Newspace parameters
| Level: | \( N \) | \(=\) | \( 405 = 3^{4} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 405.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(3.23394128186\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Relative dimension: | \(12\) over \(\Q(i)\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 242.1 | −1.85830 | + | 1.85830i | 0 | − | 4.90659i | −1.97703 | + | 1.04468i | 0 | 0.484523 | + | 0.484523i | 5.40134 | + | 5.40134i | 0 | 1.73258 | − | 5.61526i | |||||||
| 242.2 | −1.58458 | + | 1.58458i | 0 | − | 3.02177i | 2.21170 | + | 0.329208i | 0 | −2.52674 | − | 2.52674i | 1.61908 | + | 1.61908i | 0 | −4.02627 | + | 2.98296i | |||||||
| 242.3 | −1.33432 | + | 1.33432i | 0 | − | 1.56081i | −0.800519 | − | 2.08786i | 0 | 0.625021 | + | 0.625021i | −0.586021 | − | 0.586021i | 0 | 3.85402 | + | 1.71773i | |||||||
| 242.4 | −1.01382 | + | 1.01382i | 0 | − | 0.0556605i | 0.721513 | + | 2.11646i | 0 | 3.46834 | + | 3.46834i | −1.97121 | − | 1.97121i | 0 | −2.87720 | − | 1.41423i | |||||||
| 242.5 | −0.456847 | + | 0.456847i | 0 | 1.58258i | −2.23576 | − | 0.0369307i | 0 | 0.169667 | + | 0.169667i | −1.63669 | − | 1.63669i | 0 | 1.03827 | − | 1.00453i | ||||||||
| 242.6 | −0.137378 | + | 0.137378i | 0 | 1.96225i | 0.199238 | − | 2.22717i | 0 | −2.22081 | − | 2.22081i | −0.544328 | − | 0.544328i | 0 | 0.278595 | + | 0.333337i | ||||||||
| 242.7 | 0.137378 | − | 0.137378i | 0 | 1.96225i | −0.199238 | + | 2.22717i | 0 | −2.22081 | − | 2.22081i | 0.544328 | + | 0.544328i | 0 | 0.278595 | + | 0.333337i | ||||||||
| 242.8 | 0.456847 | − | 0.456847i | 0 | 1.58258i | 2.23576 | + | 0.0369307i | 0 | 0.169667 | + | 0.169667i | 1.63669 | + | 1.63669i | 0 | 1.03827 | − | 1.00453i | ||||||||
| 242.9 | 1.01382 | − | 1.01382i | 0 | − | 0.0556605i | −0.721513 | − | 2.11646i | 0 | 3.46834 | + | 3.46834i | 1.97121 | + | 1.97121i | 0 | −2.87720 | − | 1.41423i | |||||||
| 242.10 | 1.33432 | − | 1.33432i | 0 | − | 1.56081i | 0.800519 | + | 2.08786i | 0 | 0.625021 | + | 0.625021i | 0.586021 | + | 0.586021i | 0 | 3.85402 | + | 1.71773i | |||||||
| 242.11 | 1.58458 | − | 1.58458i | 0 | − | 3.02177i | −2.21170 | − | 0.329208i | 0 | −2.52674 | − | 2.52674i | −1.61908 | − | 1.61908i | 0 | −4.02627 | + | 2.98296i | |||||||
| 242.12 | 1.85830 | − | 1.85830i | 0 | − | 4.90659i | 1.97703 | − | 1.04468i | 0 | 0.484523 | + | 0.484523i | −5.40134 | − | 5.40134i | 0 | 1.73258 | − | 5.61526i | |||||||
| 323.1 | −1.85830 | − | 1.85830i | 0 | 4.90659i | −1.97703 | − | 1.04468i | 0 | 0.484523 | − | 0.484523i | 5.40134 | − | 5.40134i | 0 | 1.73258 | + | 5.61526i | ||||||||
| 323.2 | −1.58458 | − | 1.58458i | 0 | 3.02177i | 2.21170 | − | 0.329208i | 0 | −2.52674 | + | 2.52674i | 1.61908 | − | 1.61908i | 0 | −4.02627 | − | 2.98296i | ||||||||
| 323.3 | −1.33432 | − | 1.33432i | 0 | 1.56081i | −0.800519 | + | 2.08786i | 0 | 0.625021 | − | 0.625021i | −0.586021 | + | 0.586021i | 0 | 3.85402 | − | 1.71773i | ||||||||
| 323.4 | −1.01382 | − | 1.01382i | 0 | 0.0556605i | 0.721513 | − | 2.11646i | 0 | 3.46834 | − | 3.46834i | −1.97121 | + | 1.97121i | 0 | −2.87720 | + | 1.41423i | ||||||||
| 323.5 | −0.456847 | − | 0.456847i | 0 | − | 1.58258i | −2.23576 | + | 0.0369307i | 0 | 0.169667 | − | 0.169667i | −1.63669 | + | 1.63669i | 0 | 1.03827 | + | 1.00453i | |||||||
| 323.6 | −0.137378 | − | 0.137378i | 0 | − | 1.96225i | 0.199238 | + | 2.22717i | 0 | −2.22081 | + | 2.22081i | −0.544328 | + | 0.544328i | 0 | 0.278595 | − | 0.333337i | |||||||
| 323.7 | 0.137378 | + | 0.137378i | 0 | − | 1.96225i | −0.199238 | − | 2.22717i | 0 | −2.22081 | + | 2.22081i | 0.544328 | − | 0.544328i | 0 | 0.278595 | − | 0.333337i | |||||||
| 323.8 | 0.456847 | + | 0.456847i | 0 | − | 1.58258i | 2.23576 | − | 0.0369307i | 0 | 0.169667 | − | 0.169667i | 1.63669 | − | 1.63669i | 0 | 1.03827 | + | 1.00453i | |||||||
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 5.c | odd | 4 | 1 | inner |
| 15.e | even | 4 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 405.2.f.b | ✓ | 24 |
| 3.b | odd | 2 | 1 | inner | 405.2.f.b | ✓ | 24 |
| 5.c | odd | 4 | 1 | inner | 405.2.f.b | ✓ | 24 |
| 9.c | even | 3 | 1 | 405.2.m.d | 24 | ||
| 9.c | even | 3 | 1 | 405.2.m.e | 24 | ||
| 9.d | odd | 6 | 1 | 405.2.m.d | 24 | ||
| 9.d | odd | 6 | 1 | 405.2.m.e | 24 | ||
| 15.e | even | 4 | 1 | inner | 405.2.f.b | ✓ | 24 |
| 45.k | odd | 12 | 1 | 405.2.m.d | 24 | ||
| 45.k | odd | 12 | 1 | 405.2.m.e | 24 | ||
| 45.l | even | 12 | 1 | 405.2.m.d | 24 | ||
| 45.l | even | 12 | 1 | 405.2.m.e | 24 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 405.2.f.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
| 405.2.f.b | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
| 405.2.f.b | ✓ | 24 | 5.c | odd | 4 | 1 | inner |
| 405.2.f.b | ✓ | 24 | 15.e | even | 4 | 1 | inner |
| 405.2.m.d | 24 | 9.c | even | 3 | 1 | ||
| 405.2.m.d | 24 | 9.d | odd | 6 | 1 | ||
| 405.2.m.d | 24 | 45.k | odd | 12 | 1 | ||
| 405.2.m.d | 24 | 45.l | even | 12 | 1 | ||
| 405.2.m.e | 24 | 9.c | even | 3 | 1 | ||
| 405.2.m.e | 24 | 9.d | odd | 6 | 1 | ||
| 405.2.m.e | 24 | 45.k | odd | 12 | 1 | ||
| 405.2.m.e | 24 | 45.l | even | 12 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{24} + 90T_{2}^{20} + 2505T_{2}^{16} + 24680T_{2}^{12} + 68712T_{2}^{8} + 11328T_{2}^{4} + 16 \)
acting on \(S_{2}^{\mathrm{new}}(405, [\chi])\).