Properties

Label 405.2.f.b.242.9
Level $405$
Weight $2$
Character 405.242
Analytic conductor $3.234$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(242,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.242"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 242.9
Character \(\chi\) \(=\) 405.242
Dual form 405.2.f.b.323.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.01382 - 1.01382i) q^{2} -0.0556605i q^{4} +(-0.721513 - 2.11646i) q^{5} +(3.46834 + 3.46834i) q^{7} +(1.97121 + 1.97121i) q^{8} +(-2.87720 - 1.41423i) q^{10} -1.61753i q^{11} +(1.71168 - 1.71168i) q^{13} +7.03254 q^{14} +4.10822 q^{16} +(-0.839316 + 0.839316i) q^{17} -3.33104i q^{19} +(-0.117803 + 0.0401598i) q^{20} +(-1.63988 - 1.63988i) q^{22} +(-3.66638 - 3.66638i) q^{23} +(-3.95884 + 3.05411i) q^{25} -3.47066i q^{26} +(0.193050 - 0.193050i) q^{28} +6.55782 q^{29} -7.88102 q^{31} +(0.222578 - 0.222578i) q^{32} +1.70183i q^{34} +(4.83817 - 9.84307i) q^{35} +(1.82308 + 1.82308i) q^{37} +(-3.37707 - 3.37707i) q^{38} +(2.74974 - 5.59425i) q^{40} +6.27343i q^{41} +(1.47910 - 1.47910i) q^{43} -0.0900325 q^{44} -7.43410 q^{46} +(-2.29888 + 2.29888i) q^{47} +17.0588i q^{49} +(-0.917230 + 7.10987i) q^{50} +(-0.0952728 - 0.0952728i) q^{52} +(0.605237 + 0.605237i) q^{53} +(-3.42344 + 1.16707i) q^{55} +13.6737i q^{56} +(6.64844 - 6.64844i) q^{58} -6.13485 q^{59} -9.91828 q^{61} +(-7.98993 + 7.98993i) q^{62} +7.76514i q^{64} +(-4.85770 - 2.38771i) q^{65} +(-3.52409 - 3.52409i) q^{67} +(0.0467168 + 0.0467168i) q^{68} +(-5.07407 - 14.8841i) q^{70} +4.41355i q^{71} +(9.23878 - 9.23878i) q^{73} +3.69656 q^{74} -0.185407 q^{76} +(5.61014 - 5.61014i) q^{77} -4.16388i q^{79} +(-2.96414 - 8.69491i) q^{80} +(6.36012 + 6.36012i) q^{82} +(-7.74767 - 7.74767i) q^{83} +(2.38196 + 1.17081i) q^{85} -2.99909i q^{86} +(3.18849 - 3.18849i) q^{88} -12.9410 q^{89} +11.8734 q^{91} +(-0.204073 + 0.204073i) q^{92} +4.66130i q^{94} +(-7.05002 + 2.40339i) q^{95} +(-3.15941 - 3.15941i) q^{97} +(17.2945 + 17.2945i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{13} - 24 q^{16} + 36 q^{37} - 36 q^{40} - 24 q^{43} - 48 q^{46} - 36 q^{52} - 60 q^{58} + 72 q^{70} + 12 q^{73} + 48 q^{76} - 96 q^{82} + 60 q^{85} + 96 q^{88} - 48 q^{91} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.01382 1.01382i 0.716879 0.716879i −0.251086 0.967965i \(-0.580788\pi\)
0.967965 + 0.251086i \(0.0807877\pi\)
\(3\) 0 0
\(4\) 0.0556605i 0.0278302i
\(5\) −0.721513 2.11646i −0.322670 0.946511i
\(6\) 0 0
\(7\) 3.46834 + 3.46834i 1.31091 + 1.31091i 0.920745 + 0.390164i \(0.127582\pi\)
0.390164 + 0.920745i \(0.372418\pi\)
\(8\) 1.97121 + 1.97121i 0.696928 + 0.696928i
\(9\) 0 0
\(10\) −2.87720 1.41423i −0.909849 0.447218i
\(11\) 1.61753i 0.487703i −0.969813 0.243852i \(-0.921589\pi\)
0.969813 0.243852i \(-0.0784110\pi\)
\(12\) 0 0
\(13\) 1.71168 1.71168i 0.474734 0.474734i −0.428709 0.903443i \(-0.641031\pi\)
0.903443 + 0.428709i \(0.141031\pi\)
\(14\) 7.03254 1.87953
\(15\) 0 0
\(16\) 4.10822 1.02706
\(17\) −0.839316 + 0.839316i −0.203564 + 0.203564i −0.801525 0.597961i \(-0.795978\pi\)
0.597961 + 0.801525i \(0.295978\pi\)
\(18\) 0 0
\(19\) 3.33104i 0.764192i −0.924123 0.382096i \(-0.875202\pi\)
0.924123 0.382096i \(-0.124798\pi\)
\(20\) −0.117803 + 0.0401598i −0.0263416 + 0.00897999i
\(21\) 0 0
\(22\) −1.63988 1.63988i −0.349624 0.349624i
\(23\) −3.66638 3.66638i −0.764494 0.764494i 0.212638 0.977131i \(-0.431795\pi\)
−0.977131 + 0.212638i \(0.931795\pi\)
\(24\) 0 0
\(25\) −3.95884 + 3.05411i −0.791768 + 0.610822i
\(26\) 3.47066i 0.680653i
\(27\) 0 0
\(28\) 0.193050 0.193050i 0.0364829 0.0364829i
\(29\) 6.55782 1.21776 0.608878 0.793264i \(-0.291620\pi\)
0.608878 + 0.793264i \(0.291620\pi\)
\(30\) 0 0
\(31\) −7.88102 −1.41547 −0.707736 0.706477i \(-0.750284\pi\)
−0.707736 + 0.706477i \(0.750284\pi\)
\(32\) 0.222578 0.222578i 0.0393466 0.0393466i
\(33\) 0 0
\(34\) 1.70183i 0.291862i
\(35\) 4.83817 9.84307i 0.817799 1.66378i
\(36\) 0 0
\(37\) 1.82308 + 1.82308i 0.299713 + 0.299713i 0.840902 0.541188i \(-0.182025\pi\)
−0.541188 + 0.840902i \(0.682025\pi\)
\(38\) −3.37707 3.37707i −0.547833 0.547833i
\(39\) 0 0
\(40\) 2.74974 5.59425i 0.434772 0.884528i
\(41\) 6.27343i 0.979744i 0.871794 + 0.489872i \(0.162957\pi\)
−0.871794 + 0.489872i \(0.837043\pi\)
\(42\) 0 0
\(43\) 1.47910 1.47910i 0.225561 0.225561i −0.585274 0.810835i \(-0.699013\pi\)
0.810835 + 0.585274i \(0.199013\pi\)
\(44\) −0.0900325 −0.0135729
\(45\) 0 0
\(46\) −7.43410 −1.09610
\(47\) −2.29888 + 2.29888i −0.335326 + 0.335326i −0.854605 0.519279i \(-0.826201\pi\)
0.519279 + 0.854605i \(0.326201\pi\)
\(48\) 0 0
\(49\) 17.0588i 2.43697i
\(50\) −0.917230 + 7.10987i −0.129716 + 1.00549i
\(51\) 0 0
\(52\) −0.0952728 0.0952728i −0.0132120 0.0132120i
\(53\) 0.605237 + 0.605237i 0.0831357 + 0.0831357i 0.747452 0.664316i \(-0.231277\pi\)
−0.664316 + 0.747452i \(0.731277\pi\)
\(54\) 0 0
\(55\) −3.42344 + 1.16707i −0.461617 + 0.157367i
\(56\) 13.6737i 1.82722i
\(57\) 0 0
\(58\) 6.64844 6.64844i 0.872984 0.872984i
\(59\) −6.13485 −0.798689 −0.399345 0.916801i \(-0.630762\pi\)
−0.399345 + 0.916801i \(0.630762\pi\)
\(60\) 0 0
\(61\) −9.91828 −1.26991 −0.634953 0.772551i \(-0.718980\pi\)
−0.634953 + 0.772551i \(0.718980\pi\)
\(62\) −7.98993 + 7.98993i −1.01472 + 1.01472i
\(63\) 0 0
\(64\) 7.76514i 0.970642i
\(65\) −4.85770 2.38771i −0.602524 0.296159i
\(66\) 0 0
\(67\) −3.52409 3.52409i −0.430536 0.430536i 0.458275 0.888811i \(-0.348468\pi\)
−0.888811 + 0.458275i \(0.848468\pi\)
\(68\) 0.0467168 + 0.0467168i 0.00566524 + 0.00566524i
\(69\) 0 0
\(70\) −5.07407 14.8841i −0.606467 1.77899i
\(71\) 4.41355i 0.523792i 0.965096 + 0.261896i \(0.0843477\pi\)
−0.965096 + 0.261896i \(0.915652\pi\)
\(72\) 0 0
\(73\) 9.23878 9.23878i 1.08132 1.08132i 0.0849307 0.996387i \(-0.472933\pi\)
0.996387 0.0849307i \(-0.0270669\pi\)
\(74\) 3.69656 0.429716
\(75\) 0 0
\(76\) −0.185407 −0.0212677
\(77\) 5.61014 5.61014i 0.639335 0.639335i
\(78\) 0 0
\(79\) 4.16388i 0.468473i −0.972180 0.234237i \(-0.924741\pi\)
0.972180 0.234237i \(-0.0752591\pi\)
\(80\) −2.96414 8.69491i −0.331400 0.972120i
\(81\) 0 0
\(82\) 6.36012 + 6.36012i 0.702358 + 0.702358i
\(83\) −7.74767 7.74767i −0.850417 0.850417i 0.139767 0.990184i \(-0.455365\pi\)
−0.990184 + 0.139767i \(0.955365\pi\)
\(84\) 0 0
\(85\) 2.38196 + 1.17081i 0.258360 + 0.126992i
\(86\) 2.99909i 0.323400i
\(87\) 0 0
\(88\) 3.18849 3.18849i 0.339894 0.339894i
\(89\) −12.9410 −1.37174 −0.685869 0.727725i \(-0.740578\pi\)
−0.685869 + 0.727725i \(0.740578\pi\)
\(90\) 0 0
\(91\) 11.8734 1.24467
\(92\) −0.204073 + 0.204073i −0.0212760 + 0.0212760i
\(93\) 0 0
\(94\) 4.66130i 0.480777i
\(95\) −7.05002 + 2.40339i −0.723317 + 0.246582i
\(96\) 0 0
\(97\) −3.15941 3.15941i −0.320789 0.320789i 0.528281 0.849070i \(-0.322837\pi\)
−0.849070 + 0.528281i \(0.822837\pi\)
\(98\) 17.2945 + 17.2945i 1.74701 + 1.74701i
\(99\) 0 0
\(100\) 0.169993 + 0.220351i 0.0169993 + 0.0220351i
\(101\) 2.21186i 0.220088i −0.993927 0.110044i \(-0.964901\pi\)
0.993927 0.110044i \(-0.0350992\pi\)
\(102\) 0 0
\(103\) 1.44176 1.44176i 0.142061 0.142061i −0.632500 0.774561i \(-0.717971\pi\)
0.774561 + 0.632500i \(0.217971\pi\)
\(104\) 6.74815 0.661711
\(105\) 0 0
\(106\) 1.22720 0.119196
\(107\) −11.3639 + 11.3639i −1.09859 + 1.09859i −0.104009 + 0.994576i \(0.533167\pi\)
−0.994576 + 0.104009i \(0.966833\pi\)
\(108\) 0 0
\(109\) 9.85763i 0.944190i 0.881548 + 0.472095i \(0.156502\pi\)
−0.881548 + 0.472095i \(0.843498\pi\)
\(110\) −2.28756 + 4.65395i −0.218110 + 0.443737i
\(111\) 0 0
\(112\) 14.2487 + 14.2487i 1.34638 + 1.34638i
\(113\) −10.3562 10.3562i −0.974225 0.974225i 0.0254509 0.999676i \(-0.491898\pi\)
−0.999676 + 0.0254509i \(0.991898\pi\)
\(114\) 0 0
\(115\) −5.11442 + 10.4051i −0.476922 + 0.970281i
\(116\) 0.365011i 0.0338905i
\(117\) 0 0
\(118\) −6.21963 + 6.21963i −0.572563 + 0.572563i
\(119\) −5.82207 −0.533708
\(120\) 0 0
\(121\) 8.38360 0.762145
\(122\) −10.0553 + 10.0553i −0.910368 + 0.910368i
\(123\) 0 0
\(124\) 0.438661i 0.0393930i
\(125\) 9.32027 + 6.17516i 0.833630 + 0.552323i
\(126\) 0 0
\(127\) 2.69554 + 2.69554i 0.239191 + 0.239191i 0.816515 0.577324i \(-0.195903\pi\)
−0.577324 + 0.816515i \(0.695903\pi\)
\(128\) 8.31761 + 8.31761i 0.735179 + 0.735179i
\(129\) 0 0
\(130\) −7.34554 + 2.50413i −0.644246 + 0.219627i
\(131\) 9.77051i 0.853654i 0.904333 + 0.426827i \(0.140369\pi\)
−0.904333 + 0.426827i \(0.859631\pi\)
\(132\) 0 0
\(133\) 11.5532 11.5532i 1.00179 1.00179i
\(134\) −7.14558 −0.617284
\(135\) 0 0
\(136\) −3.30894 −0.283739
\(137\) 2.54611 2.54611i 0.217529 0.217529i −0.589927 0.807456i \(-0.700844\pi\)
0.807456 + 0.589927i \(0.200844\pi\)
\(138\) 0 0
\(139\) 16.1562i 1.37035i −0.728377 0.685177i \(-0.759725\pi\)
0.728377 0.685177i \(-0.240275\pi\)
\(140\) −0.547870 0.269295i −0.0463035 0.0227596i
\(141\) 0 0
\(142\) 4.47454 + 4.47454i 0.375495 + 0.375495i
\(143\) −2.76869 2.76869i −0.231529 0.231529i
\(144\) 0 0
\(145\) −4.73155 13.8794i −0.392934 1.15262i
\(146\) 18.7329i 1.55035i
\(147\) 0 0
\(148\) 0.101474 0.101474i 0.00834110 0.00834110i
\(149\) 17.1931 1.40851 0.704257 0.709945i \(-0.251280\pi\)
0.704257 + 0.709945i \(0.251280\pi\)
\(150\) 0 0
\(151\) −1.67352 −0.136189 −0.0680947 0.997679i \(-0.521692\pi\)
−0.0680947 + 0.997679i \(0.521692\pi\)
\(152\) 6.56617 6.56617i 0.532587 0.532587i
\(153\) 0 0
\(154\) 11.3753i 0.916651i
\(155\) 5.68626 + 16.6799i 0.456731 + 1.33976i
\(156\) 0 0
\(157\) 1.93131 + 1.93131i 0.154135 + 0.154135i 0.779962 0.625827i \(-0.215238\pi\)
−0.625827 + 0.779962i \(0.715238\pi\)
\(158\) −4.22143 4.22143i −0.335839 0.335839i
\(159\) 0 0
\(160\) −0.631671 0.310485i −0.0499380 0.0245460i
\(161\) 25.4325i 2.00436i
\(162\) 0 0
\(163\) 2.88877 2.88877i 0.226266 0.226266i −0.584865 0.811131i \(-0.698853\pi\)
0.811131 + 0.584865i \(0.198853\pi\)
\(164\) 0.349182 0.0272665
\(165\) 0 0
\(166\) −15.7095 −1.21929
\(167\) 10.5238 10.5238i 0.814359 0.814359i −0.170925 0.985284i \(-0.554676\pi\)
0.985284 + 0.170925i \(0.0546757\pi\)
\(168\) 0 0
\(169\) 7.14032i 0.549255i
\(170\) 3.60186 1.22789i 0.276250 0.0941751i
\(171\) 0 0
\(172\) −0.0823276 0.0823276i −0.00627742 0.00627742i
\(173\) −6.10575 6.10575i −0.464212 0.464212i 0.435822 0.900033i \(-0.356458\pi\)
−0.900033 + 0.435822i \(0.856458\pi\)
\(174\) 0 0
\(175\) −24.3233 3.13790i −1.83867 0.237203i
\(176\) 6.64517i 0.500899i
\(177\) 0 0
\(178\) −13.1198 + 13.1198i −0.983370 + 0.983370i
\(179\) −3.11270 −0.232654 −0.116327 0.993211i \(-0.537112\pi\)
−0.116327 + 0.993211i \(0.537112\pi\)
\(180\) 0 0
\(181\) −7.82906 −0.581929 −0.290965 0.956734i \(-0.593976\pi\)
−0.290965 + 0.956734i \(0.593976\pi\)
\(182\) 12.0374 12.0374i 0.892275 0.892275i
\(183\) 0 0
\(184\) 14.4544i 1.06559i
\(185\) 2.54311 5.17387i 0.186973 0.380391i
\(186\) 0 0
\(187\) 1.35762 + 1.35762i 0.0992789 + 0.0992789i
\(188\) 0.127957 + 0.127957i 0.00933222 + 0.00933222i
\(189\) 0 0
\(190\) −4.71085 + 9.58405i −0.341761 + 0.695300i
\(191\) 13.1341i 0.950353i 0.879891 + 0.475176i \(0.157616\pi\)
−0.879891 + 0.475176i \(0.842384\pi\)
\(192\) 0 0
\(193\) −4.26234 + 4.26234i −0.306810 + 0.306810i −0.843671 0.536861i \(-0.819610\pi\)
0.536861 + 0.843671i \(0.319610\pi\)
\(194\) −6.40614 −0.459934
\(195\) 0 0
\(196\) 0.949499 0.0678214
\(197\) 18.4191 18.4191i 1.31230 1.31230i 0.392590 0.919714i \(-0.371579\pi\)
0.919714 0.392590i \(-0.128421\pi\)
\(198\) 0 0
\(199\) 3.57649i 0.253531i 0.991933 + 0.126765i \(0.0404596\pi\)
−0.991933 + 0.126765i \(0.959540\pi\)
\(200\) −13.8240 1.78341i −0.977504 0.126106i
\(201\) 0 0
\(202\) −2.24242 2.24242i −0.157776 0.157776i
\(203\) 22.7447 + 22.7447i 1.59637 + 1.59637i
\(204\) 0 0
\(205\) 13.2775 4.52636i 0.927339 0.316134i
\(206\) 2.92337i 0.203681i
\(207\) 0 0
\(208\) 7.03195 7.03195i 0.487578 0.487578i
\(209\) −5.38805 −0.372699
\(210\) 0 0
\(211\) 21.9087 1.50826 0.754130 0.656725i \(-0.228059\pi\)
0.754130 + 0.656725i \(0.228059\pi\)
\(212\) 0.0336878 0.0336878i 0.00231369 0.00231369i
\(213\) 0 0
\(214\) 23.0418i 1.57511i
\(215\) −4.19766 2.06328i −0.286278 0.140714i
\(216\) 0 0
\(217\) −27.3341 27.3341i −1.85556 1.85556i
\(218\) 9.99386 + 9.99386i 0.676869 + 0.676869i
\(219\) 0 0
\(220\) 0.0649596 + 0.190550i 0.00437957 + 0.0128469i
\(221\) 2.87328i 0.193278i
\(222\) 0 0
\(223\) 3.74802 3.74802i 0.250986 0.250986i −0.570389 0.821375i \(-0.693207\pi\)
0.821375 + 0.570389i \(0.193207\pi\)
\(224\) 1.54395 0.103160
\(225\) 0 0
\(226\) −20.9985 −1.39680
\(227\) 3.12225 3.12225i 0.207231 0.207231i −0.595859 0.803089i \(-0.703188\pi\)
0.803089 + 0.595859i \(0.203188\pi\)
\(228\) 0 0
\(229\) 0.389796i 0.0257585i 0.999917 + 0.0128792i \(0.00409970\pi\)
−0.999917 + 0.0128792i \(0.995900\pi\)
\(230\) 5.36380 + 15.7340i 0.353678 + 1.03747i
\(231\) 0 0
\(232\) 12.9268 + 12.9268i 0.848688 + 0.848688i
\(233\) 4.33038 + 4.33038i 0.283692 + 0.283692i 0.834580 0.550887i \(-0.185711\pi\)
−0.550887 + 0.834580i \(0.685711\pi\)
\(234\) 0 0
\(235\) 6.52417 + 3.20683i 0.425590 + 0.209190i
\(236\) 0.341469i 0.0222277i
\(237\) 0 0
\(238\) −5.90253 + 5.90253i −0.382604 + 0.382604i
\(239\) −29.9756 −1.93896 −0.969479 0.245175i \(-0.921155\pi\)
−0.969479 + 0.245175i \(0.921155\pi\)
\(240\) 0 0
\(241\) 2.94744 0.189861 0.0949306 0.995484i \(-0.469737\pi\)
0.0949306 + 0.995484i \(0.469737\pi\)
\(242\) 8.49946 8.49946i 0.546366 0.546366i
\(243\) 0 0
\(244\) 0.552056i 0.0353418i
\(245\) 36.1043 12.3081i 2.30662 0.786337i
\(246\) 0 0
\(247\) −5.70166 5.70166i −0.362788 0.362788i
\(248\) −15.5351 15.5351i −0.986483 0.986483i
\(249\) 0 0
\(250\) 15.7096 3.18857i 0.993560 0.201663i
\(251\) 17.0361i 1.07531i 0.843166 + 0.537653i \(0.180689\pi\)
−0.843166 + 0.537653i \(0.819311\pi\)
\(252\) 0 0
\(253\) −5.93048 + 5.93048i −0.372846 + 0.372846i
\(254\) 5.46559 0.342942
\(255\) 0 0
\(256\) 1.33483 0.0834267
\(257\) 18.4379 18.4379i 1.15013 1.15013i 0.163598 0.986527i \(-0.447690\pi\)
0.986527 0.163598i \(-0.0523100\pi\)
\(258\) 0 0
\(259\) 12.6462i 0.785794i
\(260\) −0.132901 + 0.270382i −0.00824217 + 0.0167684i
\(261\) 0 0
\(262\) 9.90554 + 9.90554i 0.611966 + 0.611966i
\(263\) −6.04753 6.04753i −0.372907 0.372907i 0.495628 0.868535i \(-0.334938\pi\)
−0.868535 + 0.495628i \(0.834938\pi\)
\(264\) 0 0
\(265\) 0.844276 1.71765i 0.0518635 0.105514i
\(266\) 23.4257i 1.43632i
\(267\) 0 0
\(268\) −0.196152 + 0.196152i −0.0119819 + 0.0119819i
\(269\) 11.4103 0.695699 0.347850 0.937550i \(-0.386912\pi\)
0.347850 + 0.937550i \(0.386912\pi\)
\(270\) 0 0
\(271\) 11.4430 0.695116 0.347558 0.937659i \(-0.387011\pi\)
0.347558 + 0.937659i \(0.387011\pi\)
\(272\) −3.44810 + 3.44810i −0.209072 + 0.209072i
\(273\) 0 0
\(274\) 5.16259i 0.311884i
\(275\) 4.94011 + 6.40354i 0.297900 + 0.386148i
\(276\) 0 0
\(277\) −16.0589 16.0589i −0.964883 0.964883i 0.0345209 0.999404i \(-0.489009\pi\)
−0.999404 + 0.0345209i \(0.989009\pi\)
\(278\) −16.3795 16.3795i −0.982377 0.982377i
\(279\) 0 0
\(280\) 28.9398 9.86571i 1.72948 0.589589i
\(281\) 11.6774i 0.696614i −0.937381 0.348307i \(-0.886757\pi\)
0.937381 0.348307i \(-0.113243\pi\)
\(282\) 0 0
\(283\) −2.83612 + 2.83612i −0.168590 + 0.168590i −0.786359 0.617769i \(-0.788037\pi\)
0.617769 + 0.786359i \(0.288037\pi\)
\(284\) 0.245660 0.0145773
\(285\) 0 0
\(286\) −5.61390 −0.331957
\(287\) −21.7584 + 21.7584i −1.28436 + 1.28436i
\(288\) 0 0
\(289\) 15.5911i 0.917123i
\(290\) −18.8681 9.27425i −1.10797 0.544603i
\(291\) 0 0
\(292\) −0.514235 0.514235i −0.0300933 0.0300933i
\(293\) 13.5176 + 13.5176i 0.789709 + 0.789709i 0.981446 0.191738i \(-0.0614122\pi\)
−0.191738 + 0.981446i \(0.561412\pi\)
\(294\) 0 0
\(295\) 4.42637 + 12.9842i 0.257713 + 0.755969i
\(296\) 7.18737i 0.417757i
\(297\) 0 0
\(298\) 17.4307 17.4307i 1.00973 1.00973i
\(299\) −12.5513 −0.725862
\(300\) 0 0
\(301\) 10.2601 0.591380
\(302\) −1.69665 + 1.69665i −0.0976313 + 0.0976313i
\(303\) 0 0
\(304\) 13.6846i 0.784868i
\(305\) 7.15616 + 20.9917i 0.409761 + 1.20198i
\(306\) 0 0
\(307\) 4.76401 + 4.76401i 0.271896 + 0.271896i 0.829863 0.557967i \(-0.188418\pi\)
−0.557967 + 0.829863i \(0.688418\pi\)
\(308\) −0.312263 0.312263i −0.0177928 0.0177928i
\(309\) 0 0
\(310\) 22.6752 + 11.1456i 1.28787 + 0.633026i
\(311\) 12.9831i 0.736203i −0.929786 0.368102i \(-0.880008\pi\)
0.929786 0.368102i \(-0.119992\pi\)
\(312\) 0 0
\(313\) 5.66676 5.66676i 0.320304 0.320304i −0.528579 0.848884i \(-0.677275\pi\)
0.848884 + 0.528579i \(0.177275\pi\)
\(314\) 3.91600 0.220992
\(315\) 0 0
\(316\) −0.231764 −0.0130377
\(317\) −14.1392 + 14.1392i −0.794135 + 0.794135i −0.982164 0.188029i \(-0.939790\pi\)
0.188029 + 0.982164i \(0.439790\pi\)
\(318\) 0 0
\(319\) 10.6075i 0.593904i
\(320\) 16.4346 5.60265i 0.918724 0.313197i
\(321\) 0 0
\(322\) −25.7840 25.7840i −1.43689 1.43689i
\(323\) 2.79579 + 2.79579i 0.155562 + 0.155562i
\(324\) 0 0
\(325\) −1.54860 + 12.0039i −0.0859009 + 0.665857i
\(326\) 5.85737i 0.324410i
\(327\) 0 0
\(328\) −12.3662 + 12.3662i −0.682811 + 0.682811i
\(329\) −15.9466 −0.879165
\(330\) 0 0
\(331\) 12.6378 0.694634 0.347317 0.937748i \(-0.387093\pi\)
0.347317 + 0.937748i \(0.387093\pi\)
\(332\) −0.431239 + 0.431239i −0.0236673 + 0.0236673i
\(333\) 0 0
\(334\) 21.3385i 1.16759i
\(335\) −4.91593 + 10.0013i −0.268586 + 0.546428i
\(336\) 0 0
\(337\) 10.9708 + 10.9708i 0.597618 + 0.597618i 0.939678 0.342060i \(-0.111125\pi\)
−0.342060 + 0.939678i \(0.611125\pi\)
\(338\) 7.23900 + 7.23900i 0.393749 + 0.393749i
\(339\) 0 0
\(340\) 0.0651676 0.132581i 0.00353421 0.00719022i
\(341\) 12.7478i 0.690331i
\(342\) 0 0
\(343\) −34.8872 + 34.8872i −1.88373 + 1.88373i
\(344\) 5.83124 0.314399
\(345\) 0 0
\(346\) −12.3803 −0.665567
\(347\) −12.6764 + 12.6764i −0.680503 + 0.680503i −0.960114 0.279610i \(-0.909795\pi\)
0.279610 + 0.960114i \(0.409795\pi\)
\(348\) 0 0
\(349\) 13.0190i 0.696891i −0.937329 0.348445i \(-0.886710\pi\)
0.937329 0.348445i \(-0.113290\pi\)
\(350\) −27.8407 + 21.4782i −1.48815 + 1.14806i
\(351\) 0 0
\(352\) −0.360026 0.360026i −0.0191895 0.0191895i
\(353\) 11.6752 + 11.6752i 0.621406 + 0.621406i 0.945891 0.324485i \(-0.105191\pi\)
−0.324485 + 0.945891i \(0.605191\pi\)
\(354\) 0 0
\(355\) 9.34111 3.18443i 0.495775 0.169012i
\(356\) 0.720300i 0.0381758i
\(357\) 0 0
\(358\) −3.15571 + 3.15571i −0.166785 + 0.166785i
\(359\) 7.45388 0.393401 0.196700 0.980464i \(-0.436977\pi\)
0.196700 + 0.980464i \(0.436977\pi\)
\(360\) 0 0
\(361\) 7.90419 0.416010
\(362\) −7.93725 + 7.93725i −0.417173 + 0.417173i
\(363\) 0 0
\(364\) 0.660877i 0.0346394i
\(365\) −26.2194 12.8876i −1.37239 0.674570i
\(366\) 0 0
\(367\) 8.39436 + 8.39436i 0.438182 + 0.438182i 0.891400 0.453218i \(-0.149724\pi\)
−0.453218 + 0.891400i \(0.649724\pi\)
\(368\) −15.0623 15.0623i −0.785177 0.785177i
\(369\) 0 0
\(370\) −2.66711 7.82363i −0.138657 0.406731i
\(371\) 4.19834i 0.217967i
\(372\) 0 0
\(373\) 17.5386 17.5386i 0.908115 0.908115i −0.0880047 0.996120i \(-0.528049\pi\)
0.996120 + 0.0880047i \(0.0280491\pi\)
\(374\) 2.75276 0.142342
\(375\) 0 0
\(376\) −9.06316 −0.467397
\(377\) 11.2249 11.2249i 0.578110 0.578110i
\(378\) 0 0
\(379\) 7.68175i 0.394585i 0.980345 + 0.197292i \(0.0632149\pi\)
−0.980345 + 0.197292i \(0.936785\pi\)
\(380\) 0.133774 + 0.392408i 0.00686244 + 0.0201301i
\(381\) 0 0
\(382\) 13.3156 + 13.3156i 0.681288 + 0.681288i
\(383\) 3.13137 + 3.13137i 0.160006 + 0.160006i 0.782569 0.622564i \(-0.213909\pi\)
−0.622564 + 0.782569i \(0.713909\pi\)
\(384\) 0 0
\(385\) −15.9214 7.82587i −0.811432 0.398843i
\(386\) 8.64249i 0.439891i
\(387\) 0 0
\(388\) −0.175854 + 0.175854i −0.00892765 + 0.00892765i
\(389\) 2.96156 0.150157 0.0750785 0.997178i \(-0.476079\pi\)
0.0750785 + 0.997178i \(0.476079\pi\)
\(390\) 0 0
\(391\) 6.15451 0.311247
\(392\) −33.6264 + 33.6264i −1.69839 + 1.69839i
\(393\) 0 0
\(394\) 37.3472i 1.88153i
\(395\) −8.81271 + 3.00430i −0.443415 + 0.151162i
\(396\) 0 0
\(397\) 2.38141 + 2.38141i 0.119520 + 0.119520i 0.764337 0.644817i \(-0.223067\pi\)
−0.644817 + 0.764337i \(0.723067\pi\)
\(398\) 3.62592 + 3.62592i 0.181751 + 0.181751i
\(399\) 0 0
\(400\) −16.2638 + 12.5470i −0.813190 + 0.627349i
\(401\) 38.7685i 1.93601i 0.250940 + 0.968003i \(0.419260\pi\)
−0.250940 + 0.968003i \(0.580740\pi\)
\(402\) 0 0
\(403\) −13.4898 + 13.4898i −0.671973 + 0.671973i
\(404\) −0.123113 −0.00612510
\(405\) 0 0
\(406\) 46.1181 2.28880
\(407\) 2.94889 2.94889i 0.146171 0.146171i
\(408\) 0 0
\(409\) 23.9460i 1.18405i 0.805919 + 0.592026i \(0.201672\pi\)
−0.805919 + 0.592026i \(0.798328\pi\)
\(410\) 8.87206 18.0499i 0.438160 0.891420i
\(411\) 0 0
\(412\) −0.0802490 0.0802490i −0.00395359 0.00395359i
\(413\) −21.2777 21.2777i −1.04701 1.04701i
\(414\) 0 0
\(415\) −10.8076 + 21.9877i −0.530525 + 1.07933i
\(416\) 0.761963i 0.0373583i
\(417\) 0 0
\(418\) −5.46251 + 5.46251i −0.267180 + 0.267180i
\(419\) 2.81461 0.137503 0.0687513 0.997634i \(-0.478098\pi\)
0.0687513 + 0.997634i \(0.478098\pi\)
\(420\) 0 0
\(421\) −27.4241 −1.33657 −0.668285 0.743906i \(-0.732971\pi\)
−0.668285 + 0.743906i \(0.732971\pi\)
\(422\) 22.2115 22.2115i 1.08124 1.08124i
\(423\) 0 0
\(424\) 2.38610i 0.115879i
\(425\) 0.759352 5.88608i 0.0368340 0.285517i
\(426\) 0 0
\(427\) −34.4000 34.4000i −1.66473 1.66473i
\(428\) 0.632518 + 0.632518i 0.0305739 + 0.0305739i
\(429\) 0 0
\(430\) −6.34746 + 2.16388i −0.306102 + 0.104351i
\(431\) 11.9733i 0.576733i −0.957520 0.288366i \(-0.906888\pi\)
0.957520 0.288366i \(-0.0931121\pi\)
\(432\) 0 0
\(433\) −2.03195 + 2.03195i −0.0976494 + 0.0976494i −0.754244 0.656594i \(-0.771996\pi\)
0.656594 + 0.754244i \(0.271996\pi\)
\(434\) −55.4236 −2.66042
\(435\) 0 0
\(436\) 0.548680 0.0262770
\(437\) −12.2129 + 12.2129i −0.584220 + 0.584220i
\(438\) 0 0
\(439\) 36.6162i 1.74760i −0.486287 0.873799i \(-0.661649\pi\)
0.486287 0.873799i \(-0.338351\pi\)
\(440\) −9.04886 4.44779i −0.431387 0.212040i
\(441\) 0 0
\(442\) 2.91299 + 2.91299i 0.138557 + 0.138557i
\(443\) 16.4513 + 16.4513i 0.781624 + 0.781624i 0.980105 0.198481i \(-0.0636007\pi\)
−0.198481 + 0.980105i \(0.563601\pi\)
\(444\) 0 0
\(445\) 9.33707 + 27.3891i 0.442619 + 1.29837i
\(446\) 7.59963i 0.359853i
\(447\) 0 0
\(448\) −26.9321 + 26.9321i −1.27242 + 1.27242i
\(449\) 30.9394 1.46012 0.730061 0.683383i \(-0.239492\pi\)
0.730061 + 0.683383i \(0.239492\pi\)
\(450\) 0 0
\(451\) 10.1474 0.477825
\(452\) −0.576429 + 0.576429i −0.0271129 + 0.0271129i
\(453\) 0 0
\(454\) 6.33079i 0.297119i
\(455\) −8.56678 25.1295i −0.401617 1.17809i
\(456\) 0 0
\(457\) −8.75684 8.75684i −0.409627 0.409627i 0.471981 0.881609i \(-0.343539\pi\)
−0.881609 + 0.471981i \(0.843539\pi\)
\(458\) 0.395183 + 0.395183i 0.0184657 + 0.0184657i
\(459\) 0 0
\(460\) 0.579153 + 0.284671i 0.0270032 + 0.0132729i
\(461\) 13.7285i 0.639398i 0.947519 + 0.319699i \(0.103582\pi\)
−0.947519 + 0.319699i \(0.896418\pi\)
\(462\) 0 0
\(463\) −23.2746 + 23.2746i −1.08166 + 1.08166i −0.0853083 + 0.996355i \(0.527188\pi\)
−0.996355 + 0.0853083i \(0.972812\pi\)
\(464\) 26.9410 1.25070
\(465\) 0 0
\(466\) 8.78044 0.406746
\(467\) 7.35920 7.35920i 0.340543 0.340543i −0.516028 0.856572i \(-0.672590\pi\)
0.856572 + 0.516028i \(0.172590\pi\)
\(468\) 0 0
\(469\) 24.4455i 1.12879i
\(470\) 9.86548 3.36319i 0.455061 0.155132i
\(471\) 0 0
\(472\) −12.0931 12.0931i −0.556629 0.556629i
\(473\) −2.39249 2.39249i −0.110007 0.110007i
\(474\) 0 0
\(475\) 10.1734 + 13.1870i 0.466786 + 0.605063i
\(476\) 0.324059i 0.0148532i
\(477\) 0 0
\(478\) −30.3898 + 30.3898i −1.39000 + 1.39000i
\(479\) 28.1197 1.28482 0.642410 0.766361i \(-0.277935\pi\)
0.642410 + 0.766361i \(0.277935\pi\)
\(480\) 0 0
\(481\) 6.24107 0.284568
\(482\) 2.98817 2.98817i 0.136107 0.136107i
\(483\) 0 0
\(484\) 0.466635i 0.0212107i
\(485\) −4.40722 + 8.96633i −0.200122 + 0.407140i
\(486\) 0 0
\(487\) −16.9394 16.9394i −0.767596 0.767596i 0.210087 0.977683i \(-0.432625\pi\)
−0.977683 + 0.210087i \(0.932625\pi\)
\(488\) −19.5510 19.5510i −0.885032 0.885032i
\(489\) 0 0
\(490\) 24.1250 49.0814i 1.08986 2.21727i
\(491\) 28.3850i 1.28100i 0.767959 + 0.640498i \(0.221272\pi\)
−0.767959 + 0.640498i \(0.778728\pi\)
\(492\) 0 0
\(493\) −5.50408 + 5.50408i −0.247891 + 0.247891i
\(494\) −11.5609 −0.520150
\(495\) 0 0
\(496\) −32.3770 −1.45377
\(497\) −15.3077 + 15.3077i −0.686644 + 0.686644i
\(498\) 0 0
\(499\) 4.65424i 0.208353i −0.994559 0.104176i \(-0.966779\pi\)
0.994559 0.104176i \(-0.0332206\pi\)
\(500\) 0.343712 0.518771i 0.0153713 0.0232001i
\(501\) 0 0
\(502\) 17.2715 + 17.2715i 0.770864 + 0.770864i
\(503\) −19.7355 19.7355i −0.879964 0.879964i 0.113567 0.993530i \(-0.463772\pi\)
−0.993530 + 0.113567i \(0.963772\pi\)
\(504\) 0 0
\(505\) −4.68131 + 1.59588i −0.208316 + 0.0710158i
\(506\) 12.0249i 0.534571i
\(507\) 0 0
\(508\) 0.150035 0.150035i 0.00665674 0.00665674i
\(509\) 20.2386 0.897058 0.448529 0.893768i \(-0.351948\pi\)
0.448529 + 0.893768i \(0.351948\pi\)
\(510\) 0 0
\(511\) 64.0865 2.83502
\(512\) −15.2819 + 15.2819i −0.675373 + 0.675373i
\(513\) 0 0
\(514\) 37.3854i 1.64900i
\(515\) −4.09168 2.01118i −0.180301 0.0886234i
\(516\) 0 0
\(517\) 3.71851 + 3.71851i 0.163540 + 0.163540i
\(518\) 12.8209 + 12.8209i 0.563319 + 0.563319i
\(519\) 0 0
\(520\) −4.86888 14.2822i −0.213514 0.626317i
\(521\) 24.4368i 1.07060i 0.844663 + 0.535298i \(0.179801\pi\)
−0.844663 + 0.535298i \(0.820199\pi\)
\(522\) 0 0
\(523\) 21.7734 21.7734i 0.952084 0.952084i −0.0468197 0.998903i \(-0.514909\pi\)
0.998903 + 0.0468197i \(0.0149086\pi\)
\(524\) 0.543832 0.0237574
\(525\) 0 0
\(526\) −12.2622 −0.534658
\(527\) 6.61467 6.61467i 0.288139 0.288139i
\(528\) 0 0
\(529\) 3.88472i 0.168901i
\(530\) −0.885443 2.59733i −0.0384612 0.112821i
\(531\) 0 0
\(532\) −0.643055 0.643055i −0.0278800 0.0278800i
\(533\) 10.7381 + 10.7381i 0.465118 + 0.465118i
\(534\) 0 0
\(535\) 32.2504 + 15.8520i 1.39430 + 0.685343i
\(536\) 13.8934i 0.600105i
\(537\) 0 0
\(538\) 11.5680 11.5680i 0.498732 0.498732i
\(539\) 27.5931 1.18852
\(540\) 0 0
\(541\) −22.4453 −0.964998 −0.482499 0.875897i \(-0.660271\pi\)
−0.482499 + 0.875897i \(0.660271\pi\)
\(542\) 11.6012 11.6012i 0.498314 0.498314i
\(543\) 0 0
\(544\) 0.373626i 0.0160191i
\(545\) 20.8633 7.11240i 0.893686 0.304662i
\(546\) 0 0
\(547\) −6.74486 6.74486i −0.288389 0.288389i 0.548054 0.836443i \(-0.315369\pi\)
−0.836443 + 0.548054i \(0.815369\pi\)
\(548\) −0.141718 0.141718i −0.00605388 0.00605388i
\(549\) 0 0
\(550\) 11.5004 + 1.48365i 0.490379 + 0.0632629i
\(551\) 21.8443i 0.930600i
\(552\) 0 0
\(553\) 14.4418 14.4418i 0.614126 0.614126i
\(554\) −32.5616 −1.38341
\(555\) 0 0
\(556\) −0.899263 −0.0381373
\(557\) −6.89207 + 6.89207i −0.292026 + 0.292026i −0.837880 0.545854i \(-0.816205\pi\)
0.545854 + 0.837880i \(0.316205\pi\)
\(558\) 0 0
\(559\) 5.06349i 0.214163i
\(560\) 19.8763 40.4375i 0.839925 1.70880i
\(561\) 0 0
\(562\) −11.8387 11.8387i −0.499387 0.499387i
\(563\) −12.2175 12.2175i −0.514905 0.514905i 0.401120 0.916025i \(-0.368621\pi\)
−0.916025 + 0.401120i \(0.868621\pi\)
\(564\) 0 0
\(565\) −14.4463 + 29.3905i −0.607762 + 1.23647i
\(566\) 5.75063i 0.241717i
\(567\) 0 0
\(568\) −8.70003 + 8.70003i −0.365045 + 0.365045i
\(569\) 28.7094 1.20356 0.601780 0.798662i \(-0.294458\pi\)
0.601780 + 0.798662i \(0.294458\pi\)
\(570\) 0 0
\(571\) −28.2097 −1.18054 −0.590270 0.807206i \(-0.700979\pi\)
−0.590270 + 0.807206i \(0.700979\pi\)
\(572\) −0.154107 + 0.154107i −0.00644352 + 0.00644352i
\(573\) 0 0
\(574\) 44.1181i 1.84146i
\(575\) 25.7122 + 3.31708i 1.07227 + 0.138332i
\(576\) 0 0
\(577\) 31.2061 + 31.2061i 1.29913 + 1.29913i 0.928969 + 0.370158i \(0.120696\pi\)
0.370158 + 0.928969i \(0.379304\pi\)
\(578\) 15.8066 + 15.8066i 0.657466 + 0.657466i
\(579\) 0 0
\(580\) −0.772533 + 0.263360i −0.0320777 + 0.0109354i
\(581\) 53.7431i 2.22964i
\(582\) 0 0
\(583\) 0.978989 0.978989i 0.0405456 0.0405456i
\(584\) 36.4231 1.50720
\(585\) 0 0
\(586\) 27.4089 1.13225
\(587\) −14.8414 + 14.8414i −0.612570 + 0.612570i −0.943615 0.331045i \(-0.892599\pi\)
0.331045 + 0.943615i \(0.392599\pi\)
\(588\) 0 0
\(589\) 26.2520i 1.08169i
\(590\) 17.6512 + 8.67608i 0.726687 + 0.357189i
\(591\) 0 0
\(592\) 7.48964 + 7.48964i 0.307822 + 0.307822i
\(593\) −5.45456 5.45456i −0.223992 0.223992i 0.586185 0.810177i \(-0.300629\pi\)
−0.810177 + 0.586185i \(0.800629\pi\)
\(594\) 0 0
\(595\) 4.20070 + 12.3222i 0.172212 + 0.505161i
\(596\) 0.956976i 0.0391993i
\(597\) 0 0
\(598\) −12.7248 + 12.7248i −0.520355 + 0.520355i
\(599\) −20.5629 −0.840176 −0.420088 0.907483i \(-0.638001\pi\)
−0.420088 + 0.907483i \(0.638001\pi\)
\(600\) 0 0
\(601\) 19.4810 0.794648 0.397324 0.917678i \(-0.369939\pi\)
0.397324 + 0.917678i \(0.369939\pi\)
\(602\) 10.4018 10.4018i 0.423948 0.423948i
\(603\) 0 0
\(604\) 0.0931491i 0.00379018i
\(605\) −6.04887 17.7436i −0.245922 0.721379i
\(606\) 0 0
\(607\) −18.3043 18.3043i −0.742948 0.742948i 0.230196 0.973144i \(-0.426063\pi\)
−0.973144 + 0.230196i \(0.926063\pi\)
\(608\) −0.741415 0.741415i −0.0300684 0.0300684i
\(609\) 0 0
\(610\) 28.5368 + 14.0267i 1.15542 + 0.567925i
\(611\) 7.86989i 0.318382i
\(612\) 0 0
\(613\) 25.3784 25.3784i 1.02503 1.02503i 0.0253472 0.999679i \(-0.491931\pi\)
0.999679 0.0253472i \(-0.00806913\pi\)
\(614\) 9.65969 0.389833
\(615\) 0 0
\(616\) 22.1175 0.891141
\(617\) 16.0954 16.0954i 0.647976 0.647976i −0.304527 0.952504i \(-0.598498\pi\)
0.952504 + 0.304527i \(0.0984985\pi\)
\(618\) 0 0
\(619\) 25.3641i 1.01947i 0.860331 + 0.509735i \(0.170257\pi\)
−0.860331 + 0.509735i \(0.829743\pi\)
\(620\) 0.928411 0.316500i 0.0372859 0.0127109i
\(621\) 0 0
\(622\) −13.1625 13.1625i −0.527768 0.527768i
\(623\) −44.8836 44.8836i −1.79823 1.79823i
\(624\) 0 0
\(625\) 6.34481 24.1815i 0.253792 0.967259i
\(626\) 11.4901i 0.459239i
\(627\) 0 0
\(628\) 0.107498 0.107498i 0.00428962 0.00428962i
\(629\) −3.06029 −0.122022
\(630\) 0 0
\(631\) −21.4057 −0.852147 −0.426074 0.904689i \(-0.640104\pi\)
−0.426074 + 0.904689i \(0.640104\pi\)
\(632\) 8.20789 8.20789i 0.326492 0.326492i
\(633\) 0 0
\(634\) 28.6691i 1.13860i
\(635\) 3.76015 7.64989i 0.149217 0.303577i
\(636\) 0 0
\(637\) 29.1991 + 29.1991i 1.15691 + 1.15691i
\(638\) −10.7541 10.7541i −0.425757 0.425757i
\(639\) 0 0
\(640\) 11.6027 23.6052i 0.458635 0.933076i
\(641\) 44.1570i 1.74410i −0.489419 0.872049i \(-0.662791\pi\)
0.489419 0.872049i \(-0.337209\pi\)
\(642\) 0 0
\(643\) 27.8297 27.8297i 1.09749 1.09749i 0.102792 0.994703i \(-0.467222\pi\)
0.994703 0.102792i \(-0.0327776\pi\)
\(644\) −1.41559 −0.0557819
\(645\) 0 0
\(646\) 5.66886 0.223038
\(647\) 1.68320 1.68320i 0.0661734 0.0661734i −0.673246 0.739419i \(-0.735100\pi\)
0.739419 + 0.673246i \(0.235100\pi\)
\(648\) 0 0
\(649\) 9.92330i 0.389523i
\(650\) 10.5998 + 13.7398i 0.415758 + 0.538919i
\(651\) 0 0
\(652\) −0.160790 0.160790i −0.00629703 0.00629703i
\(653\) 23.5783 + 23.5783i 0.922691 + 0.922691i 0.997219 0.0745277i \(-0.0237449\pi\)
−0.0745277 + 0.997219i \(0.523745\pi\)
\(654\) 0 0
\(655\) 20.6789 7.04955i 0.807993 0.275449i
\(656\) 25.7726i 1.00625i
\(657\) 0 0
\(658\) −16.1670 + 16.1670i −0.630255 + 0.630255i
\(659\) 35.8952 1.39828 0.699139 0.714986i \(-0.253567\pi\)
0.699139 + 0.714986i \(0.253567\pi\)
\(660\) 0 0
\(661\) −29.5683 −1.15007 −0.575037 0.818127i \(-0.695012\pi\)
−0.575037 + 0.818127i \(0.695012\pi\)
\(662\) 12.8124 12.8124i 0.497968 0.497968i
\(663\) 0 0
\(664\) 30.5446i 1.18536i
\(665\) −32.7876 16.1161i −1.27145 0.624956i
\(666\) 0 0
\(667\) −24.0435 24.0435i −0.930967 0.930967i
\(668\) −0.585762 0.585762i −0.0226638 0.0226638i
\(669\) 0 0
\(670\) 5.15563 + 15.1234i 0.199179 + 0.584266i
\(671\) 16.0431i 0.619337i
\(672\) 0 0
\(673\) 6.23060 6.23060i 0.240172 0.240172i −0.576749 0.816921i \(-0.695679\pi\)
0.816921 + 0.576749i \(0.195679\pi\)
\(674\) 22.2449 0.856840
\(675\) 0 0
\(676\) 0.397434 0.0152859
\(677\) 6.31135 6.31135i 0.242565 0.242565i −0.575346 0.817910i \(-0.695132\pi\)
0.817910 + 0.575346i \(0.195132\pi\)
\(678\) 0 0
\(679\) 21.9158i 0.841052i
\(680\) 2.38744 + 7.00324i 0.0915541 + 0.268562i
\(681\) 0 0
\(682\) 12.9239 + 12.9239i 0.494884 + 0.494884i
\(683\) 18.4463 + 18.4463i 0.705828 + 0.705828i 0.965655 0.259827i \(-0.0836655\pi\)
−0.259827 + 0.965655i \(0.583666\pi\)
\(684\) 0 0
\(685\) −7.22580 3.55170i −0.276084 0.135703i
\(686\) 70.7387i 2.70082i
\(687\) 0 0
\(688\) 6.07648 6.07648i 0.231664 0.231664i
\(689\) 2.07194 0.0789347
\(690\) 0 0
\(691\) −45.1966 −1.71936 −0.859679 0.510834i \(-0.829337\pi\)
−0.859679 + 0.510834i \(0.829337\pi\)
\(692\) −0.339849 + 0.339849i −0.0129191 + 0.0129191i
\(693\) 0 0
\(694\) 25.7031i 0.975677i
\(695\) −34.1941 + 11.6569i −1.29705 + 0.442172i
\(696\) 0 0
\(697\) −5.26539 5.26539i −0.199441 0.199441i
\(698\) −13.1989 13.1989i −0.499586 0.499586i
\(699\) 0 0
\(700\) −0.174657 + 1.35385i −0.00660142 + 0.0511706i
\(701\) 3.15549i 0.119181i 0.998223 + 0.0595906i \(0.0189795\pi\)
−0.998223 + 0.0595906i \(0.981020\pi\)
\(702\) 0 0
\(703\) 6.07276 6.07276i 0.229039 0.229039i
\(704\) 12.5603 0.473385
\(705\) 0 0
\(706\) 23.6730 0.890946
\(707\) 7.67147 7.67147i 0.288515 0.288515i
\(708\) 0 0
\(709\) 12.5063i 0.469684i 0.972034 + 0.234842i \(0.0754573\pi\)
−0.972034 + 0.234842i \(0.924543\pi\)
\(710\) 6.24177 12.6986i 0.234249 0.476572i
\(711\) 0 0
\(712\) −25.5093 25.5093i −0.956003 0.956003i
\(713\) 28.8948 + 28.8948i 1.08212 + 1.08212i
\(714\) 0 0
\(715\) −3.86218 + 7.85747i −0.144438 + 0.293853i
\(716\) 0.173254i 0.00647481i
\(717\) 0 0
\(718\) 7.55689 7.55689i 0.282021 0.282021i
\(719\) −49.6035 −1.84990 −0.924949 0.380092i \(-0.875892\pi\)
−0.924949 + 0.380092i \(0.875892\pi\)
\(720\) 0 0
\(721\) 10.0010 0.372458
\(722\) 8.01342 8.01342i 0.298229 0.298229i
\(723\) 0 0
\(724\) 0.435769i 0.0161952i
\(725\) −25.9613 + 20.0283i −0.964180 + 0.743833i
\(726\) 0 0
\(727\) −31.2570 31.2570i −1.15926 1.15926i −0.984636 0.174621i \(-0.944130\pi\)
−0.174621 0.984636i \(-0.555870\pi\)
\(728\) 23.4049 + 23.4049i 0.867443 + 0.867443i
\(729\) 0 0
\(730\) −39.6475 + 13.5160i −1.46742 + 0.500251i
\(731\) 2.48287i 0.0918322i
\(732\) 0 0
\(733\) −9.43633 + 9.43633i −0.348539 + 0.348539i −0.859565 0.511026i \(-0.829265\pi\)
0.511026 + 0.859565i \(0.329265\pi\)
\(734\) 17.0207 0.628247
\(735\) 0 0
\(736\) −1.63211 −0.0601604
\(737\) −5.70031 + 5.70031i −0.209974 + 0.209974i
\(738\) 0 0
\(739\) 31.2347i 1.14899i −0.818509 0.574493i \(-0.805199\pi\)
0.818509 0.574493i \(-0.194801\pi\)
\(740\) −0.287980 0.141551i −0.0105864 0.00520352i
\(741\) 0 0
\(742\) 4.25636 + 4.25636i 0.156256 + 0.156256i
\(743\) 7.92674 + 7.92674i 0.290804 + 0.290804i 0.837398 0.546594i \(-0.184076\pi\)
−0.546594 + 0.837398i \(0.684076\pi\)
\(744\) 0 0
\(745\) −12.4050 36.3886i −0.454486 1.33317i
\(746\) 35.5620i 1.30202i
\(747\) 0 0
\(748\) 0.0755657 0.0755657i 0.00276296 0.00276296i
\(749\) −78.8275 −2.88029
\(750\) 0 0
\(751\) −24.6957 −0.901158 −0.450579 0.892737i \(-0.648782\pi\)
−0.450579 + 0.892737i \(0.648782\pi\)
\(752\) −9.44432 + 9.44432i −0.344399 + 0.344399i
\(753\) 0 0
\(754\) 22.7600i 0.828870i
\(755\) 1.20747 + 3.54195i 0.0439443 + 0.128905i
\(756\) 0 0
\(757\) −2.00912 2.00912i −0.0730226 0.0730226i 0.669652 0.742675i \(-0.266443\pi\)
−0.742675 + 0.669652i \(0.766443\pi\)
\(758\) 7.78791 + 7.78791i 0.282870 + 0.282870i
\(759\) 0 0
\(760\) −18.6346 9.15949i −0.675950 0.332250i
\(761\) 15.4780i 0.561077i 0.959843 + 0.280539i \(0.0905131\pi\)
−0.959843 + 0.280539i \(0.909487\pi\)
\(762\) 0 0
\(763\) −34.1896 + 34.1896i −1.23775 + 1.23775i
\(764\) 0.731052 0.0264486
\(765\) 0 0
\(766\) 6.34929 0.229409
\(767\) −10.5009 + 10.5009i −0.379165 + 0.379165i
\(768\) 0 0
\(769\) 28.8170i 1.03917i −0.854420 0.519584i \(-0.826087\pi\)
0.854420 0.519584i \(-0.173913\pi\)
\(770\) −24.0755 + 8.20745i −0.867621 + 0.295776i
\(771\) 0 0
\(772\) 0.237244 + 0.237244i 0.00853860 + 0.00853860i
\(773\) −28.0031 28.0031i −1.00720 1.00720i −0.999974 0.00722642i \(-0.997700\pi\)
−0.00722642 0.999974i \(-0.502300\pi\)
\(774\) 0 0
\(775\) 31.1997 24.0695i 1.12073 0.864602i
\(776\) 12.4557i 0.447134i
\(777\) 0 0
\(778\) 3.00249 3.00249i 0.107644 0.107644i
\(779\) 20.8970 0.748713
\(780\) 0 0
\(781\) 7.13904 0.255455
\(782\) 6.23956 6.23956i 0.223126 0.223126i
\(783\) 0 0
\(784\) 70.0812i 2.50290i
\(785\) 2.69408 5.48101i 0.0961558 0.195626i
\(786\) 0 0
\(787\) 31.9257 + 31.9257i 1.13803 + 1.13803i 0.988803 + 0.149224i \(0.0476777\pi\)
0.149224 + 0.988803i \(0.452322\pi\)
\(788\) −1.02521 1.02521i −0.0365217 0.0365217i
\(789\) 0 0
\(790\) −5.88868 + 11.9803i −0.209510 + 0.426240i
\(791\) 71.8373i 2.55424i
\(792\) 0 0
\(793\) −16.9769 + 16.9769i −0.602867 + 0.602867i
\(794\) 4.82864 0.171362
\(795\) 0 0
\(796\) 0.199069 0.00705583
\(797\) 0.999124 0.999124i 0.0353908 0.0353908i −0.689190 0.724581i \(-0.742033\pi\)
0.724581 + 0.689190i \(0.242033\pi\)
\(798\) 0 0
\(799\) 3.85898i 0.136521i
\(800\) −0.201372 + 1.56093i −0.00711958 + 0.0551871i
\(801\) 0 0
\(802\) 39.3042 + 39.3042i 1.38788 + 1.38788i
\(803\) −14.9440 14.9440i −0.527362 0.527362i
\(804\) 0 0
\(805\) −53.8270 + 18.3499i −1.89715 + 0.646749i
\(806\) 27.3524i 0.963446i
\(807\) 0 0
\(808\) 4.36003 4.36003i 0.153385 0.153385i
\(809\) 11.8160 0.415430 0.207715 0.978189i \(-0.433397\pi\)
0.207715 + 0.978189i \(0.433397\pi\)
\(810\) 0 0
\(811\) 35.4386 1.24442 0.622209 0.782851i \(-0.286235\pi\)
0.622209 + 0.782851i \(0.286235\pi\)
\(812\) 1.26598 1.26598i 0.0444273 0.0444273i
\(813\) 0 0
\(814\) 5.97929i 0.209574i
\(815\) −8.19825 4.02969i −0.287172 0.141154i
\(816\) 0 0
\(817\) −4.92694 4.92694i −0.172372 0.172372i
\(818\) 24.2769 + 24.2769i 0.848822 + 0.848822i
\(819\) 0 0
\(820\) −0.251939 0.739031i −0.00879810 0.0258081i
\(821\) 32.3725i 1.12981i −0.825156 0.564905i \(-0.808913\pi\)
0.825156 0.564905i \(-0.191087\pi\)
\(822\) 0 0
\(823\) −17.7970 + 17.7970i −0.620366 + 0.620366i −0.945625 0.325259i \(-0.894549\pi\)
0.325259 + 0.945625i \(0.394549\pi\)
\(824\) 5.68402 0.198012
\(825\) 0 0
\(826\) −43.1436 −1.50116
\(827\) 6.35269 6.35269i 0.220905 0.220905i −0.587975 0.808879i \(-0.700075\pi\)
0.808879 + 0.587975i \(0.200075\pi\)
\(828\) 0 0
\(829\) 43.0187i 1.49410i −0.664768 0.747050i \(-0.731470\pi\)
0.664768 0.747050i \(-0.268530\pi\)
\(830\) 11.3346 + 33.2485i 0.393429 + 1.15407i
\(831\) 0 0
\(832\) 13.2914 + 13.2914i 0.460797 + 0.460797i
\(833\) −14.3177 14.3177i −0.496079 0.496079i
\(834\) 0 0
\(835\) −29.8664 14.6802i −1.03357 0.508030i
\(836\) 0.299902i 0.0103723i
\(837\) 0 0
\(838\) 2.85351 2.85351i 0.0985727 0.0985727i
\(839\) 0.0133946 0.000462433 0.000231217 1.00000i \(-0.499926\pi\)
0.000231217 1.00000i \(0.499926\pi\)
\(840\) 0 0
\(841\) 14.0050 0.482930
\(842\) −27.8031 + 27.8031i −0.958158 + 0.958158i
\(843\) 0 0
\(844\) 1.21945i 0.0419753i
\(845\) 15.1122 5.15183i 0.519876 0.177228i
\(846\) 0 0
\(847\) 29.0772 + 29.0772i 0.999104 + 0.999104i
\(848\) 2.48645 + 2.48645i 0.0853850 + 0.0853850i
\(849\) 0 0
\(850\) −5.19758 6.73727i −0.178276 0.231087i
\(851\) 13.3683i 0.458258i
\(852\) 0 0
\(853\) 26.5731 26.5731i 0.909845 0.909845i −0.0864147 0.996259i \(-0.527541\pi\)
0.996259 + 0.0864147i \(0.0275410\pi\)
\(854\) −69.7507 −2.38682
\(855\) 0 0
\(856\) −44.8011 −1.53127
\(857\) −6.90887 + 6.90887i −0.236003 + 0.236003i −0.815193 0.579190i \(-0.803369\pi\)
0.579190 + 0.815193i \(0.303369\pi\)
\(858\) 0 0
\(859\) 22.2489i 0.759123i 0.925166 + 0.379562i \(0.123925\pi\)
−0.925166 + 0.379562i \(0.876075\pi\)
\(860\) −0.114843 + 0.233644i −0.00391611 + 0.00796718i
\(861\) 0 0
\(862\) −12.1387 12.1387i −0.413447 0.413447i
\(863\) 30.8443 + 30.8443i 1.04995 + 1.04995i 0.998685 + 0.0512663i \(0.0163257\pi\)
0.0512663 + 0.998685i \(0.483674\pi\)
\(864\) 0 0
\(865\) −8.51722 + 17.3280i −0.289594 + 0.589169i
\(866\) 4.12007i 0.140006i
\(867\) 0 0
\(868\) −1.52143 + 1.52143i −0.0516406 + 0.0516406i
\(869\) −6.73520 −0.228476
\(870\) 0 0
\(871\) −12.0642 −0.408780
\(872\) −19.4315 + 19.4315i −0.658032 + 0.658032i
\(873\) 0 0
\(874\) 24.7633i 0.837630i
\(875\) 10.9083 + 53.7434i 0.368768 + 1.81686i
\(876\) 0 0
\(877\) 21.2794 + 21.2794i 0.718554 + 0.718554i 0.968309 0.249755i \(-0.0803500\pi\)
−0.249755 + 0.968309i \(0.580350\pi\)
\(878\) −37.1223 37.1223i −1.25282 1.25282i
\(879\) 0 0
\(880\) −14.0643 + 4.79457i −0.474106 + 0.161625i
\(881\) 20.9422i 0.705560i −0.935706 0.352780i \(-0.885236\pi\)
0.935706 0.352780i \(-0.114764\pi\)
\(882\) 0 0
\(883\) 6.78718 6.78718i 0.228407 0.228407i −0.583620 0.812027i \(-0.698364\pi\)
0.812027 + 0.583620i \(0.198364\pi\)
\(884\) 0.159928 0.00537896
\(885\) 0 0
\(886\) 33.3573 1.12066
\(887\) −27.9379 + 27.9379i −0.938062 + 0.938062i −0.998191 0.0601287i \(-0.980849\pi\)
0.0601287 + 0.998191i \(0.480849\pi\)
\(888\) 0 0
\(889\) 18.6981i 0.627115i
\(890\) 37.2337 + 18.3015i 1.24808 + 0.613467i
\(891\) 0 0
\(892\) −0.208617 0.208617i −0.00698500 0.00698500i
\(893\) 7.65766 + 7.65766i 0.256254 + 0.256254i
\(894\) 0 0
\(895\) 2.24585 + 6.58791i 0.0750705 + 0.220209i
\(896\) 57.6966i 1.92751i
\(897\) 0 0
\(898\) 31.3670 31.3670i 1.04673 1.04673i
\(899\) −51.6823 −1.72370
\(900\) 0 0
\(901\) −1.01597 −0.0338469
\(902\) 10.2877 10.2877i 0.342542 0.342542i
\(903\) 0 0
\(904\) 40.8283i 1.35793i
\(905\) 5.64876 + 16.5699i 0.187771 + 0.550803i
\(906\) 0 0
\(907\) −29.9894 29.9894i −0.995783 0.995783i 0.00420831 0.999991i \(-0.498660\pi\)
−0.999991 + 0.00420831i \(0.998660\pi\)
\(908\) −0.173786 0.173786i −0.00576729 0.00576729i
\(909\) 0 0
\(910\) −34.1620 16.7916i −1.13246 0.556638i
\(911\) 26.9986i 0.894502i 0.894408 + 0.447251i \(0.147597\pi\)
−0.894408 + 0.447251i \(0.852403\pi\)
\(912\) 0 0
\(913\) −12.5321 + 12.5321i −0.414751 + 0.414751i
\(914\) −17.7557 −0.587306
\(915\) 0 0
\(916\) 0.0216962 0.000716864
\(917\) −33.8875 + 33.8875i −1.11906 + 1.11906i
\(918\) 0 0
\(919\) 13.9943i 0.461630i 0.972998 + 0.230815i \(0.0741392\pi\)
−0.972998 + 0.230815i \(0.925861\pi\)
\(920\) −30.5922 + 10.4290i −1.00860 + 0.343835i
\(921\) 0 0
\(922\) 13.9182 + 13.9182i 0.458371 + 0.458371i
\(923\) 7.55457 + 7.55457i 0.248662 + 0.248662i
\(924\) 0 0
\(925\) −12.7852 1.64939i −0.420375 0.0542318i
\(926\) 47.1925i 1.55084i
\(927\) 0 0
\(928\) 1.45963 1.45963i 0.0479145 0.0479145i
\(929\) −24.9978 −0.820152 −0.410076 0.912051i \(-0.634498\pi\)
−0.410076 + 0.912051i \(0.634498\pi\)
\(930\) 0 0
\(931\) 56.8234 1.86231
\(932\) 0.241031 0.241031i 0.00789523 0.00789523i
\(933\) 0 0
\(934\) 14.9218i 0.488257i
\(935\) 1.89381 3.85289i 0.0619342 0.126003i
\(936\) 0 0
\(937\) −4.06172 4.06172i −0.132691 0.132691i 0.637642 0.770333i \(-0.279910\pi\)
−0.770333 + 0.637642i \(0.779910\pi\)
\(938\) −24.7833 24.7833i −0.809203 0.809203i
\(939\) 0 0
\(940\) 0.178494 0.363139i 0.00582182 0.0118443i
\(941\) 36.8257i 1.20048i −0.799819 0.600242i \(-0.795071\pi\)
0.799819 0.600242i \(-0.204929\pi\)
\(942\) 0 0
\(943\) 23.0008 23.0008i 0.749008 0.749008i
\(944\) −25.2033 −0.820298
\(945\) 0 0
\(946\) −4.85111 −0.157723
\(947\) 25.1992 25.1992i 0.818863 0.818863i −0.167080 0.985943i \(-0.553434\pi\)
0.985943 + 0.167080i \(0.0534338\pi\)
\(948\) 0 0
\(949\) 31.6276i 1.02668i
\(950\) 23.6832 + 3.05533i 0.768386 + 0.0991279i
\(951\) 0 0
\(952\) −11.4765 11.4765i −0.371956 0.371956i
\(953\) 21.3106 + 21.3106i 0.690317 + 0.690317i 0.962302 0.271985i \(-0.0876800\pi\)
−0.271985 + 0.962302i \(0.587680\pi\)
\(954\) 0 0
\(955\) 27.7979 9.47645i 0.899520 0.306651i
\(956\) 1.66845i 0.0539617i
\(957\) 0 0
\(958\) 28.5083 28.5083i 0.921060 0.921060i
\(959\) 17.6616 0.570321
\(960\) 0 0
\(961\) 31.1105 1.00356
\(962\) 6.32732 6.32732i 0.204001 0.204001i
\(963\) 0 0
\(964\) 0.164056i 0.00528388i
\(965\) 12.0964 + 5.94576i 0.389398 + 0.191401i
\(966\) 0 0
\(967\) 29.4988 + 29.4988i 0.948617 + 0.948617i 0.998743 0.0501258i \(-0.0159622\pi\)
−0.0501258 + 0.998743i \(0.515962\pi\)
\(968\) 16.5258 + 16.5258i 0.531160 + 0.531160i
\(969\) 0 0
\(970\) 4.62211 + 13.5584i 0.148407 + 0.435333i
\(971\) 19.7355i 0.633341i 0.948536 + 0.316671i \(0.102565\pi\)
−0.948536 + 0.316671i \(0.897435\pi\)
\(972\) 0 0
\(973\) 56.0353 56.0353i 1.79641 1.79641i
\(974\) −34.3469 −1.10055
\(975\) 0 0
\(976\) −40.7465 −1.30426
\(977\) 36.7121 36.7121i 1.17452 1.17452i 0.193406 0.981119i \(-0.438047\pi\)
0.981119 0.193406i \(-0.0619534\pi\)
\(978\) 0 0
\(979\) 20.9324i 0.669002i
\(980\) −0.685076 2.00958i −0.0218839 0.0641937i
\(981\) 0 0
\(982\) 28.7773 + 28.7773i 0.918319 + 0.918319i
\(983\) −13.9875 13.9875i −0.446131 0.446131i 0.447935 0.894066i \(-0.352160\pi\)
−0.894066 + 0.447935i \(0.852160\pi\)
\(984\) 0 0
\(985\) −52.2729 25.6937i −1.66555 0.818669i
\(986\) 11.1603i 0.355416i
\(987\) 0 0
\(988\) −0.317357 + 0.317357i −0.0100965 + 0.0100965i
\(989\) −10.8459 −0.344880
\(990\) 0 0
\(991\) −25.8065 −0.819771 −0.409886 0.912137i \(-0.634431\pi\)
−0.409886 + 0.912137i \(0.634431\pi\)
\(992\) −1.75414 + 1.75414i −0.0556940 + 0.0556940i
\(993\) 0 0
\(994\) 31.0385i 0.984480i
\(995\) 7.56952 2.58049i 0.239970 0.0818069i
\(996\) 0 0
\(997\) 19.8057 + 19.8057i 0.627253 + 0.627253i 0.947376 0.320123i \(-0.103724\pi\)
−0.320123 + 0.947376i \(0.603724\pi\)
\(998\) −4.71856 4.71856i −0.149364 0.149364i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.f.b.242.9 yes 24
3.2 odd 2 inner 405.2.f.b.242.4 24
5.3 odd 4 inner 405.2.f.b.323.4 yes 24
9.2 odd 6 405.2.m.e.377.5 24
9.4 even 3 405.2.m.d.107.5 24
9.5 odd 6 405.2.m.d.107.2 24
9.7 even 3 405.2.m.e.377.2 24
15.8 even 4 inner 405.2.f.b.323.9 yes 24
45.13 odd 12 405.2.m.e.188.5 24
45.23 even 12 405.2.m.e.188.2 24
45.38 even 12 405.2.m.d.53.5 24
45.43 odd 12 405.2.m.d.53.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.2.f.b.242.4 24 3.2 odd 2 inner
405.2.f.b.242.9 yes 24 1.1 even 1 trivial
405.2.f.b.323.4 yes 24 5.3 odd 4 inner
405.2.f.b.323.9 yes 24 15.8 even 4 inner
405.2.m.d.53.2 24 45.43 odd 12
405.2.m.d.53.5 24 45.38 even 12
405.2.m.d.107.2 24 9.5 odd 6
405.2.m.d.107.5 24 9.4 even 3
405.2.m.e.188.2 24 45.23 even 12
405.2.m.e.188.5 24 45.13 odd 12
405.2.m.e.377.2 24 9.7 even 3
405.2.m.e.377.5 24 9.2 odd 6