Properties

Label 405.3.h.k.269.17
Level $405$
Weight $3$
Character 405.269
Analytic conductor $11.035$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(134,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.134"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-48,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.17
Character \(\chi\) \(=\) 405.269
Dual form 405.3.h.k.134.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.06375 - 1.84247i) q^{2} +(-0.263128 - 0.455750i) q^{4} +(-4.48298 - 2.21424i) q^{5} +(-1.01789 - 0.587680i) q^{7} +7.39039 q^{8} +(-8.84844 + 5.90436i) q^{10} +(-16.6268 - 9.59948i) q^{11} +(-6.82763 + 3.94194i) q^{13} +(-2.16556 + 1.25029i) q^{14} +(8.91404 - 15.4396i) q^{16} +2.17700 q^{17} -19.9576 q^{19} +(0.170456 + 2.62575i) q^{20} +(-35.3735 + 20.4229i) q^{22} +(-16.6281 - 28.8008i) q^{23} +(15.1943 + 19.8528i) q^{25} +16.7729i q^{26} +0.618539i q^{28} +(-14.6152 - 8.43812i) q^{29} +(-2.27644 - 3.94291i) q^{31} +(-4.18383 - 7.24661i) q^{32} +(2.31579 - 4.01106i) q^{34} +(3.26193 + 4.88841i) q^{35} +50.3038i q^{37} +(-21.2299 + 36.7713i) q^{38} +(-33.1310 - 16.3641i) q^{40} +(-16.3362 + 9.43171i) q^{41} +(-43.8953 - 25.3430i) q^{43} +10.1036i q^{44} -70.7527 q^{46} +(-5.42949 + 9.40415i) q^{47} +(-23.8093 - 41.2389i) q^{49} +(52.7411 - 6.87660i) q^{50} +(3.59308 + 2.07446i) q^{52} +86.1924 q^{53} +(53.2821 + 79.8500i) q^{55} +(-7.52261 - 4.34318i) q^{56} +(-31.0939 + 17.9521i) q^{58} +(83.5848 - 48.2577i) q^{59} +(-20.8160 + 36.0544i) q^{61} -9.68626 q^{62} +53.5101 q^{64} +(39.3366 - 2.55362i) q^{65} +(58.6786 - 33.8781i) q^{67} +(-0.572829 - 0.992169i) q^{68} +(12.4766 - 0.809948i) q^{70} -49.6797i q^{71} -106.022i q^{73} +(92.6832 + 53.5107i) q^{74} +(5.25140 + 9.09570i) q^{76} +(11.2828 + 19.5425i) q^{77} +(-22.0052 + 38.1142i) q^{79} +(-74.1484 + 49.4775i) q^{80} +40.1319i q^{82} +(-44.5432 + 77.1510i) q^{83} +(-9.75946 - 4.82040i) q^{85} +(-93.3872 + 53.9171i) q^{86} +(-122.878 - 70.9439i) q^{88} +19.9472i q^{89} +9.26638 q^{91} +(-8.75065 + 15.1566i) q^{92} +(11.5512 + 20.0073i) q^{94} +(89.4698 + 44.1910i) q^{95} +(133.934 + 77.3270i) q^{97} -101.308 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} + 24 q^{10} - 96 q^{16} - 48 q^{25} - 144 q^{34} - 72 q^{40} - 336 q^{46} + 288 q^{49} - 264 q^{55} + 360 q^{61} - 144 q^{64} + 156 q^{70} - 48 q^{76} + 480 q^{79} + 456 q^{85} - 96 q^{91}+ \cdots - 384 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.06375 1.84247i 0.531875 0.921234i −0.467433 0.884029i \(-0.654821\pi\)
0.999308 0.0372057i \(-0.0118457\pi\)
\(3\) 0 0
\(4\) −0.263128 0.455750i −0.0657819 0.113938i
\(5\) −4.48298 2.21424i −0.896597 0.442848i
\(6\) 0 0
\(7\) −1.01789 0.587680i −0.145413 0.0839542i 0.425528 0.904945i \(-0.360088\pi\)
−0.570941 + 0.820991i \(0.693422\pi\)
\(8\) 7.39039 0.923799
\(9\) 0 0
\(10\) −8.84844 + 5.90436i −0.884844 + 0.590436i
\(11\) −16.6268 9.59948i −1.51153 0.872680i −0.999909 0.0134667i \(-0.995713\pi\)
−0.511617 0.859214i \(-0.670953\pi\)
\(12\) 0 0
\(13\) −6.82763 + 3.94194i −0.525203 + 0.303226i −0.739061 0.673639i \(-0.764730\pi\)
0.213858 + 0.976865i \(0.431397\pi\)
\(14\) −2.16556 + 1.25029i −0.154683 + 0.0893063i
\(15\) 0 0
\(16\) 8.91404 15.4396i 0.557127 0.964973i
\(17\) 2.17700 0.128059 0.0640295 0.997948i \(-0.479605\pi\)
0.0640295 + 0.997948i \(0.479605\pi\)
\(18\) 0 0
\(19\) −19.9576 −1.05040 −0.525201 0.850978i \(-0.676010\pi\)
−0.525201 + 0.850978i \(0.676010\pi\)
\(20\) 0.170456 + 2.62575i 0.00852282 + 0.131287i
\(21\) 0 0
\(22\) −35.3735 + 20.4229i −1.60789 + 0.928313i
\(23\) −16.6281 28.8008i −0.722963 1.25221i −0.959807 0.280661i \(-0.909446\pi\)
0.236844 0.971548i \(-0.423887\pi\)
\(24\) 0 0
\(25\) 15.1943 + 19.8528i 0.607772 + 0.794112i
\(26\) 16.7729i 0.645113i
\(27\) 0 0
\(28\) 0.618539i 0.0220907i
\(29\) −14.6152 8.43812i −0.503974 0.290969i 0.226379 0.974039i \(-0.427311\pi\)
−0.730353 + 0.683070i \(0.760644\pi\)
\(30\) 0 0
\(31\) −2.27644 3.94291i −0.0734336 0.127191i 0.826970 0.562245i \(-0.190062\pi\)
−0.900404 + 0.435055i \(0.856729\pi\)
\(32\) −4.18383 7.24661i −0.130745 0.226456i
\(33\) 0 0
\(34\) 2.31579 4.01106i 0.0681113 0.117972i
\(35\) 3.26193 + 4.88841i 0.0931979 + 0.139669i
\(36\) 0 0
\(37\) 50.3038i 1.35956i 0.733415 + 0.679781i \(0.237925\pi\)
−0.733415 + 0.679781i \(0.762075\pi\)
\(38\) −21.2299 + 36.7713i −0.558682 + 0.967666i
\(39\) 0 0
\(40\) −33.1310 16.3641i −0.828275 0.409102i
\(41\) −16.3362 + 9.43171i −0.398444 + 0.230042i −0.685812 0.727778i \(-0.740553\pi\)
0.287368 + 0.957820i \(0.407220\pi\)
\(42\) 0 0
\(43\) −43.8953 25.3430i −1.02082 0.589371i −0.106479 0.994315i \(-0.533958\pi\)
−0.914342 + 0.404944i \(0.867291\pi\)
\(44\) 10.1036i 0.229626i
\(45\) 0 0
\(46\) −70.7527 −1.53810
\(47\) −5.42949 + 9.40415i −0.115521 + 0.200088i −0.917988 0.396608i \(-0.870187\pi\)
0.802467 + 0.596697i \(0.203520\pi\)
\(48\) 0 0
\(49\) −23.8093 41.2389i −0.485903 0.841609i
\(50\) 52.7411 6.87660i 1.05482 0.137532i
\(51\) 0 0
\(52\) 3.59308 + 2.07446i 0.0690976 + 0.0398935i
\(53\) 86.1924 1.62627 0.813136 0.582073i \(-0.197758\pi\)
0.813136 + 0.582073i \(0.197758\pi\)
\(54\) 0 0
\(55\) 53.2821 + 79.8500i 0.968765 + 1.45182i
\(56\) −7.52261 4.34318i −0.134332 0.0775568i
\(57\) 0 0
\(58\) −31.0939 + 17.9521i −0.536102 + 0.309519i
\(59\) 83.5848 48.2577i 1.41669 0.817927i 0.420685 0.907207i \(-0.361790\pi\)
0.996007 + 0.0892792i \(0.0284564\pi\)
\(60\) 0 0
\(61\) −20.8160 + 36.0544i −0.341246 + 0.591056i −0.984664 0.174459i \(-0.944182\pi\)
0.643418 + 0.765515i \(0.277516\pi\)
\(62\) −9.68626 −0.156230
\(63\) 0 0
\(64\) 53.5101 0.836095
\(65\) 39.3366 2.55362i 0.605178 0.0392865i
\(66\) 0 0
\(67\) 58.6786 33.8781i 0.875800 0.505643i 0.00652877 0.999979i \(-0.497922\pi\)
0.869271 + 0.494335i \(0.164588\pi\)
\(68\) −0.572829 0.992169i −0.00842396 0.0145907i
\(69\) 0 0
\(70\) 12.4766 0.809948i 0.178237 0.0115707i
\(71\) 49.6797i 0.699714i −0.936803 0.349857i \(-0.886230\pi\)
0.936803 0.349857i \(-0.113770\pi\)
\(72\) 0 0
\(73\) 106.022i 1.45235i −0.687510 0.726175i \(-0.741296\pi\)
0.687510 0.726175i \(-0.258704\pi\)
\(74\) 92.6832 + 53.5107i 1.25248 + 0.723117i
\(75\) 0 0
\(76\) 5.25140 + 9.09570i 0.0690974 + 0.119680i
\(77\) 11.2828 + 19.5425i 0.146530 + 0.253798i
\(78\) 0 0
\(79\) −22.0052 + 38.1142i −0.278547 + 0.482458i −0.971024 0.238982i \(-0.923186\pi\)
0.692477 + 0.721440i \(0.256520\pi\)
\(80\) −74.1484 + 49.4775i −0.926855 + 0.618469i
\(81\) 0 0
\(82\) 40.1319i 0.489414i
\(83\) −44.5432 + 77.1510i −0.536665 + 0.929530i 0.462416 + 0.886663i \(0.346983\pi\)
−0.999081 + 0.0428674i \(0.986351\pi\)
\(84\) 0 0
\(85\) −9.75946 4.82040i −0.114817 0.0567106i
\(86\) −93.3872 + 53.9171i −1.08590 + 0.626943i
\(87\) 0 0
\(88\) −122.878 70.9439i −1.39635 0.806181i
\(89\) 19.9472i 0.224125i 0.993701 + 0.112063i \(0.0357457\pi\)
−0.993701 + 0.112063i \(0.964254\pi\)
\(90\) 0 0
\(91\) 9.26638 0.101828
\(92\) −8.75065 + 15.1566i −0.0951157 + 0.164745i
\(93\) 0 0
\(94\) 11.5512 + 20.0073i 0.122885 + 0.212844i
\(95\) 89.4698 + 44.1910i 0.941787 + 0.465168i
\(96\) 0 0
\(97\) 133.934 + 77.3270i 1.38077 + 0.797185i 0.992250 0.124257i \(-0.0396548\pi\)
0.388515 + 0.921442i \(0.372988\pi\)
\(98\) −101.308 −1.03376
\(99\) 0 0
\(100\) 5.04988 12.1486i 0.0504988 0.121486i
\(101\) −156.087 90.1170i −1.54542 0.892248i −0.998482 0.0550733i \(-0.982461\pi\)
−0.546936 0.837174i \(-0.684206\pi\)
\(102\) 0 0
\(103\) 108.983 62.9212i 1.05808 0.610885i 0.133183 0.991092i \(-0.457480\pi\)
0.924902 + 0.380206i \(0.124147\pi\)
\(104\) −50.4589 + 29.1324i −0.485182 + 0.280120i
\(105\) 0 0
\(106\) 91.6872 158.807i 0.864974 1.49818i
\(107\) 4.04617 0.0378147 0.0189074 0.999821i \(-0.493981\pi\)
0.0189074 + 0.999821i \(0.493981\pi\)
\(108\) 0 0
\(109\) 13.9374 0.127866 0.0639332 0.997954i \(-0.479636\pi\)
0.0639332 + 0.997954i \(0.479636\pi\)
\(110\) 203.800 13.2301i 1.85273 0.120274i
\(111\) 0 0
\(112\) −18.1470 + 10.4772i −0.162027 + 0.0935464i
\(113\) −56.3045 97.5222i −0.498270 0.863029i 0.501728 0.865025i \(-0.332698\pi\)
−0.999998 + 0.00199662i \(0.999364\pi\)
\(114\) 0 0
\(115\) 10.7719 + 165.932i 0.0936684 + 1.44289i
\(116\) 8.88120i 0.0765621i
\(117\) 0 0
\(118\) 205.337i 1.74014i
\(119\) −2.21595 1.27938i −0.0186214 0.0107511i
\(120\) 0 0
\(121\) 123.800 + 214.428i 1.02314 + 1.77213i
\(122\) 44.2861 + 76.7057i 0.363001 + 0.628736i
\(123\) 0 0
\(124\) −1.19799 + 2.07498i −0.00966121 + 0.0167337i
\(125\) −24.1569 122.644i −0.193255 0.981148i
\(126\) 0 0
\(127\) 141.781i 1.11638i −0.829712 0.558191i \(-0.811495\pi\)
0.829712 0.558191i \(-0.188505\pi\)
\(128\) 73.6567 127.577i 0.575443 0.996696i
\(129\) 0 0
\(130\) 37.1393 75.1928i 0.285687 0.578406i
\(131\) −135.223 + 78.0713i −1.03224 + 0.595964i −0.917625 0.397446i \(-0.869897\pi\)
−0.114614 + 0.993410i \(0.536563\pi\)
\(132\) 0 0
\(133\) 20.3147 + 11.7287i 0.152742 + 0.0881857i
\(134\) 144.151i 1.07576i
\(135\) 0 0
\(136\) 16.0889 0.118301
\(137\) 120.913 209.428i 0.882580 1.52867i 0.0341175 0.999418i \(-0.489138\pi\)
0.848462 0.529256i \(-0.177529\pi\)
\(138\) 0 0
\(139\) 53.2807 + 92.2849i 0.383314 + 0.663920i 0.991534 0.129849i \(-0.0414493\pi\)
−0.608219 + 0.793769i \(0.708116\pi\)
\(140\) 1.36959 2.77290i 0.00978281 0.0198064i
\(141\) 0 0
\(142\) −91.5333 52.8468i −0.644601 0.372160i
\(143\) 151.362 1.05848
\(144\) 0 0
\(145\) 46.8359 + 70.1896i 0.323006 + 0.484066i
\(146\) −195.341 112.780i −1.33796 0.772469i
\(147\) 0 0
\(148\) 22.9260 13.2363i 0.154905 0.0894346i
\(149\) −90.9819 + 52.5284i −0.610617 + 0.352540i −0.773207 0.634154i \(-0.781349\pi\)
0.162590 + 0.986694i \(0.448015\pi\)
\(150\) 0 0
\(151\) 96.4725 167.095i 0.638890 1.10659i −0.346786 0.937944i \(-0.612727\pi\)
0.985677 0.168647i \(-0.0539396\pi\)
\(152\) −147.495 −0.970360
\(153\) 0 0
\(154\) 48.0085 0.311743
\(155\) 1.47470 + 22.7166i 0.00951420 + 0.146559i
\(156\) 0 0
\(157\) 172.043 99.3293i 1.09582 0.632671i 0.160698 0.987004i \(-0.448625\pi\)
0.935119 + 0.354333i \(0.115292\pi\)
\(158\) 46.8161 + 81.0879i 0.296305 + 0.513215i
\(159\) 0 0
\(160\) 2.71032 + 41.7504i 0.0169395 + 0.260940i
\(161\) 39.0881i 0.242783i
\(162\) 0 0
\(163\) 76.4333i 0.468916i −0.972126 0.234458i \(-0.924668\pi\)
0.972126 0.234458i \(-0.0753316\pi\)
\(164\) 8.59701 + 4.96348i 0.0524208 + 0.0302651i
\(165\) 0 0
\(166\) 94.7656 + 164.139i 0.570877 + 0.988788i
\(167\) −5.22654 9.05264i −0.0312967 0.0542074i 0.849953 0.526859i \(-0.176630\pi\)
−0.881250 + 0.472651i \(0.843297\pi\)
\(168\) 0 0
\(169\) −53.4223 + 92.5301i −0.316108 + 0.547515i
\(170\) −19.2631 + 12.8538i −0.113312 + 0.0756106i
\(171\) 0 0
\(172\) 26.6737i 0.155080i
\(173\) −55.6646 + 96.4140i −0.321761 + 0.557306i −0.980851 0.194757i \(-0.937608\pi\)
0.659091 + 0.752064i \(0.270941\pi\)
\(174\) 0 0
\(175\) −3.79905 29.1374i −0.0217088 0.166499i
\(176\) −296.424 + 171.140i −1.68423 + 0.972388i
\(177\) 0 0
\(178\) 36.7520 + 21.2188i 0.206472 + 0.119207i
\(179\) 167.070i 0.933355i 0.884428 + 0.466677i \(0.154549\pi\)
−0.884428 + 0.466677i \(0.845451\pi\)
\(180\) 0 0
\(181\) −259.240 −1.43226 −0.716131 0.697966i \(-0.754089\pi\)
−0.716131 + 0.697966i \(0.754089\pi\)
\(182\) 9.85711 17.0730i 0.0541600 0.0938078i
\(183\) 0 0
\(184\) −122.888 212.849i −0.667872 1.15679i
\(185\) 111.385 225.511i 0.602079 1.21898i
\(186\) 0 0
\(187\) −36.1966 20.8981i −0.193564 0.111754i
\(188\) 5.71459 0.0303968
\(189\) 0 0
\(190\) 176.594 117.837i 0.929442 0.620195i
\(191\) −95.6109 55.2010i −0.500581 0.289010i 0.228373 0.973574i \(-0.426660\pi\)
−0.728953 + 0.684563i \(0.759993\pi\)
\(192\) 0 0
\(193\) 9.66216 5.57845i 0.0500630 0.0289039i −0.474760 0.880116i \(-0.657465\pi\)
0.524823 + 0.851212i \(0.324132\pi\)
\(194\) 284.945 164.513i 1.46879 0.848006i
\(195\) 0 0
\(196\) −12.5297 + 21.7022i −0.0639273 + 0.110725i
\(197\) −155.209 −0.787863 −0.393932 0.919140i \(-0.628885\pi\)
−0.393932 + 0.919140i \(0.628885\pi\)
\(198\) 0 0
\(199\) 166.552 0.836945 0.418472 0.908230i \(-0.362566\pi\)
0.418472 + 0.908230i \(0.362566\pi\)
\(200\) 112.292 + 146.720i 0.561459 + 0.733600i
\(201\) 0 0
\(202\) −332.076 + 191.724i −1.64394 + 0.949128i
\(203\) 9.91782 + 17.1782i 0.0488562 + 0.0846215i
\(204\) 0 0
\(205\) 94.1190 6.10995i 0.459117 0.0298046i
\(206\) 267.730i 1.29966i
\(207\) 0 0
\(208\) 140.554i 0.675742i
\(209\) 331.831 + 191.583i 1.58771 + 0.916665i
\(210\) 0 0
\(211\) −56.2297 97.3928i −0.266492 0.461577i 0.701462 0.712707i \(-0.252531\pi\)
−0.967953 + 0.251130i \(0.919198\pi\)
\(212\) −22.6796 39.2822i −0.106979 0.185294i
\(213\) 0 0
\(214\) 4.30412 7.45495i 0.0201127 0.0348362i
\(215\) 140.667 + 210.807i 0.654263 + 0.980497i
\(216\) 0 0
\(217\) 5.35128i 0.0246603i
\(218\) 14.8259 25.6793i 0.0680089 0.117795i
\(219\) 0 0
\(220\) 22.3717 45.2941i 0.101689 0.205882i
\(221\) −14.8638 + 8.58160i −0.0672569 + 0.0388308i
\(222\) 0 0
\(223\) 60.4661 + 34.9101i 0.271148 + 0.156548i 0.629409 0.777074i \(-0.283297\pi\)
−0.358261 + 0.933621i \(0.616630\pi\)
\(224\) 9.83501i 0.0439063i
\(225\) 0 0
\(226\) −239.576 −1.06007
\(227\) −220.219 + 381.431i −0.970128 + 1.68031i −0.274973 + 0.961452i \(0.588669\pi\)
−0.695156 + 0.718859i \(0.744665\pi\)
\(228\) 0 0
\(229\) 56.3756 + 97.6454i 0.246182 + 0.426399i 0.962463 0.271412i \(-0.0874907\pi\)
−0.716281 + 0.697811i \(0.754157\pi\)
\(230\) 317.183 + 156.663i 1.37906 + 0.681146i
\(231\) 0 0
\(232\) −108.012 62.3610i −0.465571 0.268797i
\(233\) −290.682 −1.24756 −0.623781 0.781599i \(-0.714404\pi\)
−0.623781 + 0.781599i \(0.714404\pi\)
\(234\) 0 0
\(235\) 45.1633 30.1365i 0.192184 0.128240i
\(236\) −43.9869 25.3959i −0.186385 0.107610i
\(237\) 0 0
\(238\) −4.71443 + 2.72188i −0.0198085 + 0.0114365i
\(239\) 128.930 74.4376i 0.539455 0.311454i −0.205403 0.978677i \(-0.565851\pi\)
0.744858 + 0.667223i \(0.232517\pi\)
\(240\) 0 0
\(241\) −130.295 + 225.677i −0.540643 + 0.936421i 0.458225 + 0.888836i \(0.348486\pi\)
−0.998867 + 0.0475841i \(0.984848\pi\)
\(242\) 526.769 2.17673
\(243\) 0 0
\(244\) 21.9091 0.0897913
\(245\) 15.4239 + 237.593i 0.0629545 + 0.969765i
\(246\) 0 0
\(247\) 136.263 78.6717i 0.551674 0.318509i
\(248\) −16.8238 29.1397i −0.0678379 0.117499i
\(249\) 0 0
\(250\) −251.664 85.9537i −1.00666 0.343815i
\(251\) 46.8742i 0.186750i 0.995631 + 0.0933748i \(0.0297655\pi\)
−0.995631 + 0.0933748i \(0.970235\pi\)
\(252\) 0 0
\(253\) 638.486i 2.52366i
\(254\) −261.226 150.819i −1.02845 0.593776i
\(255\) 0 0
\(256\) −49.6844 86.0559i −0.194080 0.336156i
\(257\) 31.7894 + 55.0608i 0.123694 + 0.214244i 0.921222 0.389038i \(-0.127193\pi\)
−0.797528 + 0.603282i \(0.793859\pi\)
\(258\) 0 0
\(259\) 29.5625 51.2038i 0.114141 0.197698i
\(260\) −11.5143 17.2557i −0.0442859 0.0663681i
\(261\) 0 0
\(262\) 332.193i 1.26791i
\(263\) 20.7920 36.0128i 0.0790571 0.136931i −0.823786 0.566901i \(-0.808142\pi\)
0.902843 + 0.429970i \(0.141476\pi\)
\(264\) 0 0
\(265\) −386.399 190.851i −1.45811 0.720191i
\(266\) 43.2195 24.9528i 0.162479 0.0938075i
\(267\) 0 0
\(268\) −30.8799 17.8285i −0.115224 0.0665244i
\(269\) 206.293i 0.766890i 0.923564 + 0.383445i \(0.125262\pi\)
−0.923564 + 0.383445i \(0.874738\pi\)
\(270\) 0 0
\(271\) −17.1983 −0.0634625 −0.0317312 0.999496i \(-0.510102\pi\)
−0.0317312 + 0.999496i \(0.510102\pi\)
\(272\) 19.4059 33.6120i 0.0713451 0.123573i
\(273\) 0 0
\(274\) −257.243 445.559i −0.938844 1.62613i
\(275\) −62.0557 475.946i −0.225657 1.73071i
\(276\) 0 0
\(277\) 85.3215 + 49.2604i 0.308020 + 0.177835i 0.646040 0.763304i \(-0.276424\pi\)
−0.338020 + 0.941139i \(0.609757\pi\)
\(278\) 226.709 0.815501
\(279\) 0 0
\(280\) 24.1069 + 36.1273i 0.0860961 + 0.129026i
\(281\) −269.989 155.878i −0.960813 0.554726i −0.0643900 0.997925i \(-0.520510\pi\)
−0.896423 + 0.443199i \(0.853843\pi\)
\(282\) 0 0
\(283\) −362.495 + 209.287i −1.28090 + 0.739529i −0.977013 0.213178i \(-0.931618\pi\)
−0.303889 + 0.952708i \(0.598285\pi\)
\(284\) −22.6415 + 13.0721i −0.0797237 + 0.0460285i
\(285\) 0 0
\(286\) 161.011 278.880i 0.562977 0.975105i
\(287\) 22.1713 0.0772519
\(288\) 0 0
\(289\) −284.261 −0.983601
\(290\) 179.144 11.6295i 0.617737 0.0401018i
\(291\) 0 0
\(292\) −48.3194 + 27.8972i −0.165477 + 0.0955384i
\(293\) 97.2504 + 168.443i 0.331913 + 0.574889i 0.982887 0.184210i \(-0.0589728\pi\)
−0.650974 + 0.759100i \(0.725639\pi\)
\(294\) 0 0
\(295\) −481.564 + 31.2618i −1.63242 + 0.105972i
\(296\) 371.765i 1.25596i
\(297\) 0 0
\(298\) 223.508i 0.750028i
\(299\) 227.062 + 131.094i 0.759404 + 0.438442i
\(300\) 0 0
\(301\) 29.7871 + 51.5927i 0.0989604 + 0.171404i
\(302\) −205.245 355.495i −0.679620 1.17714i
\(303\) 0 0
\(304\) −177.903 + 308.137i −0.585208 + 1.01361i
\(305\) 173.151 115.540i 0.567708 0.378819i
\(306\) 0 0
\(307\) 425.006i 1.38438i −0.721714 0.692191i \(-0.756645\pi\)
0.721714 0.692191i \(-0.243355\pi\)
\(308\) 5.93765 10.2843i 0.0192781 0.0333906i
\(309\) 0 0
\(310\) 43.4234 + 21.4477i 0.140075 + 0.0691861i
\(311\) −67.5564 + 39.0037i −0.217223 + 0.125414i −0.604664 0.796481i \(-0.706693\pi\)
0.387441 + 0.921895i \(0.373359\pi\)
\(312\) 0 0
\(313\) 418.180 + 241.437i 1.33604 + 0.771363i 0.986218 0.165453i \(-0.0529086\pi\)
0.349822 + 0.936816i \(0.386242\pi\)
\(314\) 422.646i 1.34601i
\(315\) 0 0
\(316\) 23.1607 0.0732935
\(317\) 5.10864 8.84842i 0.0161156 0.0279130i −0.857855 0.513892i \(-0.828203\pi\)
0.873971 + 0.485979i \(0.161537\pi\)
\(318\) 0 0
\(319\) 162.003 + 280.598i 0.507847 + 0.879616i
\(320\) −239.885 118.484i −0.749640 0.370263i
\(321\) 0 0
\(322\) 72.0186 + 41.5800i 0.223660 + 0.129130i
\(323\) −43.4478 −0.134513
\(324\) 0 0
\(325\) −181.999 75.6527i −0.559998 0.232778i
\(326\) −140.826 81.3059i −0.431982 0.249405i
\(327\) 0 0
\(328\) −120.731 + 69.7040i −0.368082 + 0.212512i
\(329\) 11.0533 6.38160i 0.0335965 0.0193970i
\(330\) 0 0
\(331\) 316.714 548.566i 0.956841 1.65730i 0.226744 0.973954i \(-0.427192\pi\)
0.730097 0.683343i \(-0.239475\pi\)
\(332\) 46.8821 0.141211
\(333\) 0 0
\(334\) −22.2389 −0.0665836
\(335\) −338.069 + 21.9466i −1.00916 + 0.0655121i
\(336\) 0 0
\(337\) 31.6872 18.2946i 0.0940273 0.0542867i −0.452249 0.891892i \(-0.649378\pi\)
0.546276 + 0.837605i \(0.316045\pi\)
\(338\) 113.656 + 196.858i 0.336260 + 0.582420i
\(339\) 0 0
\(340\) 0.371084 + 5.71626i 0.00109142 + 0.0168125i
\(341\) 87.4107i 0.256336i
\(342\) 0 0
\(343\) 113.561i 0.331083i
\(344\) −324.403 187.294i −0.943033 0.544460i
\(345\) 0 0
\(346\) 118.426 + 205.121i 0.342273 + 0.592834i
\(347\) −31.6633 54.8425i −0.0912488 0.158048i 0.816788 0.576938i \(-0.195753\pi\)
−0.908037 + 0.418890i \(0.862419\pi\)
\(348\) 0 0
\(349\) 230.082 398.514i 0.659261 1.14187i −0.321546 0.946894i \(-0.604203\pi\)
0.980807 0.194980i \(-0.0624641\pi\)
\(350\) −57.7259 23.9952i −0.164931 0.0685578i
\(351\) 0 0
\(352\) 160.650i 0.456393i
\(353\) 138.101 239.199i 0.391222 0.677617i −0.601389 0.798957i \(-0.705386\pi\)
0.992611 + 0.121340i \(0.0387190\pi\)
\(354\) 0 0
\(355\) −110.003 + 222.713i −0.309867 + 0.627361i
\(356\) 9.09092 5.24865i 0.0255363 0.0147434i
\(357\) 0 0
\(358\) 307.822 + 177.721i 0.859838 + 0.496428i
\(359\) 226.125i 0.629874i 0.949113 + 0.314937i \(0.101983\pi\)
−0.949113 + 0.314937i \(0.898017\pi\)
\(360\) 0 0
\(361\) 37.3073 0.103344
\(362\) −275.766 + 477.641i −0.761785 + 1.31945i
\(363\) 0 0
\(364\) −2.43824 4.22316i −0.00669846 0.0116021i
\(365\) −234.757 + 475.293i −0.643170 + 1.30217i
\(366\) 0 0
\(367\) −207.053 119.542i −0.564177 0.325728i 0.190643 0.981659i \(-0.438943\pi\)
−0.754820 + 0.655931i \(0.772276\pi\)
\(368\) −592.896 −1.61113
\(369\) 0 0
\(370\) −297.012 445.110i −0.802735 1.20300i
\(371\) −87.7345 50.6535i −0.236481 0.136532i
\(372\) 0 0
\(373\) −168.280 + 97.1563i −0.451152 + 0.260473i −0.708317 0.705895i \(-0.750545\pi\)
0.257165 + 0.966368i \(0.417212\pi\)
\(374\) −77.0082 + 44.4607i −0.205904 + 0.118879i
\(375\) 0 0
\(376\) −40.1260 + 69.5003i −0.106718 + 0.184841i
\(377\) 133.050 0.352918
\(378\) 0 0
\(379\) −322.695 −0.851439 −0.425720 0.904855i \(-0.639979\pi\)
−0.425720 + 0.904855i \(0.639979\pi\)
\(380\) −3.40191 52.4037i −0.00895239 0.137905i
\(381\) 0 0
\(382\) −203.412 + 117.440i −0.532493 + 0.307435i
\(383\) −140.110 242.678i −0.365824 0.633625i 0.623084 0.782155i \(-0.285879\pi\)
−0.988908 + 0.148530i \(0.952546\pi\)
\(384\) 0 0
\(385\) −7.30913 112.591i −0.0189848 0.292445i
\(386\) 23.7363i 0.0614930i
\(387\) 0 0
\(388\) 81.3874i 0.209761i
\(389\) 103.944 + 60.0122i 0.267209 + 0.154273i 0.627618 0.778521i \(-0.284030\pi\)
−0.360410 + 0.932794i \(0.617363\pi\)
\(390\) 0 0
\(391\) −36.1995 62.6994i −0.0925818 0.160356i
\(392\) −175.960 304.771i −0.448877 0.777478i
\(393\) 0 0
\(394\) −165.104 + 285.968i −0.419045 + 0.725807i
\(395\) 183.043 122.140i 0.463400 0.309216i
\(396\) 0 0
\(397\) 335.458i 0.844983i −0.906367 0.422492i \(-0.861156\pi\)
0.906367 0.422492i \(-0.138844\pi\)
\(398\) 177.170 306.867i 0.445150 0.771022i
\(399\) 0 0
\(400\) 441.961 57.6247i 1.10490 0.144062i
\(401\) −205.718 + 118.771i −0.513013 + 0.296188i −0.734071 0.679072i \(-0.762382\pi\)
0.221058 + 0.975261i \(0.429049\pi\)
\(402\) 0 0
\(403\) 31.0854 + 17.9472i 0.0771351 + 0.0445339i
\(404\) 94.8491i 0.234775i
\(405\) 0 0
\(406\) 42.2003 0.103942
\(407\) 482.890 836.391i 1.18646 2.05501i
\(408\) 0 0
\(409\) −50.2635 87.0590i −0.122894 0.212858i 0.798014 0.602639i \(-0.205884\pi\)
−0.920908 + 0.389781i \(0.872551\pi\)
\(410\) 88.8617 179.911i 0.216736 0.438807i
\(411\) 0 0
\(412\) −57.3527 33.1126i −0.139206 0.0803704i
\(413\) −113.440 −0.274674
\(414\) 0 0
\(415\) 370.517 247.238i 0.892812 0.595753i
\(416\) 57.1313 + 32.9848i 0.137335 + 0.0792903i
\(417\) 0 0
\(418\) 705.971 407.593i 1.68893 0.975102i
\(419\) −133.287 + 76.9534i −0.318108 + 0.183660i −0.650549 0.759464i \(-0.725461\pi\)
0.332441 + 0.943124i \(0.392128\pi\)
\(420\) 0 0
\(421\) −379.328 + 657.016i −0.901018 + 1.56061i −0.0748425 + 0.997195i \(0.523845\pi\)
−0.826175 + 0.563413i \(0.809488\pi\)
\(422\) −239.258 −0.566961
\(423\) 0 0
\(424\) 636.996 1.50235
\(425\) 33.0780 + 43.2196i 0.0778306 + 0.101693i
\(426\) 0 0
\(427\) 42.3769 24.4663i 0.0992433 0.0572981i
\(428\) −1.06466 1.84404i −0.00248752 0.00430852i
\(429\) 0 0
\(430\) 538.039 34.9280i 1.25125 0.0812280i
\(431\) 682.009i 1.58239i −0.611566 0.791194i \(-0.709460\pi\)
0.611566 0.791194i \(-0.290540\pi\)
\(432\) 0 0
\(433\) 295.078i 0.681473i 0.940159 + 0.340737i \(0.110676\pi\)
−0.940159 + 0.340737i \(0.889324\pi\)
\(434\) 9.85956 + 5.69242i 0.0227179 + 0.0131162i
\(435\) 0 0
\(436\) −3.66732 6.35199i −0.00841129 0.0145688i
\(437\) 331.858 + 574.796i 0.759402 + 1.31532i
\(438\) 0 0
\(439\) 239.973 415.646i 0.546636 0.946802i −0.451866 0.892086i \(-0.649241\pi\)
0.998502 0.0547159i \(-0.0174253\pi\)
\(440\) 393.775 + 590.123i 0.894944 + 1.34119i
\(441\) 0 0
\(442\) 36.5147i 0.0826125i
\(443\) 29.6451 51.3468i 0.0669189 0.115907i −0.830625 0.556833i \(-0.812016\pi\)
0.897544 + 0.440926i \(0.145350\pi\)
\(444\) 0 0
\(445\) 44.1678 89.4228i 0.0992534 0.200950i
\(446\) 128.642 74.2713i 0.288434 0.166528i
\(447\) 0 0
\(448\) −54.4675 31.4468i −0.121579 0.0701938i
\(449\) 306.745i 0.683173i −0.939850 0.341587i \(-0.889036\pi\)
0.939850 0.341587i \(-0.110964\pi\)
\(450\) 0 0
\(451\) 362.158 0.803011
\(452\) −29.6305 + 51.3216i −0.0655543 + 0.113543i
\(453\) 0 0
\(454\) 468.516 + 811.494i 1.03197 + 1.78743i
\(455\) −41.5410 20.5180i −0.0912990 0.0450945i
\(456\) 0 0
\(457\) −301.330 173.973i −0.659365 0.380685i 0.132670 0.991160i \(-0.457645\pi\)
−0.792035 + 0.610476i \(0.790978\pi\)
\(458\) 239.878 0.523752
\(459\) 0 0
\(460\) 72.7893 48.5706i 0.158238 0.105588i
\(461\) 683.228 + 394.462i 1.48206 + 0.855665i 0.999793 0.0203616i \(-0.00648176\pi\)
0.482263 + 0.876027i \(0.339815\pi\)
\(462\) 0 0
\(463\) 232.472 134.218i 0.502100 0.289887i −0.227481 0.973783i \(-0.573049\pi\)
0.729580 + 0.683895i \(0.239715\pi\)
\(464\) −260.562 + 150.435i −0.561555 + 0.324214i
\(465\) 0 0
\(466\) −309.213 + 535.573i −0.663547 + 1.14930i
\(467\) −630.007 −1.34905 −0.674525 0.738252i \(-0.735652\pi\)
−0.674525 + 0.738252i \(0.735652\pi\)
\(468\) 0 0
\(469\) −79.6379 −0.169804
\(470\) −7.48300 115.270i −0.0159213 0.245255i
\(471\) 0 0
\(472\) 617.725 356.643i 1.30874 0.755600i
\(473\) 486.559 + 842.744i 1.02867 + 1.78170i
\(474\) 0 0
\(475\) −303.242 396.215i −0.638404 0.834137i
\(476\) 1.34656i 0.00282891i
\(477\) 0 0
\(478\) 316.732i 0.662619i
\(479\) −137.022 79.1097i −0.286059 0.165156i 0.350104 0.936711i \(-0.386146\pi\)
−0.636163 + 0.771555i \(0.719479\pi\)
\(480\) 0 0
\(481\) −198.294 343.456i −0.412254 0.714045i
\(482\) 277.202 + 480.129i 0.575109 + 0.996117i
\(483\) 0 0
\(484\) 65.1504 112.844i 0.134608 0.233149i
\(485\) −429.205 643.218i −0.884958 1.32622i
\(486\) 0 0
\(487\) 652.722i 1.34029i −0.742230 0.670145i \(-0.766232\pi\)
0.742230 0.670145i \(-0.233768\pi\)
\(488\) −153.839 + 266.456i −0.315243 + 0.546017i
\(489\) 0 0
\(490\) 454.164 + 224.321i 0.926865 + 0.457798i
\(491\) 539.030 311.209i 1.09782 0.633827i 0.162173 0.986762i \(-0.448150\pi\)
0.935648 + 0.352935i \(0.114816\pi\)
\(492\) 0 0
\(493\) −31.8174 18.3698i −0.0645384 0.0372612i
\(494\) 334.748i 0.677628i
\(495\) 0 0
\(496\) −81.1692 −0.163648
\(497\) −29.1958 + 50.5685i −0.0587440 + 0.101748i
\(498\) 0 0
\(499\) −187.305 324.421i −0.375360 0.650142i 0.615021 0.788511i \(-0.289148\pi\)
−0.990381 + 0.138369i \(0.955814\pi\)
\(500\) −49.5385 + 43.2804i −0.0990770 + 0.0865608i
\(501\) 0 0
\(502\) 86.3642 + 49.8624i 0.172040 + 0.0993275i
\(503\) 166.821 0.331653 0.165826 0.986155i \(-0.446971\pi\)
0.165826 + 0.986155i \(0.446971\pi\)
\(504\) 0 0
\(505\) 500.196 + 749.608i 0.990487 + 1.48437i
\(506\) 1176.39 + 679.190i 2.32488 + 1.34227i
\(507\) 0 0
\(508\) −64.6166 + 37.3064i −0.127198 + 0.0734378i
\(509\) 130.690 75.4542i 0.256759 0.148240i −0.366096 0.930577i \(-0.619306\pi\)
0.622855 + 0.782337i \(0.285973\pi\)
\(510\) 0 0
\(511\) −62.3067 + 107.918i −0.121931 + 0.211191i
\(512\) 377.847 0.737982
\(513\) 0 0
\(514\) 135.264 0.263159
\(515\) −627.890 + 40.7609i −1.21920 + 0.0791474i
\(516\) 0 0
\(517\) 180.550 104.241i 0.349226 0.201626i
\(518\) −62.8943 108.936i −0.121417 0.210301i
\(519\) 0 0
\(520\) 290.713 18.8723i 0.559063 0.0362928i
\(521\) 62.5200i 0.120000i −0.998198 0.0600000i \(-0.980890\pi\)
0.998198 0.0600000i \(-0.0191101\pi\)
\(522\) 0 0
\(523\) 641.422i 1.22643i −0.789917 0.613214i \(-0.789876\pi\)
0.789917 0.613214i \(-0.210124\pi\)
\(524\) 71.1620 + 41.0854i 0.135805 + 0.0784073i
\(525\) 0 0
\(526\) −44.2350 76.6173i −0.0840970 0.145660i
\(527\) −4.95582 8.58373i −0.00940383 0.0162879i
\(528\) 0 0
\(529\) −288.490 + 499.680i −0.545350 + 0.944575i
\(530\) −762.669 + 508.911i −1.43900 + 0.960210i
\(531\) 0 0
\(532\) 12.3446i 0.0232041i
\(533\) 74.3584 128.792i 0.139509 0.241637i
\(534\) 0 0
\(535\) −18.1389 8.95920i −0.0339045 0.0167462i
\(536\) 433.658 250.372i 0.809063 0.467113i
\(537\) 0 0
\(538\) 380.089 + 219.445i 0.706486 + 0.407890i
\(539\) 914.227i 1.69615i
\(540\) 0 0
\(541\) 586.258 1.08366 0.541828 0.840489i \(-0.317732\pi\)
0.541828 + 0.840489i \(0.317732\pi\)
\(542\) −18.2947 + 31.6874i −0.0337541 + 0.0584638i
\(543\) 0 0
\(544\) −9.10821 15.7759i −0.0167430 0.0289998i
\(545\) −62.4813 30.8608i −0.114645 0.0566253i
\(546\) 0 0
\(547\) −86.7828 50.1041i −0.158652 0.0915980i 0.418572 0.908184i \(-0.362531\pi\)
−0.577224 + 0.816586i \(0.695864\pi\)
\(548\) −127.263 −0.232231
\(549\) 0 0
\(550\) −942.927 391.951i −1.71441 0.712639i
\(551\) 291.686 + 168.405i 0.529375 + 0.305635i
\(552\) 0 0
\(553\) 44.7979 25.8641i 0.0810088 0.0467705i
\(554\) 181.521 104.801i 0.327656 0.189172i
\(555\) 0 0
\(556\) 28.0392 48.5654i 0.0504303 0.0873478i
\(557\) −455.918 −0.818523 −0.409262 0.912417i \(-0.634214\pi\)
−0.409262 + 0.912417i \(0.634214\pi\)
\(558\) 0 0
\(559\) 399.601 0.714850
\(560\) 104.552 6.78723i 0.186700 0.0121200i
\(561\) 0 0
\(562\) −574.400 + 331.630i −1.02206 + 0.590089i
\(563\) −359.308 622.340i −0.638203 1.10540i −0.985827 0.167765i \(-0.946345\pi\)
0.347624 0.937634i \(-0.386988\pi\)
\(564\) 0 0
\(565\) 36.4746 + 561.862i 0.0645568 + 0.994447i
\(566\) 890.515i 1.57335i
\(567\) 0 0
\(568\) 367.152i 0.646395i
\(569\) 447.135 + 258.153i 0.785825 + 0.453696i 0.838491 0.544916i \(-0.183438\pi\)
−0.0526655 + 0.998612i \(0.516772\pi\)
\(570\) 0 0
\(571\) −61.2417 106.074i −0.107253 0.185768i 0.807403 0.590000i \(-0.200872\pi\)
−0.914657 + 0.404232i \(0.867539\pi\)
\(572\) −39.8276 68.9833i −0.0696286 0.120600i
\(573\) 0 0
\(574\) 23.5847 40.8499i 0.0410883 0.0711671i
\(575\) 319.123 767.723i 0.554997 1.33517i
\(576\) 0 0
\(577\) 738.985i 1.28074i 0.768068 + 0.640369i \(0.221218\pi\)
−0.768068 + 0.640369i \(0.778782\pi\)
\(578\) −302.382 + 523.741i −0.523153 + 0.906127i
\(579\) 0 0
\(580\) 19.6651 39.8143i 0.0339054 0.0686453i
\(581\) 90.6802 52.3542i 0.156076 0.0901105i
\(582\) 0 0
\(583\) −1433.10 827.403i −2.45815 1.41922i
\(584\) 783.541i 1.34168i
\(585\) 0 0
\(586\) 413.800 0.706144
\(587\) −109.084 + 188.939i −0.185833 + 0.321872i −0.943857 0.330354i \(-0.892832\pi\)
0.758024 + 0.652227i \(0.226165\pi\)
\(588\) 0 0
\(589\) 45.4324 + 78.6912i 0.0771348 + 0.133601i
\(590\) −454.664 + 920.521i −0.770617 + 1.56020i
\(591\) 0 0
\(592\) 776.669 + 448.410i 1.31194 + 0.757449i
\(593\) −273.286 −0.460854 −0.230427 0.973090i \(-0.574012\pi\)
−0.230427 + 0.973090i \(0.574012\pi\)
\(594\) 0 0
\(595\) 7.10122 + 10.6421i 0.0119348 + 0.0178859i
\(596\) 47.8797 + 27.6433i 0.0803350 + 0.0463815i
\(597\) 0 0
\(598\) 483.074 278.903i 0.807816 0.466393i
\(599\) −656.605 + 379.091i −1.09617 + 0.632873i −0.935212 0.354088i \(-0.884791\pi\)
−0.160957 + 0.986961i \(0.551458\pi\)
\(600\) 0 0
\(601\) 124.480 215.606i 0.207122 0.358745i −0.743685 0.668530i \(-0.766924\pi\)
0.950807 + 0.309785i \(0.100257\pi\)
\(602\) 126.744 0.210538
\(603\) 0 0
\(604\) −101.538 −0.168110
\(605\) −80.1989 1235.40i −0.132560 2.04198i
\(606\) 0 0
\(607\) 212.354 122.603i 0.349842 0.201981i −0.314774 0.949167i \(-0.601929\pi\)
0.664616 + 0.747185i \(0.268595\pi\)
\(608\) 83.4994 + 144.625i 0.137334 + 0.237870i
\(609\) 0 0
\(610\) −28.6889 441.931i −0.0470310 0.724476i
\(611\) 85.6108i 0.140116i
\(612\) 0 0
\(613\) 140.396i 0.229031i 0.993421 + 0.114515i \(0.0365315\pi\)
−0.993421 + 0.114515i \(0.963468\pi\)
\(614\) −783.060 452.100i −1.27534 0.736319i
\(615\) 0 0
\(616\) 83.3846 + 144.426i 0.135365 + 0.234458i
\(617\) 101.735 + 176.211i 0.164887 + 0.285593i 0.936615 0.350360i \(-0.113941\pi\)
−0.771728 + 0.635953i \(0.780607\pi\)
\(618\) 0 0
\(619\) 287.187 497.422i 0.463953 0.803590i −0.535201 0.844725i \(-0.679764\pi\)
0.999154 + 0.0411351i \(0.0130974\pi\)
\(620\) 9.96507 6.64946i 0.0160727 0.0107249i
\(621\) 0 0
\(622\) 165.961i 0.266818i
\(623\) 11.7225 20.3040i 0.0188163 0.0325907i
\(624\) 0 0
\(625\) −163.267 + 603.298i −0.261227 + 0.965277i
\(626\) 889.679 513.656i 1.42121 0.820537i
\(627\) 0 0
\(628\) −90.5387 52.2725i −0.144170 0.0832365i
\(629\) 109.511i 0.174104i
\(630\) 0 0
\(631\) 624.155 0.989152 0.494576 0.869134i \(-0.335323\pi\)
0.494576 + 0.869134i \(0.335323\pi\)
\(632\) −162.627 + 281.679i −0.257322 + 0.445694i
\(633\) 0 0
\(634\) −10.8686 18.8250i −0.0171429 0.0296924i
\(635\) −313.936 + 635.600i −0.494388 + 1.00095i
\(636\) 0 0
\(637\) 325.122 + 187.709i 0.510395 + 0.294677i
\(638\) 689.323 1.08044
\(639\) 0 0
\(640\) −612.688 + 408.833i −0.957325 + 0.638801i
\(641\) −373.039 215.374i −0.581964 0.335997i 0.179950 0.983676i \(-0.442407\pi\)
−0.761913 + 0.647679i \(0.775740\pi\)
\(642\) 0 0
\(643\) −561.630 + 324.257i −0.873453 + 0.504288i −0.868494 0.495699i \(-0.834912\pi\)
−0.00495885 + 0.999988i \(0.501578\pi\)
\(644\) 17.8144 10.2852i 0.0276621 0.0159707i
\(645\) 0 0
\(646\) −46.2176 + 80.0512i −0.0715443 + 0.123918i
\(647\) 1048.10 1.61994 0.809969 0.586472i \(-0.199484\pi\)
0.809969 + 0.586472i \(0.199484\pi\)
\(648\) 0 0
\(649\) −1853.00 −2.85516
\(650\) −332.990 + 254.853i −0.512292 + 0.392081i
\(651\) 0 0
\(652\) −34.8345 + 20.1117i −0.0534272 + 0.0308462i
\(653\) −402.556 697.248i −0.616472 1.06776i −0.990124 0.140193i \(-0.955228\pi\)
0.373652 0.927569i \(-0.378105\pi\)
\(654\) 0 0
\(655\) 779.073 50.5753i 1.18942 0.0772142i
\(656\) 336.298i 0.512650i
\(657\) 0 0
\(658\) 27.1537i 0.0412670i
\(659\) −293.226 169.294i −0.444955 0.256895i 0.260742 0.965409i \(-0.416033\pi\)
−0.705697 + 0.708513i \(0.749366\pi\)
\(660\) 0 0
\(661\) −514.079 890.411i −0.777729 1.34707i −0.933248 0.359233i \(-0.883038\pi\)
0.155519 0.987833i \(-0.450295\pi\)
\(662\) −673.810 1167.07i −1.01784 1.76295i
\(663\) 0 0
\(664\) −329.191 + 570.176i −0.495770 + 0.858699i
\(665\) −65.1003 97.5612i −0.0978952 0.146709i
\(666\) 0 0
\(667\) 561.241i 0.841440i
\(668\) −2.75049 + 4.76400i −0.00411751 + 0.00713173i
\(669\) 0 0
\(670\) −319.186 + 646.228i −0.476396 + 0.964520i
\(671\) 692.207 399.646i 1.03161 0.595598i
\(672\) 0 0
\(673\) −561.170 323.992i −0.833834 0.481414i 0.0213295 0.999772i \(-0.493210\pi\)
−0.855164 + 0.518358i \(0.826543\pi\)
\(674\) 77.8436i 0.115495i
\(675\) 0 0
\(676\) 56.2275 0.0831768
\(677\) 474.397 821.679i 0.700734 1.21371i −0.267476 0.963565i \(-0.586189\pi\)
0.968209 0.250142i \(-0.0804772\pi\)
\(678\) 0 0
\(679\) −90.8870 157.421i −0.133854 0.231842i
\(680\) −72.1263 35.6247i −0.106068 0.0523892i
\(681\) 0 0
\(682\) 161.051 + 92.9831i 0.236146 + 0.136339i
\(683\) 883.438 1.29347 0.646733 0.762716i \(-0.276135\pi\)
0.646733 + 0.762716i \(0.276135\pi\)
\(684\) 0 0
\(685\) −1005.78 + 671.132i −1.46829 + 0.979755i
\(686\) 209.234 + 120.801i 0.305005 + 0.176095i
\(687\) 0 0
\(688\) −782.569 + 451.816i −1.13745 + 0.656710i
\(689\) −588.490 + 339.765i −0.854122 + 0.493128i
\(690\) 0 0
\(691\) −142.267 + 246.413i −0.205885 + 0.356603i −0.950414 0.310986i \(-0.899341\pi\)
0.744529 + 0.667590i \(0.232674\pi\)
\(692\) 58.5876 0.0846641
\(693\) 0 0
\(694\) −134.728 −0.194132
\(695\) −34.5157 531.688i −0.0496629 0.765018i
\(696\) 0 0
\(697\) −35.5639 + 20.5328i −0.0510243 + 0.0294589i
\(698\) −489.500 847.838i −0.701289 1.21467i
\(699\) 0 0
\(700\) −12.2797 + 9.39826i −0.0175425 + 0.0134261i
\(701\) 760.111i 1.08432i −0.840274 0.542162i \(-0.817606\pi\)
0.840274 0.542162i \(-0.182394\pi\)
\(702\) 0 0
\(703\) 1003.94i 1.42809i
\(704\) −889.701 513.669i −1.26378 0.729644i
\(705\) 0 0
\(706\) −293.811 508.895i −0.416163 0.720815i
\(707\) 105.920 + 183.459i 0.149816 + 0.259489i
\(708\) 0 0
\(709\) 560.505 970.823i 0.790557 1.36928i −0.135066 0.990837i \(-0.543125\pi\)
0.925623 0.378448i \(-0.123542\pi\)
\(710\) 293.327 + 439.588i 0.413137 + 0.619138i
\(711\) 0 0
\(712\) 147.417i 0.207047i
\(713\) −75.7060 + 131.127i −0.106180 + 0.183908i
\(714\) 0 0
\(715\) −678.554 335.152i −0.949027 0.468744i
\(716\) 76.1424 43.9608i 0.106344 0.0613978i
\(717\) 0 0
\(718\) 416.628 + 240.540i 0.580261 + 0.335014i
\(719\) 721.362i 1.00328i 0.865075 + 0.501642i \(0.167271\pi\)
−0.865075 + 0.501642i \(0.832729\pi\)
\(720\) 0 0
\(721\) −147.910 −0.205146
\(722\) 39.6856 68.7375i 0.0549662 0.0952042i
\(723\) 0 0
\(724\) 68.2131 + 118.148i 0.0942169 + 0.163189i
\(725\) −54.5481 418.365i −0.0752387 0.577055i
\(726\) 0 0
\(727\) −338.923 195.677i −0.466194 0.269157i 0.248451 0.968644i \(-0.420078\pi\)
−0.714645 + 0.699487i \(0.753412\pi\)
\(728\) 68.4822 0.0940689
\(729\) 0 0
\(730\) 625.990 + 938.126i 0.857520 + 1.28510i
\(731\) −95.5601 55.1717i −0.130725 0.0754742i
\(732\) 0 0
\(733\) −770.166 + 444.656i −1.05070 + 0.606625i −0.922846 0.385168i \(-0.874144\pi\)
−0.127858 + 0.991792i \(0.540810\pi\)
\(734\) −440.505 + 254.326i −0.600144 + 0.346493i
\(735\) 0 0
\(736\) −139.139 + 240.995i −0.189047 + 0.327439i
\(737\) −1300.85 −1.76506
\(738\) 0 0
\(739\) 533.497 0.721917 0.360958 0.932582i \(-0.382450\pi\)
0.360958 + 0.932582i \(0.382450\pi\)
\(740\) −132.085 + 8.57461i −0.178493 + 0.0115873i
\(741\) 0 0
\(742\) −186.655 + 107.765i −0.251557 + 0.145236i
\(743\) 133.366 + 230.996i 0.179496 + 0.310897i 0.941708 0.336431i \(-0.109220\pi\)
−0.762212 + 0.647328i \(0.775887\pi\)
\(744\) 0 0
\(745\) 524.181 34.0284i 0.703598 0.0456757i
\(746\) 413.400i 0.554156i
\(747\) 0 0
\(748\) 21.9955i 0.0294057i
\(749\) −4.11856 2.37785i −0.00549875 0.00317470i
\(750\) 0 0
\(751\) −124.309 215.309i −0.165525 0.286697i 0.771317 0.636451i \(-0.219598\pi\)
−0.936841 + 0.349754i \(0.886265\pi\)
\(752\) 96.7973 + 167.658i 0.128720 + 0.222949i
\(753\) 0 0
\(754\) 141.532 245.141i 0.187708 0.325120i
\(755\) −802.473 + 535.472i −1.06288 + 0.709234i
\(756\) 0 0
\(757\) 440.978i 0.582534i 0.956642 + 0.291267i \(0.0940768\pi\)
−0.956642 + 0.291267i \(0.905923\pi\)
\(758\) −343.267 + 594.556i −0.452859 + 0.784375i
\(759\) 0 0
\(760\) 661.217 + 326.589i 0.870022 + 0.429722i
\(761\) −394.571 + 227.806i −0.518490 + 0.299350i −0.736317 0.676637i \(-0.763437\pi\)
0.217826 + 0.975988i \(0.430103\pi\)
\(762\) 0 0
\(763\) −14.1868 8.19074i −0.0185934 0.0107349i
\(764\) 58.0996i 0.0760466i
\(765\) 0 0
\(766\) −596.170 −0.778289
\(767\) −380.458 + 658.972i −0.496033 + 0.859155i
\(768\) 0 0
\(769\) 628.535 + 1088.65i 0.817341 + 1.41568i 0.907635 + 0.419761i \(0.137886\pi\)
−0.0902939 + 0.995915i \(0.528781\pi\)
\(770\) −215.221 106.302i −0.279508 0.138055i
\(771\) 0 0
\(772\) −5.08476 2.93569i −0.00658648 0.00380270i
\(773\) 842.543 1.08997 0.544983 0.838447i \(-0.316536\pi\)
0.544983 + 0.838447i \(0.316536\pi\)
\(774\) 0 0
\(775\) 43.6889 105.104i 0.0563728 0.135617i
\(776\) 989.826 + 571.476i 1.27555 + 0.736439i
\(777\) 0 0
\(778\) 221.141 127.676i 0.284243 0.164108i
\(779\) 326.032 188.235i 0.418526 0.241636i
\(780\) 0 0
\(781\) −476.899 + 826.014i −0.610627 + 1.05764i
\(782\) −154.029 −0.196968
\(783\) 0 0
\(784\) −848.947 −1.08284
\(785\) −991.207 + 64.3464i −1.26268 + 0.0819700i
\(786\) 0 0
\(787\) −775.001 + 447.447i −0.984753 + 0.568547i −0.903702 0.428162i \(-0.859161\pi\)
−0.0810513 + 0.996710i \(0.525828\pi\)
\(788\) 40.8398 + 70.7366i 0.0518271 + 0.0897672i
\(789\) 0 0
\(790\) −30.3279 467.178i −0.0383898 0.591365i
\(791\) 132.356i 0.167327i
\(792\) 0 0
\(793\) 328.222i 0.413899i
\(794\) −618.072 356.844i −0.778428 0.449425i
\(795\) 0 0
\(796\) −43.8244 75.9061i −0.0550558 0.0953594i
\(797\) −356.728 617.871i −0.447588 0.775246i 0.550640 0.834743i \(-0.314384\pi\)
−0.998228 + 0.0594970i \(0.981050\pi\)
\(798\) 0 0
\(799\) −11.8200 + 20.4729i −0.0147935 + 0.0256231i
\(800\) 80.2951 193.168i 0.100369 0.241460i
\(801\) 0 0
\(802\) 505.373i 0.630140i
\(803\) −1017.75 + 1762.80i −1.26744 + 2.19527i
\(804\) 0 0
\(805\) 86.5504 175.231i 0.107516 0.217679i
\(806\) 66.1342 38.1826i 0.0820524 0.0473730i
\(807\) 0 0
\(808\) −1153.55 666.000i −1.42766 0.824257i
\(809\) 148.086i 0.183049i −0.995803 0.0915243i \(-0.970826\pi\)
0.995803 0.0915243i \(-0.0291739\pi\)
\(810\) 0 0
\(811\) −515.062 −0.635095 −0.317548 0.948242i \(-0.602859\pi\)
−0.317548 + 0.948242i \(0.602859\pi\)
\(812\) 5.21930 9.04010i 0.00642771 0.0111331i
\(813\) 0 0
\(814\) −1027.35 1779.42i −1.26210 2.18602i
\(815\) −169.242 + 342.649i −0.207658 + 0.420429i
\(816\) 0 0
\(817\) 876.046 + 505.786i 1.07227 + 0.619077i
\(818\) −213.871 −0.261456
\(819\) 0 0
\(820\) −27.5499 41.2871i −0.0335974 0.0503501i
\(821\) 1176.46 + 679.230i 1.43296 + 0.827320i 0.997346 0.0728135i \(-0.0231978\pi\)
0.435614 + 0.900133i \(0.356531\pi\)
\(822\) 0 0
\(823\) 673.793 389.014i 0.818703 0.472678i −0.0312660 0.999511i \(-0.509954\pi\)
0.849969 + 0.526833i \(0.176621\pi\)
\(824\) 805.425 465.012i 0.977457 0.564335i
\(825\) 0 0
\(826\) −120.672 + 209.010i −0.146092 + 0.253039i
\(827\) 1018.93 1.23208 0.616038 0.787716i \(-0.288737\pi\)
0.616038 + 0.787716i \(0.288737\pi\)
\(828\) 0 0
\(829\) 667.620 0.805332 0.402666 0.915347i \(-0.368084\pi\)
0.402666 + 0.915347i \(0.368084\pi\)
\(830\) −61.3900 945.665i −0.0739639 1.13936i
\(831\) 0 0
\(832\) −365.347 + 210.933i −0.439119 + 0.253526i
\(833\) −51.8328 89.7771i −0.0622243 0.107776i
\(834\) 0 0
\(835\) 3.38580 + 52.1556i 0.00405485 + 0.0624618i
\(836\) 201.643i 0.241200i
\(837\) 0 0
\(838\) 327.437i 0.390736i
\(839\) 982.041 + 566.982i 1.17049 + 0.675783i 0.953795 0.300457i \(-0.0971392\pi\)
0.216694 + 0.976240i \(0.430473\pi\)
\(840\) 0 0
\(841\) −278.096 481.677i −0.330674 0.572743i
\(842\) 807.021 + 1397.80i 0.958458 + 1.66010i
\(843\) 0 0
\(844\) −29.5912 + 51.2534i −0.0350606 + 0.0607268i
\(845\) 444.375 296.521i 0.525888 0.350913i
\(846\) 0 0
\(847\) 291.019i 0.343588i
\(848\) 768.323 1330.77i 0.906041 1.56931i
\(849\) 0 0
\(850\) 114.817 14.9704i 0.135079 0.0176122i
\(851\) 1448.79 836.459i 1.70245 0.982913i
\(852\) 0 0
\(853\) 642.450 + 370.919i 0.753165 + 0.434840i 0.826836 0.562443i \(-0.190138\pi\)
−0.0736714 + 0.997283i \(0.523472\pi\)
\(854\) 104.104i 0.121902i
\(855\) 0 0
\(856\) 29.9028 0.0349332
\(857\) −65.1670 + 112.872i −0.0760408 + 0.131707i −0.901538 0.432699i \(-0.857561\pi\)
0.825498 + 0.564406i \(0.190895\pi\)
\(858\) 0 0
\(859\) 462.273 + 800.681i 0.538153 + 0.932108i 0.999004 + 0.0446307i \(0.0142111\pi\)
−0.460850 + 0.887478i \(0.652456\pi\)
\(860\) 59.0620 119.578i 0.0686767 0.139044i
\(861\) 0 0
\(862\) −1256.58 725.487i −1.45775 0.841632i
\(863\) −829.441 −0.961113 −0.480557 0.876964i \(-0.659565\pi\)
−0.480557 + 0.876964i \(0.659565\pi\)
\(864\) 0 0
\(865\) 463.027 308.967i 0.535292 0.357188i
\(866\) 543.672 + 313.889i 0.627796 + 0.362458i
\(867\) 0 0
\(868\) 2.43885 1.40807i 0.00280973 0.00162220i
\(869\) 731.753 422.478i 0.842063 0.486166i
\(870\) 0 0
\(871\) −267.091 + 462.615i −0.306648 + 0.531130i
\(872\) 103.003 0.118123
\(873\) 0 0
\(874\) 1412.06 1.61563
\(875\) −47.4860 + 139.034i −0.0542697 + 0.158896i
\(876\) 0 0
\(877\) −924.311 + 533.651i −1.05395 + 0.608496i −0.923751 0.382992i \(-0.874894\pi\)
−0.130195 + 0.991488i \(0.541560\pi\)
\(878\) −510.543 884.287i −0.581484 1.00716i
\(879\) 0 0
\(880\) 1707.81 110.866i 1.94069 0.125984i
\(881\) 675.790i 0.767072i 0.923526 + 0.383536i \(0.125294\pi\)
−0.923526 + 0.383536i \(0.874706\pi\)
\(882\) 0 0
\(883\) 305.799i 0.346319i 0.984894 + 0.173159i \(0.0553975\pi\)
−0.984894 + 0.173159i \(0.944602\pi\)
\(884\) 7.82213 + 4.51611i 0.00884857 + 0.00510872i
\(885\) 0 0
\(886\) −63.0699 109.240i −0.0711850 0.123296i
\(887\) 246.512 + 426.971i 0.277916 + 0.481365i 0.970867 0.239620i \(-0.0770229\pi\)
−0.692951 + 0.720985i \(0.743690\pi\)
\(888\) 0 0
\(889\) −83.3216 + 144.317i −0.0937251 + 0.162337i
\(890\) −117.775 176.501i −0.132332 0.198316i
\(891\) 0 0
\(892\) 36.7433i 0.0411920i
\(893\) 108.360 187.685i 0.121344 0.210173i
\(894\) 0 0
\(895\) 369.934 748.974i 0.413334 0.836843i
\(896\) −149.949 + 86.5731i −0.167354 + 0.0966217i
\(897\) 0 0
\(898\) −565.168 326.300i −0.629363 0.363363i
\(899\) 76.8355i 0.0854678i
\(900\) 0 0
\(901\) 187.641 0.208259
\(902\) 385.246 667.265i 0.427102 0.739762i
\(903\) 0 0
\(904\) −416.112 720.728i −0.460301 0.797265i
\(905\) 1162.17 + 574.018i 1.28416 + 0.634274i
\(906\) 0 0
\(907\) −772.842 446.201i −0.852086 0.491952i 0.00926798 0.999957i \(-0.497050\pi\)
−0.861354 + 0.508005i \(0.830383\pi\)
\(908\) 231.783 0.255267
\(909\) 0 0
\(910\) −81.9930 + 54.7121i −0.0901022 + 0.0601232i
\(911\) −536.628 309.823i −0.589054 0.340091i 0.175669 0.984449i \(-0.443791\pi\)
−0.764723 + 0.644359i \(0.777124\pi\)
\(912\) 0 0
\(913\) 1481.22 855.183i 1.62237 0.936673i
\(914\) −641.079 + 370.127i −0.701400 + 0.404953i
\(915\) 0 0
\(916\) 29.6680 51.3864i 0.0323886 0.0560987i
\(917\) 183.524 0.200135
\(918\) 0 0
\(919\) −858.908 −0.934612 −0.467306 0.884096i \(-0.654775\pi\)
−0.467306 + 0.884096i \(0.654775\pi\)
\(920\) 79.6083 + 1226.30i 0.0865308 + 1.33294i
\(921\) 0 0
\(922\) 1453.57 839.217i 1.57654 0.910214i
\(923\) 195.834 + 339.195i 0.212171 + 0.367492i
\(924\) 0 0
\(925\) −998.671 + 764.330i −1.07964 + 0.826303i
\(926\) 571.097i 0.616735i
\(927\) 0 0
\(928\) 141.215i 0.152171i
\(929\) 1211.81 + 699.640i 1.30443 + 0.753110i 0.981160 0.193198i \(-0.0618859\pi\)
0.323266 + 0.946308i \(0.395219\pi\)
\(930\) 0 0
\(931\) 475.177 + 823.030i 0.510394 + 0.884028i
\(932\) 76.4865 + 132.478i 0.0820670 + 0.142144i
\(933\) 0 0
\(934\) −670.169 + 1160.77i −0.717526 + 1.24279i
\(935\) 115.995 + 173.834i 0.124059 + 0.185918i
\(936\) 0 0
\(937\) 193.997i 0.207040i −0.994627 0.103520i \(-0.966989\pi\)
0.994627 0.103520i \(-0.0330106\pi\)
\(938\) −84.7148 + 146.730i −0.0903143 + 0.156429i
\(939\) 0 0
\(940\) −25.6184 12.6535i −0.0272536 0.0134611i
\(941\) −801.683 + 462.852i −0.851948 + 0.491873i −0.861308 0.508084i \(-0.830354\pi\)
0.00935936 + 0.999956i \(0.497021\pi\)
\(942\) 0 0
\(943\) 543.281 + 313.664i 0.576120 + 0.332623i
\(944\) 1720.68i 1.82276i
\(945\) 0 0
\(946\) 2070.31 2.18848
\(947\) −45.6148 + 79.0071i −0.0481677 + 0.0834289i −0.889104 0.457705i \(-0.848672\pi\)
0.840936 + 0.541134i \(0.182005\pi\)
\(948\) 0 0
\(949\) 417.930 + 723.876i 0.440390 + 0.762778i
\(950\) −1052.59 + 137.241i −1.10799 + 0.144464i
\(951\) 0 0
\(952\) −16.3767 9.45512i −0.0172025 0.00993185i
\(953\) −88.9452 −0.0933318 −0.0466659 0.998911i \(-0.514860\pi\)
−0.0466659 + 0.998911i \(0.514860\pi\)
\(954\) 0 0
\(955\) 306.394 + 459.171i 0.320831 + 0.480807i
\(956\) −67.8499 39.1732i −0.0709727 0.0409761i
\(957\) 0 0
\(958\) −291.514 + 168.306i −0.304295 + 0.175685i
\(959\) −246.153 + 142.117i −0.256677 + 0.148193i
\(960\) 0 0
\(961\) 470.136 814.299i 0.489215 0.847345i
\(962\) −843.742 −0.877071
\(963\) 0 0
\(964\) 137.137 0.142258
\(965\) −55.6673 + 3.61377i −0.0576864 + 0.00374484i
\(966\) 0 0
\(967\) 1352.97 781.135i 1.39914 0.807792i 0.404835 0.914390i \(-0.367329\pi\)
0.994302 + 0.106598i \(0.0339958\pi\)
\(968\) 914.931 + 1584.71i 0.945177 + 1.63709i
\(969\) 0 0
\(970\) −1641.68 + 106.573i −1.69245 + 0.109869i
\(971\) 442.765i 0.455989i 0.973662 + 0.227994i \(0.0732168\pi\)
−0.973662 + 0.227994i \(0.926783\pi\)
\(972\) 0 0
\(973\) 125.248i 0.128723i
\(974\) −1202.62 694.332i −1.23472 0.712867i
\(975\) 0 0
\(976\) 371.110 + 642.781i 0.380235 + 0.658587i
\(977\) 89.9999 + 155.884i 0.0921187 + 0.159554i 0.908402 0.418097i \(-0.137303\pi\)
−0.816284 + 0.577651i \(0.803969\pi\)
\(978\) 0 0
\(979\) 191.482 331.657i 0.195590 0.338771i
\(980\) 104.224 69.5466i 0.106351 0.0709659i
\(981\) 0 0
\(982\) 1324.19i 1.34847i
\(983\) 515.624 893.088i 0.524542 0.908533i −0.475050 0.879959i \(-0.657570\pi\)
0.999592 0.0285740i \(-0.00909662\pi\)
\(984\) 0 0
\(985\) 695.800 + 343.670i 0.706396 + 0.348904i
\(986\) −67.6915 + 39.0817i −0.0686527 + 0.0396366i
\(987\) 0 0
\(988\) −71.7093 41.4014i −0.0725803 0.0419042i
\(989\) 1685.63i 1.70437i
\(990\) 0 0
\(991\) 549.520 0.554511 0.277256 0.960796i \(-0.410575\pi\)
0.277256 + 0.960796i \(0.410575\pi\)
\(992\) −19.0485 + 32.9930i −0.0192021 + 0.0332590i
\(993\) 0 0
\(994\) 62.1140 + 107.585i 0.0624889 + 0.108234i
\(995\) −746.650 368.786i −0.750402 0.370639i
\(996\) 0 0
\(997\) 1447.89 + 835.941i 1.45225 + 0.838457i 0.998609 0.0527282i \(-0.0167917\pi\)
0.453640 + 0.891185i \(0.350125\pi\)
\(998\) −796.981 −0.798578
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.h.k.269.17 48
3.2 odd 2 inner 405.3.h.k.269.8 48
5.4 even 2 inner 405.3.h.k.269.7 48
9.2 odd 6 405.3.d.b.404.18 yes 24
9.4 even 3 inner 405.3.h.k.134.18 48
9.5 odd 6 inner 405.3.h.k.134.7 48
9.7 even 3 405.3.d.b.404.7 24
15.14 odd 2 inner 405.3.h.k.269.18 48
45.4 even 6 inner 405.3.h.k.134.8 48
45.14 odd 6 inner 405.3.h.k.134.17 48
45.29 odd 6 405.3.d.b.404.8 yes 24
45.34 even 6 405.3.d.b.404.17 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.d.b.404.7 24 9.7 even 3
405.3.d.b.404.8 yes 24 45.29 odd 6
405.3.d.b.404.17 yes 24 45.34 even 6
405.3.d.b.404.18 yes 24 9.2 odd 6
405.3.h.k.134.7 48 9.5 odd 6 inner
405.3.h.k.134.8 48 45.4 even 6 inner
405.3.h.k.134.17 48 45.14 odd 6 inner
405.3.h.k.134.18 48 9.4 even 3 inner
405.3.h.k.269.7 48 5.4 even 2 inner
405.3.h.k.269.8 48 3.2 odd 2 inner
405.3.h.k.269.17 48 1.1 even 1 trivial
405.3.h.k.269.18 48 15.14 odd 2 inner