i \(-0.603372\pi\)
−0.319074 + 0.947730i \(0.603372\pi\)
\(992\) 256.736 + 958.153i 0.258807 + 0.965880i
\(993\) 0 0
\(994\) 132.802 76.6735i 0.133604 0.0771363i
\(995\) −1474.01 216.457i −1.48142 0.217545i
\(996\) 0 0
\(997\) 225.847 + 842.872i 0.226527 + 0.845409i 0.981787 + 0.189984i \(0.0608436\pi\)
−0.755261 + 0.655425i \(0.772490\pi\)
\(998\) −244.128 244.128i −0.244617 0.244617i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.l.e.298.2 8
3.2 odd 2 405.3.l.i.298.1 8
5.2 odd 4 405.3.l.i.217.1 8
9.2 odd 6 405.3.g.d.163.2 yes 8
9.4 even 3 405.3.l.i.28.1 8
9.5 odd 6 inner 405.3.l.e.28.2 8
9.7 even 3 405.3.g.d.163.3 yes 8
15.2 even 4 inner 405.3.l.e.217.2 8
45.2 even 12 405.3.g.d.82.2 8
45.7 odd 12 405.3.g.d.82.3 yes 8
45.22 odd 12 inner 405.3.l.e.352.2 8
45.32 even 12 405.3.l.i.352.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.g.d.82.2 8 45.2 even 12
405.3.g.d.82.3 yes 8 45.7 odd 12
405.3.g.d.163.2 yes 8 9.2 odd 6
405.3.g.d.163.3 yes 8 9.7 even 3
405.3.l.e.28.2 8 9.5 odd 6 inner
405.3.l.e.217.2 8 15.2 even 4 inner
405.3.l.e.298.2 8 1.1 even 1 trivial
405.3.l.e.352.2 8 45.22 odd 12 inner
405.3.l.i.28.1 8 9.4 even 3
405.3.l.i.217.1 8 5.2 odd 4
405.3.l.i.298.1 8 3.2 odd 2
405.3.l.i.352.1 8 45.32 even 12