Properties

Label 405.2.f.b.242.1
Level $405$
Weight $2$
Character 405.242
Analytic conductor $3.234$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(242,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.242"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 242.1
Character \(\chi\) \(=\) 405.242
Dual form 405.2.f.b.323.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.85830 + 1.85830i) q^{2} -4.90659i q^{4} +(-1.97703 + 1.04468i) q^{5} +(0.484523 + 0.484523i) q^{7} +(5.40134 + 5.40134i) q^{8} +(1.73258 - 5.61526i) q^{10} -5.24456i q^{11} +(-0.0638872 + 0.0638872i) q^{13} -1.80078 q^{14} -10.2615 q^{16} +(3.14882 - 3.14882i) q^{17} +2.33738i q^{19} +(5.12584 + 9.70047i) q^{20} +(9.74600 + 9.74600i) q^{22} +(4.18041 + 4.18041i) q^{23} +(2.81727 - 4.13074i) q^{25} -0.237444i q^{26} +(2.37736 - 2.37736i) q^{28} +3.46874 q^{29} +2.93755 q^{31} +(8.26627 - 8.26627i) q^{32} +11.7029i q^{34} +(-1.46409 - 0.451741i) q^{35} +(4.39816 + 4.39816i) q^{37} +(-4.34356 - 4.34356i) q^{38} +(-16.3213 - 5.03590i) q^{40} +4.57937i q^{41} +(-2.57232 + 2.57232i) q^{43} -25.7329 q^{44} -15.5369 q^{46} +(2.47888 - 2.47888i) q^{47} -6.53048i q^{49} +(2.44082 + 12.9115i) q^{50} +(0.313468 + 0.313468i) q^{52} +(0.625281 + 0.625281i) q^{53} +(5.47891 + 10.3686i) q^{55} +5.23414i q^{56} +(-6.44598 + 6.44598i) q^{58} -2.04457 q^{59} +8.82003 q^{61} +(-5.45886 + 5.45886i) q^{62} +10.1996i q^{64} +(0.0595647 - 0.193049i) q^{65} +(-0.0399773 - 0.0399773i) q^{67} +(-15.4500 - 15.4500i) q^{68} +(3.56019 - 1.88125i) q^{70} -12.5803i q^{71} +(7.14603 - 7.14603i) q^{73} -16.3462 q^{74} +11.4686 q^{76} +(2.54111 - 2.54111i) q^{77} +5.35488i q^{79} +(20.2872 - 10.7200i) q^{80} +(-8.50987 - 8.50987i) q^{82} +(3.57664 + 3.57664i) q^{83} +(-2.93577 + 9.51481i) q^{85} -9.56031i q^{86} +(28.3277 - 28.3277i) q^{88} +14.2411 q^{89} -0.0619096 q^{91} +(20.5116 - 20.5116i) q^{92} +9.21302i q^{94} +(-2.44182 - 4.62106i) q^{95} +(-11.2443 - 11.2443i) q^{97} +(12.1356 + 12.1356i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{13} - 24 q^{16} + 36 q^{37} - 36 q^{40} - 24 q^{43} - 48 q^{46} - 36 q^{52} - 60 q^{58} + 72 q^{70} + 12 q^{73} + 48 q^{76} - 96 q^{82} + 60 q^{85} + 96 q^{88} - 48 q^{91} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.85830 + 1.85830i −1.31402 + 1.31402i −0.395595 + 0.918425i \(0.629462\pi\)
−0.918425 + 0.395595i \(0.870538\pi\)
\(3\) 0 0
\(4\) 4.90659i 2.45330i
\(5\) −1.97703 + 1.04468i −0.884153 + 0.467197i
\(6\) 0 0
\(7\) 0.484523 + 0.484523i 0.183132 + 0.183132i 0.792719 0.609587i \(-0.208665\pi\)
−0.609587 + 0.792719i \(0.708665\pi\)
\(8\) 5.40134 + 5.40134i 1.90966 + 1.90966i
\(9\) 0 0
\(10\) 1.73258 5.61526i 0.547889 1.77570i
\(11\) 5.24456i 1.58130i −0.612271 0.790648i \(-0.709744\pi\)
0.612271 0.790648i \(-0.290256\pi\)
\(12\) 0 0
\(13\) −0.0638872 + 0.0638872i −0.0177191 + 0.0177191i −0.715911 0.698192i \(-0.753988\pi\)
0.698192 + 0.715911i \(0.253988\pi\)
\(14\) −1.80078 −0.481279
\(15\) 0 0
\(16\) −10.2615 −2.56537
\(17\) 3.14882 3.14882i 0.763700 0.763700i −0.213289 0.976989i \(-0.568418\pi\)
0.976989 + 0.213289i \(0.0684177\pi\)
\(18\) 0 0
\(19\) 2.33738i 0.536231i 0.963387 + 0.268116i \(0.0864009\pi\)
−0.963387 + 0.268116i \(0.913599\pi\)
\(20\) 5.12584 + 9.70047i 1.14617 + 2.16909i
\(21\) 0 0
\(22\) 9.74600 + 9.74600i 2.07785 + 2.07785i
\(23\) 4.18041 + 4.18041i 0.871675 + 0.871675i 0.992655 0.120980i \(-0.0386036\pi\)
−0.120980 + 0.992655i \(0.538604\pi\)
\(24\) 0 0
\(25\) 2.81727 4.13074i 0.563454 0.826148i
\(26\) 0.237444i 0.0465665i
\(27\) 0 0
\(28\) 2.37736 2.37736i 0.449278 0.449278i
\(29\) 3.46874 0.644129 0.322065 0.946718i \(-0.395623\pi\)
0.322065 + 0.946718i \(0.395623\pi\)
\(30\) 0 0
\(31\) 2.93755 0.527599 0.263800 0.964577i \(-0.415024\pi\)
0.263800 + 0.964577i \(0.415024\pi\)
\(32\) 8.26627 8.26627i 1.46128 1.46128i
\(33\) 0 0
\(34\) 11.7029i 2.00703i
\(35\) −1.46409 0.451741i −0.247476 0.0763582i
\(36\) 0 0
\(37\) 4.39816 + 4.39816i 0.723053 + 0.723053i 0.969226 0.246173i \(-0.0791730\pi\)
−0.246173 + 0.969226i \(0.579173\pi\)
\(38\) −4.34356 4.34356i −0.704619 0.704619i
\(39\) 0 0
\(40\) −16.3213 5.03590i −2.58062 0.796245i
\(41\) 4.57937i 0.715178i 0.933879 + 0.357589i \(0.116401\pi\)
−0.933879 + 0.357589i \(0.883599\pi\)
\(42\) 0 0
\(43\) −2.57232 + 2.57232i −0.392275 + 0.392275i −0.875498 0.483223i \(-0.839466\pi\)
0.483223 + 0.875498i \(0.339466\pi\)
\(44\) −25.7329 −3.87939
\(45\) 0 0
\(46\) −15.5369 −2.29080
\(47\) 2.47888 2.47888i 0.361581 0.361581i −0.502814 0.864395i \(-0.667702\pi\)
0.864395 + 0.502814i \(0.167702\pi\)
\(48\) 0 0
\(49\) 6.53048i 0.932925i
\(50\) 2.44082 + 12.9115i 0.345185 + 1.82596i
\(51\) 0 0
\(52\) 0.313468 + 0.313468i 0.0434703 + 0.0434703i
\(53\) 0.625281 + 0.625281i 0.0858890 + 0.0858890i 0.748746 0.662857i \(-0.230656\pi\)
−0.662857 + 0.748746i \(0.730656\pi\)
\(54\) 0 0
\(55\) 5.47891 + 10.3686i 0.738777 + 1.39811i
\(56\) 5.23414i 0.699441i
\(57\) 0 0
\(58\) −6.44598 + 6.44598i −0.846399 + 0.846399i
\(59\) −2.04457 −0.266180 −0.133090 0.991104i \(-0.542490\pi\)
−0.133090 + 0.991104i \(0.542490\pi\)
\(60\) 0 0
\(61\) 8.82003 1.12929 0.564645 0.825334i \(-0.309013\pi\)
0.564645 + 0.825334i \(0.309013\pi\)
\(62\) −5.45886 + 5.45886i −0.693276 + 0.693276i
\(63\) 0 0
\(64\) 10.1996i 1.27495i
\(65\) 0.0595647 0.193049i 0.00738810 0.0239447i
\(66\) 0 0
\(67\) −0.0399773 0.0399773i −0.00488401 0.00488401i 0.704661 0.709545i \(-0.251099\pi\)
−0.709545 + 0.704661i \(0.751099\pi\)
\(68\) −15.4500 15.4500i −1.87358 1.87358i
\(69\) 0 0
\(70\) 3.56019 1.88125i 0.425524 0.224852i
\(71\) 12.5803i 1.49300i −0.665383 0.746502i \(-0.731732\pi\)
0.665383 0.746502i \(-0.268268\pi\)
\(72\) 0 0
\(73\) 7.14603 7.14603i 0.836379 0.836379i −0.152001 0.988380i \(-0.548572\pi\)
0.988380 + 0.152001i \(0.0485718\pi\)
\(74\) −16.3462 −1.90021
\(75\) 0 0
\(76\) 11.4686 1.31553
\(77\) 2.54111 2.54111i 0.289586 0.289586i
\(78\) 0 0
\(79\) 5.35488i 0.602471i 0.953550 + 0.301236i \(0.0973991\pi\)
−0.953550 + 0.301236i \(0.902601\pi\)
\(80\) 20.2872 10.7200i 2.26818 1.19853i
\(81\) 0 0
\(82\) −8.50987 8.50987i −0.939758 0.939758i
\(83\) 3.57664 + 3.57664i 0.392587 + 0.392587i 0.875609 0.483021i \(-0.160461\pi\)
−0.483021 + 0.875609i \(0.660461\pi\)
\(84\) 0 0
\(85\) −2.93577 + 9.51481i −0.318429 + 1.03203i
\(86\) 9.56031i 1.03091i
\(87\) 0 0
\(88\) 28.3277 28.3277i 3.01974 3.01974i
\(89\) 14.2411 1.50956 0.754778 0.655980i \(-0.227745\pi\)
0.754778 + 0.655980i \(0.227745\pi\)
\(90\) 0 0
\(91\) −0.0619096 −0.00648989
\(92\) 20.5116 20.5116i 2.13848 2.13848i
\(93\) 0 0
\(94\) 9.21302i 0.950250i
\(95\) −2.44182 4.62106i −0.250526 0.474111i
\(96\) 0 0
\(97\) −11.2443 11.2443i −1.14168 1.14168i −0.988142 0.153542i \(-0.950932\pi\)
−0.153542 0.988142i \(-0.549068\pi\)
\(98\) 12.1356 + 12.1356i 1.22588 + 1.22588i
\(99\) 0 0
\(100\) −20.2679 13.8232i −2.02679 1.38232i
\(101\) 3.90591i 0.388653i −0.980937 0.194326i \(-0.937748\pi\)
0.980937 0.194326i \(-0.0622521\pi\)
\(102\) 0 0
\(103\) 10.6613 10.6613i 1.05049 1.05049i 0.0518339 0.998656i \(-0.483493\pi\)
0.998656 0.0518339i \(-0.0165066\pi\)
\(104\) −0.690152 −0.0676750
\(105\) 0 0
\(106\) −2.32393 −0.225720
\(107\) −5.74908 + 5.74908i −0.555785 + 0.555785i −0.928105 0.372320i \(-0.878562\pi\)
0.372320 + 0.928105i \(0.378562\pi\)
\(108\) 0 0
\(109\) 3.70689i 0.355056i 0.984116 + 0.177528i \(0.0568100\pi\)
−0.984116 + 0.177528i \(0.943190\pi\)
\(110\) −29.4496 9.08661i −2.80791 0.866374i
\(111\) 0 0
\(112\) −4.97192 4.97192i −0.469802 0.469802i
\(113\) 4.17403 + 4.17403i 0.392660 + 0.392660i 0.875634 0.482975i \(-0.160444\pi\)
−0.482975 + 0.875634i \(0.660444\pi\)
\(114\) 0 0
\(115\) −12.6320 3.89757i −1.17794 0.363450i
\(116\) 17.0197i 1.58024i
\(117\) 0 0
\(118\) 3.79943 3.79943i 0.349766 0.349766i
\(119\) 3.05134 0.279716
\(120\) 0 0
\(121\) −16.5054 −1.50050
\(122\) −16.3903 + 16.3903i −1.48391 + 1.48391i
\(123\) 0 0
\(124\) 14.4134i 1.29436i
\(125\) −1.25450 + 11.1097i −0.112206 + 0.993685i
\(126\) 0 0
\(127\) −3.83940 3.83940i −0.340692 0.340692i 0.515935 0.856627i \(-0.327444\pi\)
−0.856627 + 0.515935i \(0.827444\pi\)
\(128\) −2.42135 2.42135i −0.214019 0.214019i
\(129\) 0 0
\(130\) 0.248054 + 0.469433i 0.0217558 + 0.0411720i
\(131\) 21.0386i 1.83815i −0.394082 0.919075i \(-0.628937\pi\)
0.394082 0.919075i \(-0.371063\pi\)
\(132\) 0 0
\(133\) −1.13251 + 1.13251i −0.0982013 + 0.0982013i
\(134\) 0.148580 0.0128354
\(135\) 0 0
\(136\) 34.0156 2.91682
\(137\) −8.60134 + 8.60134i −0.734862 + 0.734862i −0.971579 0.236717i \(-0.923929\pi\)
0.236717 + 0.971579i \(0.423929\pi\)
\(138\) 0 0
\(139\) 5.52076i 0.468265i −0.972205 0.234132i \(-0.924775\pi\)
0.972205 0.234132i \(-0.0752249\pi\)
\(140\) −2.21651 + 7.18368i −0.187329 + 0.607132i
\(141\) 0 0
\(142\) 23.3780 + 23.3780i 1.96184 + 1.96184i
\(143\) 0.335060 + 0.335060i 0.0280192 + 0.0280192i
\(144\) 0 0
\(145\) −6.85780 + 3.62374i −0.569509 + 0.300935i
\(146\) 26.5590i 2.19804i
\(147\) 0 0
\(148\) 21.5800 21.5800i 1.77386 1.77386i
\(149\) 14.6126 1.19711 0.598557 0.801080i \(-0.295741\pi\)
0.598557 + 0.801080i \(0.295741\pi\)
\(150\) 0 0
\(151\) 15.6129 1.27056 0.635281 0.772281i \(-0.280884\pi\)
0.635281 + 0.772281i \(0.280884\pi\)
\(152\) −12.6250 + 12.6250i −1.02402 + 1.02402i
\(153\) 0 0
\(154\) 9.44431i 0.761044i
\(155\) −5.80761 + 3.06881i −0.466479 + 0.246493i
\(156\) 0 0
\(157\) −9.86331 9.86331i −0.787178 0.787178i 0.193853 0.981031i \(-0.437902\pi\)
−0.981031 + 0.193853i \(0.937902\pi\)
\(158\) −9.95100 9.95100i −0.791659 0.791659i
\(159\) 0 0
\(160\) −7.70700 + 24.9783i −0.609292 + 1.97471i
\(161\) 4.05100i 0.319264i
\(162\) 0 0
\(163\) −12.1643 + 12.1643i −0.952784 + 0.952784i −0.998934 0.0461509i \(-0.985305\pi\)
0.0461509 + 0.998934i \(0.485305\pi\)
\(164\) 22.4691 1.75454
\(165\) 0 0
\(166\) −13.2930 −1.03173
\(167\) 6.73261 6.73261i 0.520985 0.520985i −0.396884 0.917869i \(-0.629908\pi\)
0.917869 + 0.396884i \(0.129908\pi\)
\(168\) 0 0
\(169\) 12.9918i 0.999372i
\(170\) −12.2259 23.1370i −0.937680 1.77453i
\(171\) 0 0
\(172\) 12.6213 + 12.6213i 0.962367 + 0.962367i
\(173\) 6.32726 + 6.32726i 0.481053 + 0.481053i 0.905468 0.424415i \(-0.139520\pi\)
−0.424415 + 0.905468i \(0.639520\pi\)
\(174\) 0 0
\(175\) 3.36647 0.636405i 0.254481 0.0481077i
\(176\) 53.8170i 4.05661i
\(177\) 0 0
\(178\) −26.4643 + 26.4643i −1.98359 + 1.98359i
\(179\) −4.11390 −0.307488 −0.153744 0.988111i \(-0.549133\pi\)
−0.153744 + 0.988111i \(0.549133\pi\)
\(180\) 0 0
\(181\) −11.0450 −0.820970 −0.410485 0.911867i \(-0.634641\pi\)
−0.410485 + 0.911867i \(0.634641\pi\)
\(182\) 0.115047 0.115047i 0.00852784 0.00852784i
\(183\) 0 0
\(184\) 45.1596i 3.32921i
\(185\) −13.2900 4.10059i −0.977098 0.301482i
\(186\) 0 0
\(187\) −16.5142 16.5142i −1.20764 1.20764i
\(188\) −12.1628 12.1628i −0.887066 0.887066i
\(189\) 0 0
\(190\) 13.1250 + 4.04969i 0.952187 + 0.293795i
\(191\) 13.0761i 0.946152i −0.881022 0.473076i \(-0.843144\pi\)
0.881022 0.473076i \(-0.156856\pi\)
\(192\) 0 0
\(193\) −13.0552 + 13.0552i −0.939732 + 0.939732i −0.998284 0.0585524i \(-0.981352\pi\)
0.0585524 + 0.998284i \(0.481352\pi\)
\(194\) 41.7906 3.00039
\(195\) 0 0
\(196\) −32.0424 −2.28874
\(197\) −11.1172 + 11.1172i −0.792070 + 0.792070i −0.981830 0.189761i \(-0.939229\pi\)
0.189761 + 0.981830i \(0.439229\pi\)
\(198\) 0 0
\(199\) 21.1474i 1.49910i −0.661949 0.749549i \(-0.730271\pi\)
0.661949 0.749549i \(-0.269729\pi\)
\(200\) 37.5285 7.09449i 2.65367 0.501656i
\(201\) 0 0
\(202\) 7.25837 + 7.25837i 0.510697 + 0.510697i
\(203\) 1.68068 + 1.68068i 0.117961 + 0.117961i
\(204\) 0 0
\(205\) −4.78400 9.05354i −0.334129 0.632327i
\(206\) 39.6239i 2.76073i
\(207\) 0 0
\(208\) 0.655577 0.655577i 0.0454561 0.0454561i
\(209\) 12.2585 0.847940
\(210\) 0 0
\(211\) 4.58636 0.315738 0.157869 0.987460i \(-0.449538\pi\)
0.157869 + 0.987460i \(0.449538\pi\)
\(212\) 3.06800 3.06800i 0.210711 0.210711i
\(213\) 0 0
\(214\) 21.3671i 1.46062i
\(215\) 2.39828 7.77281i 0.163562 0.530101i
\(216\) 0 0
\(217\) 1.42331 + 1.42331i 0.0966205 + 0.0966205i
\(218\) −6.88853 6.88853i −0.466550 0.466550i
\(219\) 0 0
\(220\) 50.8747 26.8828i 3.42997 1.81244i
\(221\) 0.402338i 0.0270642i
\(222\) 0 0
\(223\) −16.6563 + 16.6563i −1.11539 + 1.11539i −0.122982 + 0.992409i \(0.539246\pi\)
−0.992409 + 0.122982i \(0.960754\pi\)
\(224\) 8.01039 0.535217
\(225\) 0 0
\(226\) −15.5132 −1.03192
\(227\) −16.3479 + 16.3479i −1.08505 + 1.08505i −0.0890170 + 0.996030i \(0.528373\pi\)
−0.996030 + 0.0890170i \(0.971627\pi\)
\(228\) 0 0
\(229\) 23.6439i 1.56243i 0.624261 + 0.781216i \(0.285400\pi\)
−0.624261 + 0.781216i \(0.714600\pi\)
\(230\) 30.7170 16.2312i 2.02542 1.07025i
\(231\) 0 0
\(232\) 18.7358 + 18.7358i 1.23007 + 1.23007i
\(233\) 0.0231441 + 0.0231441i 0.00151622 + 0.00151622i 0.707864 0.706348i \(-0.249659\pi\)
−0.706348 + 0.707864i \(0.749659\pi\)
\(234\) 0 0
\(235\) −2.31116 + 7.49045i −0.150764 + 0.488623i
\(236\) 10.0319i 0.653018i
\(237\) 0 0
\(238\) −5.67033 + 5.67033i −0.367553 + 0.367553i
\(239\) −13.5197 −0.874517 −0.437258 0.899336i \(-0.644050\pi\)
−0.437258 + 0.899336i \(0.644050\pi\)
\(240\) 0 0
\(241\) 22.1681 1.42797 0.713985 0.700161i \(-0.246888\pi\)
0.713985 + 0.700161i \(0.246888\pi\)
\(242\) 30.6722 30.6722i 1.97168 1.97168i
\(243\) 0 0
\(244\) 43.2763i 2.77048i
\(245\) 6.82229 + 12.9109i 0.435860 + 0.824849i
\(246\) 0 0
\(247\) −0.149329 0.149329i −0.00950155 0.00950155i
\(248\) 15.8667 + 15.8667i 1.00754 + 1.00754i
\(249\) 0 0
\(250\) −18.3140 22.9765i −1.15828 1.45316i
\(251\) 6.07581i 0.383501i −0.981444 0.191751i \(-0.938583\pi\)
0.981444 0.191751i \(-0.0614165\pi\)
\(252\) 0 0
\(253\) 21.9244 21.9244i 1.37838 1.37838i
\(254\) 14.2696 0.895352
\(255\) 0 0
\(256\) −11.3999 −0.712494
\(257\) 8.64540 8.64540i 0.539285 0.539285i −0.384034 0.923319i \(-0.625465\pi\)
0.923319 + 0.384034i \(0.125465\pi\)
\(258\) 0 0
\(259\) 4.26202i 0.264829i
\(260\) −0.947211 0.292260i −0.0587435 0.0181252i
\(261\) 0 0
\(262\) 39.0961 + 39.0961i 2.41537 + 2.41537i
\(263\) −21.1631 21.1631i −1.30497 1.30497i −0.924998 0.379973i \(-0.875933\pi\)
−0.379973 0.924998i \(-0.624067\pi\)
\(264\) 0 0
\(265\) −1.88942 0.582976i −0.116066 0.0358120i
\(266\) 4.20911i 0.258077i
\(267\) 0 0
\(268\) −0.196152 + 0.196152i −0.0119819 + 0.0119819i
\(269\) 2.19392 0.133766 0.0668828 0.997761i \(-0.478695\pi\)
0.0668828 + 0.997761i \(0.478695\pi\)
\(270\) 0 0
\(271\) −15.6614 −0.951361 −0.475681 0.879618i \(-0.657798\pi\)
−0.475681 + 0.879618i \(0.657798\pi\)
\(272\) −32.3115 + 32.3115i −1.95917 + 1.95917i
\(273\) 0 0
\(274\) 31.9678i 1.93125i
\(275\) −21.6639 14.7753i −1.30638 0.890987i
\(276\) 0 0
\(277\) 12.8816 + 12.8816i 0.773981 + 0.773981i 0.978800 0.204819i \(-0.0656605\pi\)
−0.204819 + 0.978800i \(0.565660\pi\)
\(278\) 10.2593 + 10.2593i 0.615309 + 0.615309i
\(279\) 0 0
\(280\) −5.46802 10.3480i −0.326777 0.618413i
\(281\) 0.677466i 0.0404142i 0.999796 + 0.0202071i \(0.00643256\pi\)
−0.999796 + 0.0202071i \(0.993567\pi\)
\(282\) 0 0
\(283\) 13.9010 13.9010i 0.826328 0.826328i −0.160679 0.987007i \(-0.551368\pi\)
0.987007 + 0.160679i \(0.0513684\pi\)
\(284\) −61.7263 −3.66278
\(285\) 0 0
\(286\) −1.24529 −0.0736355
\(287\) −2.21881 + 2.21881i −0.130972 + 0.130972i
\(288\) 0 0
\(289\) 2.83007i 0.166475i
\(290\) 6.00986 19.4779i 0.352911 1.14378i
\(291\) 0 0
\(292\) −35.0626 35.0626i −2.05189 2.05189i
\(293\) 9.08093 + 9.08093i 0.530514 + 0.530514i 0.920725 0.390212i \(-0.127598\pi\)
−0.390212 + 0.920725i \(0.627598\pi\)
\(294\) 0 0
\(295\) 4.04216 2.13593i 0.235344 0.124358i
\(296\) 47.5119i 2.76157i
\(297\) 0 0
\(298\) −27.1547 + 27.1547i −1.57303 + 1.57303i
\(299\) −0.534149 −0.0308906
\(300\) 0 0
\(301\) −2.49269 −0.143676
\(302\) −29.0136 + 29.0136i −1.66954 + 1.66954i
\(303\) 0 0
\(304\) 23.9850i 1.37563i
\(305\) −17.4374 + 9.21415i −0.998465 + 0.527601i
\(306\) 0 0
\(307\) −11.2227 11.2227i −0.640513 0.640513i 0.310169 0.950681i \(-0.399614\pi\)
−0.950681 + 0.310169i \(0.899614\pi\)
\(308\) −12.4682 12.4682i −0.710441 0.710441i
\(309\) 0 0
\(310\) 5.08953 16.4951i 0.289066 0.936859i
\(311\) 24.3872i 1.38287i 0.722437 + 0.691437i \(0.243022\pi\)
−0.722437 + 0.691437i \(0.756978\pi\)
\(312\) 0 0
\(313\) 10.6942 10.6942i 0.604474 0.604474i −0.337023 0.941497i \(-0.609420\pi\)
0.941497 + 0.337023i \(0.109420\pi\)
\(314\) 36.6581 2.06874
\(315\) 0 0
\(316\) 26.2742 1.47804
\(317\) −11.4112 + 11.4112i −0.640916 + 0.640916i −0.950781 0.309864i \(-0.899716\pi\)
0.309864 + 0.950781i \(0.399716\pi\)
\(318\) 0 0
\(319\) 18.1920i 1.01856i
\(320\) −10.6553 20.1648i −0.595651 1.12725i
\(321\) 0 0
\(322\) −7.52800 7.52800i −0.419519 0.419519i
\(323\) 7.35997 + 7.35997i 0.409520 + 0.409520i
\(324\) 0 0
\(325\) 0.0839138 + 0.443889i 0.00465470 + 0.0246225i
\(326\) 45.2101i 2.50395i
\(327\) 0 0
\(328\) −24.7347 + 24.7347i −1.36575 + 1.36575i
\(329\) 2.40214 0.132434
\(330\) 0 0
\(331\) −6.41769 −0.352748 −0.176374 0.984323i \(-0.556437\pi\)
−0.176374 + 0.984323i \(0.556437\pi\)
\(332\) 17.5491 17.5491i 0.963133 0.963133i
\(333\) 0 0
\(334\) 25.0225i 1.36917i
\(335\) 0.120800 + 0.0372725i 0.00660000 + 0.00203642i
\(336\) 0 0
\(337\) 11.9893 + 11.9893i 0.653100 + 0.653100i 0.953738 0.300638i \(-0.0971997\pi\)
−0.300638 + 0.953738i \(0.597200\pi\)
\(338\) −24.1428 24.1428i −1.31319 1.31319i
\(339\) 0 0
\(340\) 46.6853 + 14.4046i 2.53187 + 0.781202i
\(341\) 15.4062i 0.834290i
\(342\) 0 0
\(343\) 6.55582 6.55582i 0.353981 0.353981i
\(344\) −27.7879 −1.49822
\(345\) 0 0
\(346\) −23.5160 −1.26423
\(347\) −3.80833 + 3.80833i −0.204442 + 0.204442i −0.801900 0.597458i \(-0.796177\pi\)
0.597458 + 0.801900i \(0.296177\pi\)
\(348\) 0 0
\(349\) 7.06928i 0.378410i −0.981938 0.189205i \(-0.939409\pi\)
0.981938 0.189205i \(-0.0605910\pi\)
\(350\) −5.07329 + 7.43856i −0.271179 + 0.397608i
\(351\) 0 0
\(352\) −43.3530 43.3530i −2.31072 2.31072i
\(353\) 21.0411 + 21.0411i 1.11990 + 1.11990i 0.991755 + 0.128149i \(0.0409035\pi\)
0.128149 + 0.991755i \(0.459097\pi\)
\(354\) 0 0
\(355\) 13.1424 + 24.8715i 0.697527 + 1.32004i
\(356\) 69.8754i 3.70339i
\(357\) 0 0
\(358\) 7.64489 7.64489i 0.404045 0.404045i
\(359\) 13.5719 0.716299 0.358149 0.933664i \(-0.383408\pi\)
0.358149 + 0.933664i \(0.383408\pi\)
\(360\) 0 0
\(361\) 13.5367 0.712456
\(362\) 20.5250 20.5250i 1.07877 1.07877i
\(363\) 0 0
\(364\) 0.303765i 0.0159216i
\(365\) −6.66254 + 21.5932i −0.348733 + 1.13024i
\(366\) 0 0
\(367\) 8.69358 + 8.69358i 0.453801 + 0.453801i 0.896614 0.442813i \(-0.146019\pi\)
−0.442813 + 0.896614i \(0.646019\pi\)
\(368\) −42.8972 42.8972i −2.23617 2.23617i
\(369\) 0 0
\(370\) 32.3170 17.0767i 1.68008 0.887774i
\(371\) 0.605926i 0.0314581i
\(372\) 0 0
\(373\) 12.9869 12.9869i 0.672434 0.672434i −0.285843 0.958277i \(-0.592273\pi\)
0.958277 + 0.285843i \(0.0922734\pi\)
\(374\) 61.3767 3.17371
\(375\) 0 0
\(376\) 26.7785 1.38100
\(377\) −0.221608 + 0.221608i −0.0114134 + 0.0114134i
\(378\) 0 0
\(379\) 11.7691i 0.604536i 0.953223 + 0.302268i \(0.0977438\pi\)
−0.953223 + 0.302268i \(0.902256\pi\)
\(380\) −22.6737 + 11.9810i −1.16313 + 0.614614i
\(381\) 0 0
\(382\) 24.2993 + 24.2993i 1.24326 + 1.24326i
\(383\) 3.98843 + 3.98843i 0.203799 + 0.203799i 0.801626 0.597826i \(-0.203969\pi\)
−0.597826 + 0.801626i \(0.703969\pi\)
\(384\) 0 0
\(385\) −2.36918 + 7.67850i −0.120745 + 0.391333i
\(386\) 48.5210i 2.46965i
\(387\) 0 0
\(388\) −55.1711 + 55.1711i −2.80089 + 2.80089i
\(389\) −10.0768 −0.510916 −0.255458 0.966820i \(-0.582226\pi\)
−0.255458 + 0.966820i \(0.582226\pi\)
\(390\) 0 0
\(391\) 26.3267 1.33140
\(392\) 35.2733 35.2733i 1.78157 1.78157i
\(393\) 0 0
\(394\) 41.3184i 2.08159i
\(395\) −5.59416 10.5867i −0.281473 0.532677i
\(396\) 0 0
\(397\) −9.61428 9.61428i −0.482527 0.482527i 0.423411 0.905938i \(-0.360833\pi\)
−0.905938 + 0.423411i \(0.860833\pi\)
\(398\) 39.2983 + 39.2983i 1.96984 + 1.96984i
\(399\) 0 0
\(400\) −28.9093 + 42.3875i −1.44547 + 2.11937i
\(401\) 29.1528i 1.45582i 0.685672 + 0.727911i \(0.259508\pi\)
−0.685672 + 0.727911i \(0.740492\pi\)
\(402\) 0 0
\(403\) −0.187672 + 0.187672i −0.00934859 + 0.00934859i
\(404\) −19.1647 −0.953480
\(405\) 0 0
\(406\) −6.24645 −0.310006
\(407\) 23.0664 23.0664i 1.14336 1.14336i
\(408\) 0 0
\(409\) 24.1470i 1.19399i 0.802244 + 0.596996i \(0.203639\pi\)
−0.802244 + 0.596996i \(0.796361\pi\)
\(410\) 25.7144 + 7.93411i 1.26994 + 0.391838i
\(411\) 0 0
\(412\) −52.3107 52.3107i −2.57716 2.57716i
\(413\) −0.990638 0.990638i −0.0487461 0.0487461i
\(414\) 0 0
\(415\) −10.8076 3.33465i −0.530523 0.163692i
\(416\) 1.05622i 0.0517853i
\(417\) 0 0
\(418\) −22.7801 + 22.7801i −1.11421 + 1.11421i
\(419\) −20.8299 −1.01761 −0.508803 0.860883i \(-0.669912\pi\)
−0.508803 + 0.860883i \(0.669912\pi\)
\(420\) 0 0
\(421\) 5.54985 0.270483 0.135242 0.990813i \(-0.456819\pi\)
0.135242 + 0.990813i \(0.456819\pi\)
\(422\) −8.52286 + 8.52286i −0.414886 + 0.414886i
\(423\) 0 0
\(424\) 6.75471i 0.328038i
\(425\) −4.13587 21.8780i −0.200619 1.06124i
\(426\) 0 0
\(427\) 4.27351 + 4.27351i 0.206809 + 0.206809i
\(428\) 28.2084 + 28.2084i 1.36350 + 1.36350i
\(429\) 0 0
\(430\) 9.98750 + 18.9010i 0.481640 + 0.911486i
\(431\) 10.4835i 0.504972i −0.967601 0.252486i \(-0.918752\pi\)
0.967601 0.252486i \(-0.0812481\pi\)
\(432\) 0 0
\(433\) 4.34442 4.34442i 0.208780 0.208780i −0.594969 0.803749i \(-0.702836\pi\)
0.803749 + 0.594969i \(0.202836\pi\)
\(434\) −5.28988 −0.253923
\(435\) 0 0
\(436\) 18.1882 0.871057
\(437\) −9.77119 + 9.77119i −0.467420 + 0.467420i
\(438\) 0 0
\(439\) 32.8157i 1.56621i 0.621890 + 0.783105i \(0.286365\pi\)
−0.621890 + 0.783105i \(0.713635\pi\)
\(440\) −26.4111 + 85.5980i −1.25910 + 4.08072i
\(441\) 0 0
\(442\) −0.747666 0.747666i −0.0355629 0.0355629i
\(443\) −25.1989 25.1989i −1.19724 1.19724i −0.974990 0.222247i \(-0.928661\pi\)
−0.222247 0.974990i \(-0.571339\pi\)
\(444\) 0 0
\(445\) −28.1551 + 14.8775i −1.33468 + 0.705260i
\(446\) 61.9051i 2.93129i
\(447\) 0 0
\(448\) −4.94192 + 4.94192i −0.233484 + 0.233484i
\(449\) −17.5910 −0.830173 −0.415086 0.909782i \(-0.636249\pi\)
−0.415086 + 0.909782i \(0.636249\pi\)
\(450\) 0 0
\(451\) 24.0168 1.13091
\(452\) 20.4803 20.4803i 0.963310 0.963310i
\(453\) 0 0
\(454\) 60.7587i 2.85155i
\(455\) 0.122397 0.0646760i 0.00573805 0.00303206i
\(456\) 0 0
\(457\) 3.15387 + 3.15387i 0.147532 + 0.147532i 0.777014 0.629483i \(-0.216733\pi\)
−0.629483 + 0.777014i \(0.716733\pi\)
\(458\) −43.9375 43.9375i −2.05307 2.05307i
\(459\) 0 0
\(460\) −19.1238 + 61.9800i −0.891652 + 2.88983i
\(461\) 14.4147i 0.671361i −0.941976 0.335681i \(-0.891034\pi\)
0.941976 0.335681i \(-0.108966\pi\)
\(462\) 0 0
\(463\) −2.38794 + 2.38794i −0.110977 + 0.110977i −0.760415 0.649438i \(-0.775004\pi\)
0.649438 + 0.760415i \(0.275004\pi\)
\(464\) −35.5944 −1.65243
\(465\) 0 0
\(466\) −0.0860178 −0.00398470
\(467\) −10.5757 + 10.5757i −0.489385 + 0.489385i −0.908112 0.418727i \(-0.862476\pi\)
0.418727 + 0.908112i \(0.362476\pi\)
\(468\) 0 0
\(469\) 0.0387398i 0.00178884i
\(470\) −9.62470 18.2144i −0.443954 0.840167i
\(471\) 0 0
\(472\) −11.0434 11.0434i −0.508313 0.508313i
\(473\) 13.4907 + 13.4907i 0.620303 + 0.620303i
\(474\) 0 0
\(475\) 9.65510 + 6.58502i 0.443006 + 0.302142i
\(476\) 14.9717i 0.686227i
\(477\) 0 0
\(478\) 25.1237 25.1237i 1.14913 1.14913i
\(479\) 16.0825 0.734827 0.367413 0.930058i \(-0.380243\pi\)
0.367413 + 0.930058i \(0.380243\pi\)
\(480\) 0 0
\(481\) −0.561972 −0.0256237
\(482\) −41.1950 + 41.1950i −1.87638 + 1.87638i
\(483\) 0 0
\(484\) 80.9855i 3.68116i
\(485\) 33.9770 + 10.4835i 1.54281 + 0.476032i
\(486\) 0 0
\(487\) −3.27106 3.27106i −0.148226 0.148226i 0.629099 0.777325i \(-0.283424\pi\)
−0.777325 + 0.629099i \(0.783424\pi\)
\(488\) 47.6400 + 47.6400i 2.15656 + 2.15656i
\(489\) 0 0
\(490\) −36.6703 11.3145i −1.65660 0.511139i
\(491\) 13.4883i 0.608719i 0.952557 + 0.304360i \(0.0984425\pi\)
−0.952557 + 0.304360i \(0.901558\pi\)
\(492\) 0 0
\(493\) 10.9224 10.9224i 0.491921 0.491921i
\(494\) 0.554996 0.0249704
\(495\) 0 0
\(496\) −30.1436 −1.35349
\(497\) 6.09543 6.09543i 0.273417 0.273417i
\(498\) 0 0
\(499\) 2.90316i 0.129963i −0.997886 0.0649817i \(-0.979301\pi\)
0.997886 0.0649817i \(-0.0206989\pi\)
\(500\) 54.5110 + 6.15532i 2.43780 + 0.275274i
\(501\) 0 0
\(502\) 11.2907 + 11.2907i 0.503929 + 0.503929i
\(503\) −19.6808 19.6808i −0.877522 0.877522i 0.115756 0.993278i \(-0.463071\pi\)
−0.993278 + 0.115756i \(0.963071\pi\)
\(504\) 0 0
\(505\) 4.08044 + 7.72209i 0.181577 + 0.343628i
\(506\) 81.4845i 3.62243i
\(507\) 0 0
\(508\) −18.8384 + 18.8384i −0.835819 + 0.835819i
\(509\) −26.9370 −1.19396 −0.596980 0.802256i \(-0.703633\pi\)
−0.596980 + 0.802256i \(0.703633\pi\)
\(510\) 0 0
\(511\) 6.92482 0.306336
\(512\) 26.0272 26.0272i 1.15025 1.15025i
\(513\) 0 0
\(514\) 32.1316i 1.41726i
\(515\) −9.93999 + 32.2154i −0.438008 + 1.41958i
\(516\) 0 0
\(517\) −13.0006 13.0006i −0.571767 0.571767i
\(518\) −7.92013 7.92013i −0.347990 0.347990i
\(519\) 0 0
\(520\) 1.36445 0.720991i 0.0598351 0.0316176i
\(521\) 22.3103i 0.977434i 0.872442 + 0.488717i \(0.162535\pi\)
−0.872442 + 0.488717i \(0.837465\pi\)
\(522\) 0 0
\(523\) 6.60413 6.60413i 0.288778 0.288778i −0.547819 0.836597i \(-0.684542\pi\)
0.836597 + 0.547819i \(0.184542\pi\)
\(524\) −103.228 −4.50953
\(525\) 0 0
\(526\) 78.6549 3.42951
\(527\) 9.24980 9.24980i 0.402927 0.402927i
\(528\) 0 0
\(529\) 11.9516i 0.519636i
\(530\) 4.59447 2.42777i 0.199571 0.105456i
\(531\) 0 0
\(532\) 5.55678 + 5.55678i 0.240917 + 0.240917i
\(533\) −0.292563 0.292563i −0.0126723 0.0126723i
\(534\) 0 0
\(535\) 5.36011 17.3721i 0.231738 0.751060i
\(536\) 0.431862i 0.0186536i
\(537\) 0 0
\(538\) −4.07697 + 4.07697i −0.175771 + 0.175771i
\(539\) −34.2495 −1.47523
\(540\) 0 0
\(541\) 4.79329 0.206080 0.103040 0.994677i \(-0.467143\pi\)
0.103040 + 0.994677i \(0.467143\pi\)
\(542\) 29.1036 29.1036i 1.25011 1.25011i
\(543\) 0 0
\(544\) 52.0579i 2.23197i
\(545\) −3.87253 7.32862i −0.165881 0.313924i
\(546\) 0 0
\(547\) −25.1971 25.1971i −1.07735 1.07735i −0.996746 0.0806044i \(-0.974315\pi\)
−0.0806044 0.996746i \(-0.525685\pi\)
\(548\) 42.2033 + 42.2033i 1.80283 + 1.80283i
\(549\) 0 0
\(550\) 67.7153 12.8011i 2.88739 0.545839i
\(551\) 8.10776i 0.345402i
\(552\) 0 0
\(553\) −2.59456 + 2.59456i −0.110332 + 0.110332i
\(554\) −47.8759 −2.03405
\(555\) 0 0
\(556\) −27.0881 −1.14879
\(557\) 9.03850 9.03850i 0.382974 0.382974i −0.489199 0.872172i \(-0.662711\pi\)
0.872172 + 0.489199i \(0.162711\pi\)
\(558\) 0 0
\(559\) 0.328677i 0.0139015i
\(560\) 15.0237 + 4.63553i 0.634867 + 0.195887i
\(561\) 0 0
\(562\) −1.25894 1.25894i −0.0531051 0.0531051i
\(563\) −3.62845 3.62845i −0.152921 0.152921i 0.626500 0.779421i \(-0.284487\pi\)
−0.779421 + 0.626500i \(0.784487\pi\)
\(564\) 0 0
\(565\) −12.6127 3.89162i −0.530621 0.163722i
\(566\) 51.6645i 2.17162i
\(567\) 0 0
\(568\) 67.9503 67.9503i 2.85113 2.85113i
\(569\) −38.9268 −1.63190 −0.815948 0.578126i \(-0.803784\pi\)
−0.815948 + 0.578126i \(0.803784\pi\)
\(570\) 0 0
\(571\) 28.2374 1.18170 0.590848 0.806783i \(-0.298793\pi\)
0.590848 + 0.806783i \(0.298793\pi\)
\(572\) 1.64401 1.64401i 0.0687393 0.0687393i
\(573\) 0 0
\(574\) 8.24645i 0.344200i
\(575\) 29.0455 5.49083i 1.21128 0.228984i
\(576\) 0 0
\(577\) −12.1777 12.1777i −0.506962 0.506962i 0.406630 0.913593i \(-0.366704\pi\)
−0.913593 + 0.406630i \(0.866704\pi\)
\(578\) 5.25914 + 5.25914i 0.218751 + 0.218751i
\(579\) 0 0
\(580\) 17.7802 + 33.6484i 0.738284 + 1.39717i
\(581\) 3.46593i 0.143791i
\(582\) 0 0
\(583\) 3.27933 3.27933i 0.135816 0.135816i
\(584\) 77.1962 3.19440
\(585\) 0 0
\(586\) −33.7503 −1.39421
\(587\) −0.0889004 + 0.0889004i −0.00366931 + 0.00366931i −0.708939 0.705270i \(-0.750826\pi\)
0.705270 + 0.708939i \(0.250826\pi\)
\(588\) 0 0
\(589\) 6.86616i 0.282915i
\(590\) −3.54237 + 11.4808i −0.145837 + 0.472656i
\(591\) 0 0
\(592\) −45.1316 45.1316i −1.85490 1.85490i
\(593\) 3.86396 + 3.86396i 0.158674 + 0.158674i 0.781979 0.623305i \(-0.214210\pi\)
−0.623305 + 0.781979i \(0.714210\pi\)
\(594\) 0 0
\(595\) −6.03259 + 3.18769i −0.247312 + 0.130683i
\(596\) 71.6983i 2.93688i
\(597\) 0 0
\(598\) 0.992612 0.992612i 0.0405909 0.0405909i
\(599\) 27.3735 1.11845 0.559225 0.829016i \(-0.311099\pi\)
0.559225 + 0.829016i \(0.311099\pi\)
\(600\) 0 0
\(601\) −5.98852 −0.244277 −0.122138 0.992513i \(-0.538975\pi\)
−0.122138 + 0.992513i \(0.538975\pi\)
\(602\) 4.63219 4.63219i 0.188794 0.188794i
\(603\) 0 0
\(604\) 76.6063i 3.11707i
\(605\) 32.6317 17.2430i 1.32667 0.701027i
\(606\) 0 0
\(607\) −9.28582 9.28582i −0.376900 0.376900i 0.493083 0.869982i \(-0.335870\pi\)
−0.869982 + 0.493083i \(0.835870\pi\)
\(608\) 19.3214 + 19.3214i 0.783587 + 0.783587i
\(609\) 0 0
\(610\) 15.2814 49.5268i 0.618725 2.00528i
\(611\) 0.316737i 0.0128138i
\(612\) 0 0
\(613\) −23.8814 + 23.8814i −0.964560 + 0.964560i −0.999393 0.0348332i \(-0.988910\pi\)
0.0348332 + 0.999393i \(0.488910\pi\)
\(614\) 41.7103 1.68329
\(615\) 0 0
\(616\) 27.4508 1.10602
\(617\) 26.9091 26.9091i 1.08332 1.08332i 0.0871206 0.996198i \(-0.472233\pi\)
0.996198 0.0871206i \(-0.0277666\pi\)
\(618\) 0 0
\(619\) 49.6022i 1.99368i −0.0794249 0.996841i \(-0.525308\pi\)
0.0794249 0.996841i \(-0.474692\pi\)
\(620\) 15.0574 + 28.4956i 0.604720 + 1.14441i
\(621\) 0 0
\(622\) −45.3189 45.3189i −1.81712 1.81712i
\(623\) 6.90014 + 6.90014i 0.276448 + 0.276448i
\(624\) 0 0
\(625\) −9.12599 23.2748i −0.365040 0.930992i
\(626\) 39.7463i 1.58858i
\(627\) 0 0
\(628\) −48.3953 + 48.3953i −1.93118 + 1.93118i
\(629\) 27.6980 1.10439
\(630\) 0 0
\(631\) −14.6385 −0.582749 −0.291375 0.956609i \(-0.594113\pi\)
−0.291375 + 0.956609i \(0.594113\pi\)
\(632\) −28.9235 + 28.9235i −1.15052 + 1.15052i
\(633\) 0 0
\(634\) 42.4109i 1.68435i
\(635\) 11.6016 + 3.57964i 0.460394 + 0.142054i
\(636\) 0 0
\(637\) 0.417214 + 0.417214i 0.0165306 + 0.0165306i
\(638\) 33.8064 + 33.8064i 1.33841 + 1.33841i
\(639\) 0 0
\(640\) 7.31663 + 2.25753i 0.289215 + 0.0892367i
\(641\) 6.91608i 0.273169i −0.990628 0.136584i \(-0.956387\pi\)
0.990628 0.136584i \(-0.0436125\pi\)
\(642\) 0 0
\(643\) −20.9969 + 20.9969i −0.828037 + 0.828037i −0.987245 0.159208i \(-0.949106\pi\)
0.159208 + 0.987245i \(0.449106\pi\)
\(644\) 19.8766 0.783249
\(645\) 0 0
\(646\) −27.3541 −1.07623
\(647\) 2.08629 2.08629i 0.0820205 0.0820205i −0.664906 0.746927i \(-0.731529\pi\)
0.746927 + 0.664906i \(0.231529\pi\)
\(648\) 0 0
\(649\) 10.7229i 0.420909i
\(650\) −0.980818 0.668943i −0.0384708 0.0262381i
\(651\) 0 0
\(652\) 59.6854 + 59.6854i 2.33746 + 2.33746i
\(653\) −22.7402 22.7402i −0.889893 0.889893i 0.104620 0.994512i \(-0.466638\pi\)
−0.994512 + 0.104620i \(0.966638\pi\)
\(654\) 0 0
\(655\) 21.9787 + 41.5939i 0.858779 + 1.62521i
\(656\) 46.9911i 1.83469i
\(657\) 0 0
\(658\) −4.46392 + 4.46392i −0.174022 + 0.174022i
\(659\) 28.7505 1.11996 0.559980 0.828506i \(-0.310809\pi\)
0.559980 + 0.828506i \(0.310809\pi\)
\(660\) 0 0
\(661\) −10.6289 −0.413415 −0.206708 0.978403i \(-0.566275\pi\)
−0.206708 + 0.978403i \(0.566275\pi\)
\(662\) 11.9260 11.9260i 0.463518 0.463518i
\(663\) 0 0
\(664\) 38.6373i 1.49942i
\(665\) 1.05589 3.42213i 0.0409456 0.132704i
\(666\) 0 0
\(667\) 14.5008 + 14.5008i 0.561472 + 0.561472i
\(668\) −33.0342 33.0342i −1.27813 1.27813i
\(669\) 0 0
\(670\) −0.293747 + 0.155219i −0.0113484 + 0.00599664i
\(671\) 46.2572i 1.78574i
\(672\) 0 0
\(673\) 29.1119 29.1119i 1.12218 1.12218i 0.130768 0.991413i \(-0.458256\pi\)
0.991413 0.130768i \(-0.0417442\pi\)
\(674\) −44.5596 −1.71637
\(675\) 0 0
\(676\) 63.7457 2.45176
\(677\) −33.3164 + 33.3164i −1.28045 + 1.28045i −0.340044 + 0.940409i \(0.610442\pi\)
−0.940409 + 0.340044i \(0.889558\pi\)
\(678\) 0 0
\(679\) 10.8962i 0.418158i
\(680\) −67.2498 + 35.5356i −2.57891 + 1.36273i
\(681\) 0 0
\(682\) 28.6293 + 28.6293i 1.09627 + 1.09627i
\(683\) 3.17588 + 3.17588i 0.121522 + 0.121522i 0.765252 0.643730i \(-0.222614\pi\)
−0.643730 + 0.765252i \(0.722614\pi\)
\(684\) 0 0
\(685\) 8.01939 25.9907i 0.306405 0.993055i
\(686\) 24.3654i 0.930276i
\(687\) 0 0
\(688\) 26.3958 26.3958i 1.00633 1.00633i
\(689\) −0.0798949 −0.00304375
\(690\) 0 0
\(691\) −37.1786 −1.41434 −0.707171 0.707043i \(-0.750029\pi\)
−0.707171 + 0.707043i \(0.750029\pi\)
\(692\) 31.0453 31.0453i 1.18017 1.18017i
\(693\) 0 0
\(694\) 14.1541i 0.537281i
\(695\) 5.76745 + 10.9147i 0.218772 + 0.414018i
\(696\) 0 0
\(697\) 14.4196 + 14.4196i 0.546181 + 0.546181i
\(698\) 13.1369 + 13.1369i 0.497238 + 0.497238i
\(699\) 0 0
\(700\) −3.12258 16.5179i −0.118022 0.624317i
\(701\) 3.87768i 0.146458i 0.997315 + 0.0732290i \(0.0233304\pi\)
−0.997315 + 0.0732290i \(0.976670\pi\)
\(702\) 0 0
\(703\) −10.2802 + 10.2802i −0.387724 + 0.387724i
\(704\) 53.4923 2.01607
\(705\) 0 0
\(706\) −78.2015 −2.94315
\(707\) 1.89250 1.89250i 0.0711748 0.0711748i
\(708\) 0 0
\(709\) 11.7484i 0.441219i −0.975362 0.220609i \(-0.929195\pi\)
0.975362 0.220609i \(-0.0708046\pi\)
\(710\) −70.6415 21.7963i −2.65113 0.818000i
\(711\) 0 0
\(712\) 76.9211 + 76.9211i 2.88274 + 2.88274i
\(713\) 12.2802 + 12.2802i 0.459895 + 0.459895i
\(714\) 0 0
\(715\) −1.01246 0.312391i −0.0378637 0.0116828i
\(716\) 20.1853i 0.754358i
\(717\) 0 0
\(718\) −25.2208 + 25.2208i −0.941231 + 0.941231i
\(719\) −7.25104 −0.270418 −0.135209 0.990817i \(-0.543171\pi\)
−0.135209 + 0.990817i \(0.543171\pi\)
\(720\) 0 0
\(721\) 10.3313 0.384757
\(722\) −25.1552 + 25.1552i −0.936181 + 0.936181i
\(723\) 0 0
\(724\) 54.1935i 2.01408i
\(725\) 9.77238 14.3285i 0.362937 0.532146i
\(726\) 0 0
\(727\) 18.2889 + 18.2889i 0.678298 + 0.678298i 0.959615 0.281317i \(-0.0907711\pi\)
−0.281317 + 0.959615i \(0.590771\pi\)
\(728\) −0.334394 0.334394i −0.0123935 0.0123935i
\(729\) 0 0
\(730\) −27.7458 52.5078i −1.02692 1.94340i
\(731\) 16.1995i 0.599161i
\(732\) 0 0
\(733\) 19.1199 19.1199i 0.706211 0.706211i −0.259526 0.965736i \(-0.583566\pi\)
0.965736 + 0.259526i \(0.0835662\pi\)
\(734\) −32.3106 −1.19261
\(735\) 0 0
\(736\) 69.1128 2.54753
\(737\) −0.209664 + 0.209664i −0.00772306 + 0.00772306i
\(738\) 0 0
\(739\) 40.0776i 1.47428i 0.675740 + 0.737140i \(0.263824\pi\)
−0.675740 + 0.737140i \(0.736176\pi\)
\(740\) −20.1199 + 65.2085i −0.739624 + 2.39711i
\(741\) 0 0
\(742\) −1.12600 1.12600i −0.0413366 0.0413366i
\(743\) 2.76057 + 2.76057i 0.101275 + 0.101275i 0.755929 0.654654i \(-0.227186\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(744\) 0 0
\(745\) −28.8896 + 15.2656i −1.05843 + 0.559288i
\(746\) 48.2671i 1.76718i
\(747\) 0 0
\(748\) −81.0283 + 81.0283i −2.96269 + 2.96269i
\(749\) −5.57112 −0.203564
\(750\) 0 0
\(751\) −23.8913 −0.871806 −0.435903 0.899994i \(-0.643571\pi\)
−0.435903 + 0.899994i \(0.643571\pi\)
\(752\) −25.4369 + 25.4369i −0.927589 + 0.927589i
\(753\) 0 0
\(754\) 0.823631i 0.0299949i
\(755\) −30.8672 + 16.3106i −1.12337 + 0.593603i
\(756\) 0 0
\(757\) 17.6447 + 17.6447i 0.641309 + 0.641309i 0.950877 0.309568i \(-0.100185\pi\)
−0.309568 + 0.950877i \(0.600185\pi\)
\(758\) −21.8705 21.8705i −0.794373 0.794373i
\(759\) 0 0
\(760\) 11.7708 38.1490i 0.426972 1.38381i
\(761\) 5.21490i 0.189040i 0.995523 + 0.0945200i \(0.0301316\pi\)
−0.995523 + 0.0945200i \(0.969868\pi\)
\(762\) 0 0
\(763\) −1.79607 + 1.79607i −0.0650222 + 0.0650222i
\(764\) −64.1590 −2.32119
\(765\) 0 0
\(766\) −14.8234 −0.535593
\(767\) 0.130622 0.130622i 0.00471647 0.00471647i
\(768\) 0 0
\(769\) 29.6344i 1.06864i −0.845281 0.534322i \(-0.820567\pi\)
0.845281 0.534322i \(-0.179433\pi\)
\(770\) −9.86633 18.6717i −0.355558 0.672880i
\(771\) 0 0
\(772\) 64.0564 + 64.0564i 2.30544 + 2.30544i
\(773\) −9.60685 9.60685i −0.345535 0.345535i 0.512909 0.858443i \(-0.328568\pi\)
−0.858443 + 0.512909i \(0.828568\pi\)
\(774\) 0 0
\(775\) 8.27587 12.1342i 0.297278 0.435875i
\(776\) 121.468i 4.36046i
\(777\) 0 0
\(778\) 18.7259 18.7259i 0.671354 0.671354i
\(779\) −10.7037 −0.383501
\(780\) 0 0
\(781\) −65.9780 −2.36088
\(782\) −48.9230 + 48.9230i −1.74948 + 1.74948i
\(783\) 0 0
\(784\) 67.0123i 2.39330i
\(785\) 29.8041 + 9.19599i 1.06375 + 0.328219i
\(786\) 0 0
\(787\) −22.1540 22.1540i −0.789704 0.789704i 0.191741 0.981446i \(-0.438587\pi\)
−0.981446 + 0.191741i \(0.938587\pi\)
\(788\) 54.5477 + 54.5477i 1.94318 + 1.94318i
\(789\) 0 0
\(790\) 30.0691 + 9.27774i 1.06981 + 0.330087i
\(791\) 4.04482i 0.143817i
\(792\) 0 0
\(793\) −0.563487 + 0.563487i −0.0200100 + 0.0200100i
\(794\) 35.7325 1.26810
\(795\) 0 0
\(796\) −103.762 −3.67773
\(797\) 17.3182 17.3182i 0.613441 0.613441i −0.330400 0.943841i \(-0.607184\pi\)
0.943841 + 0.330400i \(0.107184\pi\)
\(798\) 0 0
\(799\) 15.6110i 0.552279i
\(800\) −10.8575 57.4341i −0.383870 2.03060i
\(801\) 0 0
\(802\) −54.1748 54.1748i −1.91298 1.91298i
\(803\) −37.4778 37.4778i −1.32256 1.32256i
\(804\) 0 0
\(805\) −4.23202 8.00894i −0.149159 0.282278i
\(806\) 0.697502i 0.0245685i
\(807\) 0 0
\(808\) 21.0971 21.0971i 0.742195 0.742195i
\(809\) 18.8659 0.663288 0.331644 0.943405i \(-0.392397\pi\)
0.331644 + 0.943405i \(0.392397\pi\)
\(810\) 0 0
\(811\) 17.4687 0.613409 0.306705 0.951805i \(-0.400774\pi\)
0.306705 + 0.951805i \(0.400774\pi\)
\(812\) 8.24643 8.24643i 0.289393 0.289393i
\(813\) 0 0
\(814\) 85.7289i 3.00480i
\(815\) 11.3413 36.7571i 0.397269 1.28754i
\(816\) 0 0
\(817\) −6.01248 6.01248i −0.210350 0.210350i
\(818\) −44.8725 44.8725i −1.56893 1.56893i
\(819\) 0 0
\(820\) −44.4220 + 23.4731i −1.55129 + 0.819717i
\(821\) 11.2614i 0.393026i 0.980501 + 0.196513i \(0.0629618\pi\)
−0.980501 + 0.196513i \(0.937038\pi\)
\(822\) 0 0
\(823\) −37.6209 + 37.6209i −1.31138 + 1.31138i −0.390982 + 0.920398i \(0.627865\pi\)
−0.920398 + 0.390982i \(0.872135\pi\)
\(824\) 115.171 4.01216
\(825\) 0 0
\(826\) 3.68182 0.128107
\(827\) 0.283990 0.283990i 0.00987531 0.00987531i −0.702152 0.712027i \(-0.747777\pi\)
0.712027 + 0.702152i \(0.247777\pi\)
\(828\) 0 0
\(829\) 5.96210i 0.207072i −0.994626 0.103536i \(-0.966984\pi\)
0.994626 0.103536i \(-0.0330158\pi\)
\(830\) 26.2806 13.8870i 0.912212 0.482023i
\(831\) 0 0
\(832\) −0.651622 0.651622i −0.0225909 0.0225909i
\(833\) −20.5633 20.5633i −0.712475 0.712475i
\(834\) 0 0
\(835\) −6.27709 + 20.3440i −0.217228 + 0.704033i
\(836\) 60.1476i 2.08025i
\(837\) 0 0
\(838\) 38.7083 38.7083i 1.33716 1.33716i
\(839\) 27.3250 0.943364 0.471682 0.881769i \(-0.343647\pi\)
0.471682 + 0.881769i \(0.343647\pi\)
\(840\) 0 0
\(841\) −16.9678 −0.585097
\(842\) −10.3133 + 10.3133i −0.355420 + 0.355420i
\(843\) 0 0
\(844\) 22.5034i 0.774599i
\(845\) −13.5724 25.6852i −0.466904 0.883598i
\(846\) 0 0
\(847\) −7.99726 7.99726i −0.274789 0.274789i
\(848\) −6.41631 6.41631i −0.220337 0.220337i
\(849\) 0 0
\(850\) 48.3417 + 32.9703i 1.65811 + 1.13087i
\(851\) 36.7722i 1.26054i
\(852\) 0 0
\(853\) 16.9693 16.9693i 0.581018 0.581018i −0.354165 0.935183i \(-0.615235\pi\)
0.935183 + 0.354165i \(0.115235\pi\)
\(854\) −15.8830 −0.543503
\(855\) 0 0
\(856\) −62.1055 −2.12272
\(857\) −6.32883 + 6.32883i −0.216189 + 0.216189i −0.806890 0.590702i \(-0.798851\pi\)
0.590702 + 0.806890i \(0.298851\pi\)
\(858\) 0 0
\(859\) 29.6635i 1.01211i 0.862502 + 0.506053i \(0.168896\pi\)
−0.862502 + 0.506053i \(0.831104\pi\)
\(860\) −38.1380 11.7674i −1.30050 0.401265i
\(861\) 0 0
\(862\) 19.4815 + 19.4815i 0.663543 + 0.663543i
\(863\) 17.4721 + 17.4721i 0.594758 + 0.594758i 0.938913 0.344155i \(-0.111835\pi\)
−0.344155 + 0.938913i \(0.611835\pi\)
\(864\) 0 0
\(865\) −19.1192 5.89918i −0.650071 0.200578i
\(866\) 16.1465i 0.548681i
\(867\) 0 0
\(868\) 6.98360 6.98360i 0.237039 0.237039i
\(869\) 28.0840 0.952685
\(870\) 0 0
\(871\) 0.00510808 0.000173081
\(872\) −20.0222 + 20.0222i −0.678036 + 0.678036i
\(873\) 0 0
\(874\) 36.3157i 1.22840i
\(875\) −5.99075 + 4.77508i −0.202524 + 0.161427i
\(876\) 0 0
\(877\) −6.97108 6.97108i −0.235397 0.235397i 0.579544 0.814941i \(-0.303231\pi\)
−0.814941 + 0.579544i \(0.803231\pi\)
\(878\) −60.9816 60.9816i −2.05803 2.05803i
\(879\) 0 0
\(880\) −56.2217 106.398i −1.89523 3.58666i
\(881\) 5.20934i 0.175507i 0.996142 + 0.0877535i \(0.0279688\pi\)
−0.996142 + 0.0877535i \(0.972031\pi\)
\(882\) 0 0
\(883\) −19.0043 + 19.0043i −0.639547 + 0.639547i −0.950444 0.310897i \(-0.899371\pi\)
0.310897 + 0.950444i \(0.399371\pi\)
\(884\) 1.97411 0.0663965
\(885\) 0 0
\(886\) 93.6546 3.14639
\(887\) 35.7776 35.7776i 1.20129 1.20129i 0.227521 0.973773i \(-0.426938\pi\)
0.973773 0.227521i \(-0.0730620\pi\)
\(888\) 0 0
\(889\) 3.72056i 0.124783i
\(890\) 24.6738 79.9676i 0.827069 2.68052i
\(891\) 0 0
\(892\) 81.7259 + 81.7259i 2.73638 + 2.73638i
\(893\) 5.79407 + 5.79407i 0.193891 + 0.193891i
\(894\) 0 0
\(895\) 8.13330 4.29773i 0.271866 0.143657i
\(896\) 2.34640i 0.0783878i
\(897\) 0 0
\(898\) 32.6895 32.6895i 1.09086 1.09086i
\(899\) 10.1896 0.339842
\(900\) 0 0
\(901\) 3.93779 0.131187
\(902\) −44.6305 + 44.6305i −1.48603 + 1.48603i
\(903\) 0 0
\(904\) 45.0907i 1.49969i
\(905\) 21.8363 11.5386i 0.725863 0.383555i
\(906\) 0 0
\(907\) −17.9021 17.9021i −0.594430 0.594430i 0.344395 0.938825i \(-0.388084\pi\)
−0.938825 + 0.344395i \(0.888084\pi\)
\(908\) 80.2124 + 80.2124i 2.66194 + 2.66194i
\(909\) 0 0
\(910\) −0.107263 + 0.347638i −0.00355574 + 0.0115241i
\(911\) 30.6549i 1.01564i 0.861462 + 0.507822i \(0.169549\pi\)
−0.861462 + 0.507822i \(0.830451\pi\)
\(912\) 0 0
\(913\) 18.7579 18.7579i 0.620796 0.620796i
\(914\) −11.7217 −0.387719
\(915\) 0 0
\(916\) 116.011 3.83311
\(917\) 10.1937 10.1937i 0.336625 0.336625i
\(918\) 0 0
\(919\) 13.3831i 0.441469i −0.975334 0.220734i \(-0.929155\pi\)
0.975334 0.220734i \(-0.0708454\pi\)
\(920\) −47.1775 89.2817i −1.55540 2.94353i
\(921\) 0 0
\(922\) 26.7870 + 26.7870i 0.882182 + 0.882182i
\(923\) 0.803718 + 0.803718i 0.0264547 + 0.0264547i
\(924\) 0 0
\(925\) 30.5585 5.77685i 1.00476 0.189942i
\(926\) 8.87502i 0.291651i
\(927\) 0 0
\(928\) 28.6736 28.6736i 0.941256 0.941256i
\(929\) −12.6669 −0.415587 −0.207793 0.978173i \(-0.566628\pi\)
−0.207793 + 0.978173i \(0.566628\pi\)
\(930\) 0 0
\(931\) 15.2642 0.500264
\(932\) 0.113559 0.113559i 0.00371975 0.00371975i
\(933\) 0 0
\(934\) 39.3057i 1.28612i
\(935\) 49.9010 + 15.3969i 1.63194 + 0.503531i
\(936\) 0 0
\(937\) −4.20232 4.20232i −0.137284 0.137284i 0.635125 0.772409i \(-0.280948\pi\)
−0.772409 + 0.635125i \(0.780948\pi\)
\(938\) 0.0719904 + 0.0719904i 0.00235057 + 0.00235057i
\(939\) 0 0
\(940\) 36.7526 + 11.3399i 1.19874 + 0.369868i
\(941\) 10.0360i 0.327163i −0.986530 0.163582i \(-0.947695\pi\)
0.986530 0.163582i \(-0.0523047\pi\)
\(942\) 0 0
\(943\) −19.1436 + 19.1436i −0.623403 + 0.623403i
\(944\) 20.9803 0.682849
\(945\) 0 0
\(946\) −50.1396 −1.63018
\(947\) 36.9920 36.9920i 1.20208 1.20208i 0.228547 0.973533i \(-0.426603\pi\)
0.973533 0.228547i \(-0.0733974\pi\)
\(948\) 0 0
\(949\) 0.913079i 0.0296398i
\(950\) −30.1791 + 5.70513i −0.979139 + 0.185099i
\(951\) 0 0
\(952\) 16.4813 + 16.4813i 0.534163 + 0.534163i
\(953\) −24.9004 24.9004i −0.806605 0.806605i 0.177514 0.984118i \(-0.443195\pi\)
−0.984118 + 0.177514i \(0.943195\pi\)
\(954\) 0 0
\(955\) 13.6604 + 25.8518i 0.442039 + 0.836543i
\(956\) 66.3357i 2.14545i
\(957\) 0 0
\(958\) −29.8861 + 29.8861i −0.965577 + 0.965577i
\(959\) −8.33508 −0.269154
\(960\) 0 0
\(961\) −22.3708 −0.721639
\(962\) 1.04432 1.04432i 0.0336701 0.0336701i
\(963\) 0 0
\(964\) 108.770i 3.50324i
\(965\) 12.1719 39.4490i 0.391827 1.26991i
\(966\) 0 0
\(967\) −37.8961 37.8961i −1.21866 1.21866i −0.968103 0.250554i \(-0.919387\pi\)
−0.250554 0.968103i \(-0.580613\pi\)
\(968\) −89.1515 89.1515i −2.86544 2.86544i
\(969\) 0 0
\(970\) −82.6211 + 43.6580i −2.65281 + 1.40177i
\(971\) 37.7759i 1.21229i 0.795355 + 0.606143i \(0.207284\pi\)
−0.795355 + 0.606143i \(0.792716\pi\)
\(972\) 0 0
\(973\) 2.67493 2.67493i 0.0857544 0.0857544i
\(974\) 12.1573 0.389543
\(975\) 0 0
\(976\) −90.5066 −2.89704
\(977\) −22.6848 + 22.6848i −0.725752 + 0.725752i −0.969771 0.244018i \(-0.921534\pi\)
0.244018 + 0.969771i \(0.421534\pi\)
\(978\) 0 0
\(979\) 74.6885i 2.38705i
\(980\) 63.3487 33.4742i 2.02360 1.06929i
\(981\) 0 0
\(982\) −25.0654 25.0654i −0.799869 0.799869i
\(983\) −10.3858 10.3858i −0.331256 0.331256i 0.521807 0.853064i \(-0.325258\pi\)
−0.853064 + 0.521807i \(0.825258\pi\)
\(984\) 0 0
\(985\) 10.3651 33.5931i 0.330258 1.07036i
\(986\) 40.5944i 1.29279i
\(987\) 0 0
\(988\) −0.732694 + 0.732694i −0.0233101 + 0.0233101i
\(989\) −21.5067 −0.683873
\(990\) 0 0
\(991\) 21.6843 0.688825 0.344412 0.938818i \(-0.388078\pi\)
0.344412 + 0.938818i \(0.388078\pi\)
\(992\) 24.2826 24.2826i 0.770973 0.770973i
\(993\) 0 0
\(994\) 22.6543i 0.718551i
\(995\) 22.0923 + 41.8089i 0.700374 + 1.32543i
\(996\) 0 0
\(997\) 19.8482 + 19.8482i 0.628598 + 0.628598i 0.947715 0.319117i \(-0.103386\pi\)
−0.319117 + 0.947715i \(0.603386\pi\)
\(998\) 5.39496 + 5.39496i 0.170774 + 0.170774i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.f.b.242.1 24
3.2 odd 2 inner 405.2.f.b.242.12 yes 24
5.3 odd 4 inner 405.2.f.b.323.12 yes 24
9.2 odd 6 405.2.m.e.377.1 24
9.4 even 3 405.2.m.d.107.1 24
9.5 odd 6 405.2.m.d.107.6 24
9.7 even 3 405.2.m.e.377.6 24
15.8 even 4 inner 405.2.f.b.323.1 yes 24
45.13 odd 12 405.2.m.e.188.1 24
45.23 even 12 405.2.m.e.188.6 24
45.38 even 12 405.2.m.d.53.1 24
45.43 odd 12 405.2.m.d.53.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.2.f.b.242.1 24 1.1 even 1 trivial
405.2.f.b.242.12 yes 24 3.2 odd 2 inner
405.2.f.b.323.1 yes 24 15.8 even 4 inner
405.2.f.b.323.12 yes 24 5.3 odd 4 inner
405.2.m.d.53.1 24 45.38 even 12
405.2.m.d.53.6 24 45.43 odd 12
405.2.m.d.107.1 24 9.4 even 3
405.2.m.d.107.6 24 9.5 odd 6
405.2.m.e.188.1 24 45.13 odd 12
405.2.m.e.188.6 24 45.23 even 12
405.2.m.e.377.1 24 9.2 odd 6
405.2.m.e.377.6 24 9.7 even 3