Properties

Label 405.2.e.b.136.1
Level $405$
Weight $2$
Character 405.136
Analytic conductor $3.234$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(136,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.136"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,-2,-1,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 136.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 405.136
Dual form 405.2.e.b.271.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{2} +(-1.00000 - 1.73205i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(1.50000 - 2.59808i) q^{7} +2.00000 q^{10} +(-1.00000 + 1.73205i) q^{11} +(2.50000 + 4.33013i) q^{13} +(3.00000 + 5.19615i) q^{14} +(2.00000 - 3.46410i) q^{16} +8.00000 q^{17} +1.00000 q^{19} +(-1.00000 + 1.73205i) q^{20} +(-2.00000 - 3.46410i) q^{22} +(3.00000 + 5.19615i) q^{23} +(-0.500000 + 0.866025i) q^{25} -10.0000 q^{26} -6.00000 q^{28} +(1.00000 - 1.73205i) q^{29} +(4.00000 + 6.92820i) q^{32} +(-8.00000 + 13.8564i) q^{34} -3.00000 q^{35} +5.00000 q^{37} +(-1.00000 + 1.73205i) q^{38} +(-5.00000 - 8.66025i) q^{41} +(-2.00000 + 3.46410i) q^{43} +4.00000 q^{44} -12.0000 q^{46} +(2.00000 - 3.46410i) q^{47} +(-1.00000 - 1.73205i) q^{49} +(-1.00000 - 1.73205i) q^{50} +(5.00000 - 8.66025i) q^{52} +2.00000 q^{53} +2.00000 q^{55} +(2.00000 + 3.46410i) q^{58} +(-4.00000 - 6.92820i) q^{59} +(-3.50000 + 6.06218i) q^{61} -8.00000 q^{64} +(2.50000 - 4.33013i) q^{65} +(4.50000 + 7.79423i) q^{67} +(-8.00000 - 13.8564i) q^{68} +(3.00000 - 5.19615i) q^{70} -2.00000 q^{71} -5.00000 q^{73} +(-5.00000 + 8.66025i) q^{74} +(-1.00000 - 1.73205i) q^{76} +(3.00000 + 5.19615i) q^{77} +(1.50000 - 2.59808i) q^{79} -4.00000 q^{80} +20.0000 q^{82} +(3.00000 - 5.19615i) q^{83} +(-4.00000 - 6.92820i) q^{85} +(-4.00000 - 6.92820i) q^{86} +12.0000 q^{89} +15.0000 q^{91} +(6.00000 - 10.3923i) q^{92} +(4.00000 + 6.92820i) q^{94} +(-0.500000 - 0.866025i) q^{95} +(6.50000 - 11.2583i) q^{97} +4.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{4} - q^{5} + 3 q^{7} + 4 q^{10} - 2 q^{11} + 5 q^{13} + 6 q^{14} + 4 q^{16} + 16 q^{17} + 2 q^{19} - 2 q^{20} - 4 q^{22} + 6 q^{23} - q^{25} - 20 q^{26} - 12 q^{28} + 2 q^{29} + 8 q^{32}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.73205i −0.707107 + 1.22474i 0.258819 + 0.965926i \(0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(3\) 0 0
\(4\) −1.00000 1.73205i −0.500000 0.866025i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) 1.50000 2.59808i 0.566947 0.981981i −0.429919 0.902867i \(-0.641458\pi\)
0.996866 0.0791130i \(-0.0252088\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) −1.00000 + 1.73205i −0.301511 + 0.522233i −0.976478 0.215615i \(-0.930824\pi\)
0.674967 + 0.737848i \(0.264158\pi\)
\(12\) 0 0
\(13\) 2.50000 + 4.33013i 0.693375 + 1.20096i 0.970725 + 0.240192i \(0.0772105\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 3.00000 + 5.19615i 0.801784 + 1.38873i
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 8.00000 1.94029 0.970143 0.242536i \(-0.0779791\pi\)
0.970143 + 0.242536i \(0.0779791\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) −1.00000 + 1.73205i −0.223607 + 0.387298i
\(21\) 0 0
\(22\) −2.00000 3.46410i −0.426401 0.738549i
\(23\) 3.00000 + 5.19615i 0.625543 + 1.08347i 0.988436 + 0.151642i \(0.0484560\pi\)
−0.362892 + 0.931831i \(0.618211\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −10.0000 −1.96116
\(27\) 0 0
\(28\) −6.00000 −1.13389
\(29\) 1.00000 1.73205i 0.185695 0.321634i −0.758115 0.652121i \(-0.773880\pi\)
0.943811 + 0.330487i \(0.107213\pi\)
\(30\) 0 0
\(31\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(32\) 4.00000 + 6.92820i 0.707107 + 1.22474i
\(33\) 0 0
\(34\) −8.00000 + 13.8564i −1.37199 + 2.37635i
\(35\) −3.00000 −0.507093
\(36\) 0 0
\(37\) 5.00000 0.821995 0.410997 0.911636i \(-0.365181\pi\)
0.410997 + 0.911636i \(0.365181\pi\)
\(38\) −1.00000 + 1.73205i −0.162221 + 0.280976i
\(39\) 0 0
\(40\) 0 0
\(41\) −5.00000 8.66025i −0.780869 1.35250i −0.931436 0.363905i \(-0.881443\pi\)
0.150567 0.988600i \(-0.451890\pi\)
\(42\) 0 0
\(43\) −2.00000 + 3.46410i −0.304997 + 0.528271i −0.977261 0.212041i \(-0.931989\pi\)
0.672264 + 0.740312i \(0.265322\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) −12.0000 −1.76930
\(47\) 2.00000 3.46410i 0.291730 0.505291i −0.682489 0.730896i \(-0.739102\pi\)
0.974219 + 0.225605i \(0.0724358\pi\)
\(48\) 0 0
\(49\) −1.00000 1.73205i −0.142857 0.247436i
\(50\) −1.00000 1.73205i −0.141421 0.244949i
\(51\) 0 0
\(52\) 5.00000 8.66025i 0.693375 1.20096i
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 2.00000 + 3.46410i 0.262613 + 0.454859i
\(59\) −4.00000 6.92820i −0.520756 0.901975i −0.999709 0.0241347i \(-0.992317\pi\)
0.478953 0.877841i \(-0.341016\pi\)
\(60\) 0 0
\(61\) −3.50000 + 6.06218i −0.448129 + 0.776182i −0.998264 0.0588933i \(-0.981243\pi\)
0.550135 + 0.835076i \(0.314576\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 2.50000 4.33013i 0.310087 0.537086i
\(66\) 0 0
\(67\) 4.50000 + 7.79423i 0.549762 + 0.952217i 0.998290 + 0.0584478i \(0.0186151\pi\)
−0.448528 + 0.893769i \(0.648052\pi\)
\(68\) −8.00000 13.8564i −0.970143 1.68034i
\(69\) 0 0
\(70\) 3.00000 5.19615i 0.358569 0.621059i
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) −5.00000 −0.585206 −0.292603 0.956234i \(-0.594521\pi\)
−0.292603 + 0.956234i \(0.594521\pi\)
\(74\) −5.00000 + 8.66025i −0.581238 + 1.00673i
\(75\) 0 0
\(76\) −1.00000 1.73205i −0.114708 0.198680i
\(77\) 3.00000 + 5.19615i 0.341882 + 0.592157i
\(78\) 0 0
\(79\) 1.50000 2.59808i 0.168763 0.292306i −0.769222 0.638982i \(-0.779356\pi\)
0.937985 + 0.346675i \(0.112689\pi\)
\(80\) −4.00000 −0.447214
\(81\) 0 0
\(82\) 20.0000 2.20863
\(83\) 3.00000 5.19615i 0.329293 0.570352i −0.653079 0.757290i \(-0.726523\pi\)
0.982372 + 0.186938i \(0.0598564\pi\)
\(84\) 0 0
\(85\) −4.00000 6.92820i −0.433861 0.751469i
\(86\) −4.00000 6.92820i −0.431331 0.747087i
\(87\) 0 0
\(88\) 0 0
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 0 0
\(91\) 15.0000 1.57243
\(92\) 6.00000 10.3923i 0.625543 1.08347i
\(93\) 0 0
\(94\) 4.00000 + 6.92820i 0.412568 + 0.714590i
\(95\) −0.500000 0.866025i −0.0512989 0.0888523i
\(96\) 0 0
\(97\) 6.50000 11.2583i 0.659975 1.14311i −0.320647 0.947199i \(-0.603900\pi\)
0.980622 0.195911i \(-0.0627665\pi\)
\(98\) 4.00000 0.404061
\(99\) 0 0
\(100\) 2.00000 0.200000
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) −8.50000 14.7224i −0.837530 1.45064i −0.891954 0.452126i \(-0.850666\pi\)
0.0544240 0.998518i \(-0.482668\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −2.00000 + 3.46410i −0.194257 + 0.336463i
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) −2.00000 + 3.46410i −0.190693 + 0.330289i
\(111\) 0 0
\(112\) −6.00000 10.3923i −0.566947 0.981981i
\(113\) 5.00000 + 8.66025i 0.470360 + 0.814688i 0.999425 0.0338931i \(-0.0107906\pi\)
−0.529065 + 0.848581i \(0.677457\pi\)
\(114\) 0 0
\(115\) 3.00000 5.19615i 0.279751 0.484544i
\(116\) −4.00000 −0.371391
\(117\) 0 0
\(118\) 16.0000 1.47292
\(119\) 12.0000 20.7846i 1.10004 1.90532i
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) −7.00000 12.1244i −0.633750 1.09769i
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 5.00000 + 8.66025i 0.438529 + 0.759555i
\(131\) 6.00000 + 10.3923i 0.524222 + 0.907980i 0.999602 + 0.0281993i \(0.00897729\pi\)
−0.475380 + 0.879781i \(0.657689\pi\)
\(132\) 0 0
\(133\) 1.50000 2.59808i 0.130066 0.225282i
\(134\) −18.0000 −1.55496
\(135\) 0 0
\(136\) 0 0
\(137\) −3.00000 + 5.19615i −0.256307 + 0.443937i −0.965250 0.261329i \(-0.915839\pi\)
0.708942 + 0.705266i \(0.249173\pi\)
\(138\) 0 0
\(139\) 6.50000 + 11.2583i 0.551323 + 0.954919i 0.998179 + 0.0603135i \(0.0192101\pi\)
−0.446857 + 0.894606i \(0.647457\pi\)
\(140\) 3.00000 + 5.19615i 0.253546 + 0.439155i
\(141\) 0 0
\(142\) 2.00000 3.46410i 0.167836 0.290701i
\(143\) −10.0000 −0.836242
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) 5.00000 8.66025i 0.413803 0.716728i
\(147\) 0 0
\(148\) −5.00000 8.66025i −0.410997 0.711868i
\(149\) −2.00000 3.46410i −0.163846 0.283790i 0.772399 0.635138i \(-0.219057\pi\)
−0.936245 + 0.351348i \(0.885723\pi\)
\(150\) 0 0
\(151\) −0.500000 + 0.866025i −0.0406894 + 0.0704761i −0.885653 0.464348i \(-0.846289\pi\)
0.844963 + 0.534824i \(0.179622\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −12.0000 −0.966988
\(155\) 0 0
\(156\) 0 0
\(157\) −1.00000 1.73205i −0.0798087 0.138233i 0.823359 0.567521i \(-0.192098\pi\)
−0.903167 + 0.429289i \(0.858764\pi\)
\(158\) 3.00000 + 5.19615i 0.238667 + 0.413384i
\(159\) 0 0
\(160\) 4.00000 6.92820i 0.316228 0.547723i
\(161\) 18.0000 1.41860
\(162\) 0 0
\(163\) −19.0000 −1.48819 −0.744097 0.668071i \(-0.767120\pi\)
−0.744097 + 0.668071i \(0.767120\pi\)
\(164\) −10.0000 + 17.3205i −0.780869 + 1.35250i
\(165\) 0 0
\(166\) 6.00000 + 10.3923i 0.465690 + 0.806599i
\(167\) −6.00000 10.3923i −0.464294 0.804181i 0.534875 0.844931i \(-0.320359\pi\)
−0.999169 + 0.0407502i \(0.987025\pi\)
\(168\) 0 0
\(169\) −6.00000 + 10.3923i −0.461538 + 0.799408i
\(170\) 16.0000 1.22714
\(171\) 0 0
\(172\) 8.00000 0.609994
\(173\) −6.00000 + 10.3923i −0.456172 + 0.790112i −0.998755 0.0498898i \(-0.984113\pi\)
0.542583 + 0.840002i \(0.317446\pi\)
\(174\) 0 0
\(175\) 1.50000 + 2.59808i 0.113389 + 0.196396i
\(176\) 4.00000 + 6.92820i 0.301511 + 0.522233i
\(177\) 0 0
\(178\) −12.0000 + 20.7846i −0.899438 + 1.55787i
\(179\) −22.0000 −1.64436 −0.822179 0.569230i \(-0.807242\pi\)
−0.822179 + 0.569230i \(0.807242\pi\)
\(180\) 0 0
\(181\) 5.00000 0.371647 0.185824 0.982583i \(-0.440505\pi\)
0.185824 + 0.982583i \(0.440505\pi\)
\(182\) −15.0000 + 25.9808i −1.11187 + 1.92582i
\(183\) 0 0
\(184\) 0 0
\(185\) −2.50000 4.33013i −0.183804 0.318357i
\(186\) 0 0
\(187\) −8.00000 + 13.8564i −0.585018 + 1.01328i
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) 2.00000 0.145095
\(191\) −2.00000 + 3.46410i −0.144715 + 0.250654i −0.929267 0.369410i \(-0.879560\pi\)
0.784552 + 0.620063i \(0.212893\pi\)
\(192\) 0 0
\(193\) −2.50000 4.33013i −0.179954 0.311689i 0.761911 0.647682i \(-0.224262\pi\)
−0.941865 + 0.335993i \(0.890928\pi\)
\(194\) 13.0000 + 22.5167i 0.933346 + 1.61660i
\(195\) 0 0
\(196\) −2.00000 + 3.46410i −0.142857 + 0.247436i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −17.0000 −1.20510 −0.602549 0.798082i \(-0.705848\pi\)
−0.602549 + 0.798082i \(0.705848\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.00000 5.19615i −0.210559 0.364698i
\(204\) 0 0
\(205\) −5.00000 + 8.66025i −0.349215 + 0.604858i
\(206\) 34.0000 2.36889
\(207\) 0 0
\(208\) 20.0000 1.38675
\(209\) −1.00000 + 1.73205i −0.0691714 + 0.119808i
\(210\) 0 0
\(211\) −11.5000 19.9186i −0.791693 1.37125i −0.924918 0.380166i \(-0.875867\pi\)
0.133226 0.991086i \(-0.457467\pi\)
\(212\) −2.00000 3.46410i −0.137361 0.237915i
\(213\) 0 0
\(214\) 6.00000 10.3923i 0.410152 0.710403i
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) 0 0
\(218\) 10.0000 17.3205i 0.677285 1.17309i
\(219\) 0 0
\(220\) −2.00000 3.46410i −0.134840 0.233550i
\(221\) 20.0000 + 34.6410i 1.34535 + 2.33021i
\(222\) 0 0
\(223\) −4.00000 + 6.92820i −0.267860 + 0.463947i −0.968309 0.249756i \(-0.919650\pi\)
0.700449 + 0.713702i \(0.252983\pi\)
\(224\) 24.0000 1.60357
\(225\) 0 0
\(226\) −20.0000 −1.33038
\(227\) −5.00000 + 8.66025i −0.331862 + 0.574801i −0.982877 0.184263i \(-0.941010\pi\)
0.651015 + 0.759065i \(0.274343\pi\)
\(228\) 0 0
\(229\) −3.00000 5.19615i −0.198246 0.343371i 0.749714 0.661762i \(-0.230191\pi\)
−0.947960 + 0.318390i \(0.896858\pi\)
\(230\) 6.00000 + 10.3923i 0.395628 + 0.685248i
\(231\) 0 0
\(232\) 0 0
\(233\) 24.0000 1.57229 0.786146 0.618041i \(-0.212073\pi\)
0.786146 + 0.618041i \(0.212073\pi\)
\(234\) 0 0
\(235\) −4.00000 −0.260931
\(236\) −8.00000 + 13.8564i −0.520756 + 0.901975i
\(237\) 0 0
\(238\) 24.0000 + 41.5692i 1.55569 + 2.69453i
\(239\) −13.0000 22.5167i −0.840900 1.45648i −0.889135 0.457646i \(-0.848693\pi\)
0.0482346 0.998836i \(-0.484640\pi\)
\(240\) 0 0
\(241\) −0.500000 + 0.866025i −0.0322078 + 0.0557856i −0.881680 0.471848i \(-0.843587\pi\)
0.849472 + 0.527633i \(0.176921\pi\)
\(242\) −14.0000 −0.899954
\(243\) 0 0
\(244\) 14.0000 0.896258
\(245\) −1.00000 + 1.73205i −0.0638877 + 0.110657i
\(246\) 0 0
\(247\) 2.50000 + 4.33013i 0.159071 + 0.275519i
\(248\) 0 0
\(249\) 0 0
\(250\) −1.00000 + 1.73205i −0.0632456 + 0.109545i
\(251\) −6.00000 −0.378717 −0.189358 0.981908i \(-0.560641\pi\)
−0.189358 + 0.981908i \(0.560641\pi\)
\(252\) 0 0
\(253\) −12.0000 −0.754434
\(254\) 8.00000 13.8564i 0.501965 0.869428i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 0 0
\(259\) 7.50000 12.9904i 0.466027 0.807183i
\(260\) −10.0000 −0.620174
\(261\) 0 0
\(262\) −24.0000 −1.48272
\(263\) −14.0000 + 24.2487i −0.863277 + 1.49524i 0.00547092 + 0.999985i \(0.498259\pi\)
−0.868748 + 0.495255i \(0.835075\pi\)
\(264\) 0 0
\(265\) −1.00000 1.73205i −0.0614295 0.106399i
\(266\) 3.00000 + 5.19615i 0.183942 + 0.318597i
\(267\) 0 0
\(268\) 9.00000 15.5885i 0.549762 0.952217i
\(269\) −16.0000 −0.975537 −0.487769 0.872973i \(-0.662189\pi\)
−0.487769 + 0.872973i \(0.662189\pi\)
\(270\) 0 0
\(271\) 13.0000 0.789694 0.394847 0.918747i \(-0.370798\pi\)
0.394847 + 0.918747i \(0.370798\pi\)
\(272\) 16.0000 27.7128i 0.970143 1.68034i
\(273\) 0 0
\(274\) −6.00000 10.3923i −0.362473 0.627822i
\(275\) −1.00000 1.73205i −0.0603023 0.104447i
\(276\) 0 0
\(277\) 15.0000 25.9808i 0.901263 1.56103i 0.0754058 0.997153i \(-0.475975\pi\)
0.825857 0.563880i \(-0.190692\pi\)
\(278\) −26.0000 −1.55938
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(282\) 0 0
\(283\) −6.00000 10.3923i −0.356663 0.617758i 0.630738 0.775996i \(-0.282752\pi\)
−0.987401 + 0.158237i \(0.949419\pi\)
\(284\) 2.00000 + 3.46410i 0.118678 + 0.205557i
\(285\) 0 0
\(286\) 10.0000 17.3205i 0.591312 1.02418i
\(287\) −30.0000 −1.77084
\(288\) 0 0
\(289\) 47.0000 2.76471
\(290\) 2.00000 3.46410i 0.117444 0.203419i
\(291\) 0 0
\(292\) 5.00000 + 8.66025i 0.292603 + 0.506803i
\(293\) 9.00000 + 15.5885i 0.525786 + 0.910687i 0.999549 + 0.0300351i \(0.00956192\pi\)
−0.473763 + 0.880652i \(0.657105\pi\)
\(294\) 0 0
\(295\) −4.00000 + 6.92820i −0.232889 + 0.403376i
\(296\) 0 0
\(297\) 0 0
\(298\) 8.00000 0.463428
\(299\) −15.0000 + 25.9808i −0.867472 + 1.50251i
\(300\) 0 0
\(301\) 6.00000 + 10.3923i 0.345834 + 0.599002i
\(302\) −1.00000 1.73205i −0.0575435 0.0996683i
\(303\) 0 0
\(304\) 2.00000 3.46410i 0.114708 0.198680i
\(305\) 7.00000 0.400819
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 6.00000 10.3923i 0.341882 0.592157i
\(309\) 0 0
\(310\) 0 0
\(311\) −12.0000 20.7846i −0.680458 1.17859i −0.974841 0.222900i \(-0.928448\pi\)
0.294384 0.955687i \(-0.404886\pi\)
\(312\) 0 0
\(313\) 3.50000 6.06218i 0.197832 0.342655i −0.749993 0.661445i \(-0.769943\pi\)
0.947825 + 0.318791i \(0.103277\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) −6.00000 −0.337526
\(317\) 10.0000 17.3205i 0.561656 0.972817i −0.435696 0.900094i \(-0.643498\pi\)
0.997352 0.0727229i \(-0.0231689\pi\)
\(318\) 0 0
\(319\) 2.00000 + 3.46410i 0.111979 + 0.193952i
\(320\) 4.00000 + 6.92820i 0.223607 + 0.387298i
\(321\) 0 0
\(322\) −18.0000 + 31.1769i −1.00310 + 1.73742i
\(323\) 8.00000 0.445132
\(324\) 0 0
\(325\) −5.00000 −0.277350
\(326\) 19.0000 32.9090i 1.05231 1.82266i
\(327\) 0 0
\(328\) 0 0
\(329\) −6.00000 10.3923i −0.330791 0.572946i
\(330\) 0 0
\(331\) 10.5000 18.1865i 0.577132 0.999622i −0.418674 0.908137i \(-0.637505\pi\)
0.995806 0.0914858i \(-0.0291616\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) 24.0000 1.31322
\(335\) 4.50000 7.79423i 0.245861 0.425844i
\(336\) 0 0
\(337\) −3.50000 6.06218i −0.190657 0.330228i 0.754811 0.655942i \(-0.227729\pi\)
−0.945468 + 0.325714i \(0.894395\pi\)
\(338\) −12.0000 20.7846i −0.652714 1.13053i
\(339\) 0 0
\(340\) −8.00000 + 13.8564i −0.433861 + 0.751469i
\(341\) 0 0
\(342\) 0 0
\(343\) 15.0000 0.809924
\(344\) 0 0
\(345\) 0 0
\(346\) −12.0000 20.7846i −0.645124 1.11739i
\(347\) 5.00000 + 8.66025i 0.268414 + 0.464907i 0.968452 0.249198i \(-0.0801671\pi\)
−0.700038 + 0.714105i \(0.746834\pi\)
\(348\) 0 0
\(349\) −9.50000 + 16.4545i −0.508523 + 0.880788i 0.491428 + 0.870918i \(0.336475\pi\)
−0.999951 + 0.00987003i \(0.996858\pi\)
\(350\) −6.00000 −0.320713
\(351\) 0 0
\(352\) −16.0000 −0.852803
\(353\) −6.00000 + 10.3923i −0.319348 + 0.553127i −0.980352 0.197256i \(-0.936797\pi\)
0.661004 + 0.750382i \(0.270130\pi\)
\(354\) 0 0
\(355\) 1.00000 + 1.73205i 0.0530745 + 0.0919277i
\(356\) −12.0000 20.7846i −0.635999 1.10158i
\(357\) 0 0
\(358\) 22.0000 38.1051i 1.16274 2.01392i
\(359\) 18.0000 0.950004 0.475002 0.879985i \(-0.342447\pi\)
0.475002 + 0.879985i \(0.342447\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) −5.00000 + 8.66025i −0.262794 + 0.455173i
\(363\) 0 0
\(364\) −15.0000 25.9808i −0.786214 1.36176i
\(365\) 2.50000 + 4.33013i 0.130856 + 0.226649i
\(366\) 0 0
\(367\) −10.5000 + 18.1865i −0.548096 + 0.949329i 0.450310 + 0.892873i \(0.351314\pi\)
−0.998405 + 0.0564568i \(0.982020\pi\)
\(368\) 24.0000 1.25109
\(369\) 0 0
\(370\) 10.0000 0.519875
\(371\) 3.00000 5.19615i 0.155752 0.269771i
\(372\) 0 0
\(373\) 5.50000 + 9.52628i 0.284779 + 0.493252i 0.972556 0.232671i \(-0.0747464\pi\)
−0.687776 + 0.725923i \(0.741413\pi\)
\(374\) −16.0000 27.7128i −0.827340 1.43300i
\(375\) 0 0
\(376\) 0 0
\(377\) 10.0000 0.515026
\(378\) 0 0
\(379\) −11.0000 −0.565032 −0.282516 0.959263i \(-0.591169\pi\)
−0.282516 + 0.959263i \(0.591169\pi\)
\(380\) −1.00000 + 1.73205i −0.0512989 + 0.0888523i
\(381\) 0 0
\(382\) −4.00000 6.92820i −0.204658 0.354478i
\(383\) −12.0000 20.7846i −0.613171 1.06204i −0.990702 0.136047i \(-0.956560\pi\)
0.377531 0.925997i \(-0.376773\pi\)
\(384\) 0 0
\(385\) 3.00000 5.19615i 0.152894 0.264820i
\(386\) 10.0000 0.508987
\(387\) 0 0
\(388\) −26.0000 −1.31995
\(389\) 12.0000 20.7846i 0.608424 1.05382i −0.383076 0.923717i \(-0.625135\pi\)
0.991500 0.130105i \(-0.0415314\pi\)
\(390\) 0 0
\(391\) 24.0000 + 41.5692i 1.21373 + 2.10225i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.00000 −0.150946
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 17.0000 29.4449i 0.852133 1.47594i
\(399\) 0 0
\(400\) 2.00000 + 3.46410i 0.100000 + 0.173205i
\(401\) 3.00000 + 5.19615i 0.149813 + 0.259483i 0.931158 0.364615i \(-0.118800\pi\)
−0.781345 + 0.624099i \(0.785466\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) −5.00000 + 8.66025i −0.247841 + 0.429273i
\(408\) 0 0
\(409\) 3.50000 + 6.06218i 0.173064 + 0.299755i 0.939490 0.342578i \(-0.111300\pi\)
−0.766426 + 0.642333i \(0.777967\pi\)
\(410\) −10.0000 17.3205i −0.493865 0.855399i
\(411\) 0 0
\(412\) −17.0000 + 29.4449i −0.837530 + 1.45064i
\(413\) −24.0000 −1.18096
\(414\) 0 0
\(415\) −6.00000 −0.294528
\(416\) −20.0000 + 34.6410i −0.980581 + 1.69842i
\(417\) 0 0
\(418\) −2.00000 3.46410i −0.0978232 0.169435i
\(419\) 16.0000 + 27.7128i 0.781651 + 1.35386i 0.930979 + 0.365072i \(0.118956\pi\)
−0.149328 + 0.988788i \(0.547711\pi\)
\(420\) 0 0
\(421\) −0.500000 + 0.866025i −0.0243685 + 0.0422075i −0.877952 0.478748i \(-0.841091\pi\)
0.853584 + 0.520955i \(0.174424\pi\)
\(422\) 46.0000 2.23924
\(423\) 0 0
\(424\) 0 0
\(425\) −4.00000 + 6.92820i −0.194029 + 0.336067i
\(426\) 0 0
\(427\) 10.5000 + 18.1865i 0.508131 + 0.880108i
\(428\) 6.00000 + 10.3923i 0.290021 + 0.502331i
\(429\) 0 0
\(430\) −4.00000 + 6.92820i −0.192897 + 0.334108i
\(431\) −30.0000 −1.44505 −0.722525 0.691345i \(-0.757018\pi\)
−0.722525 + 0.691345i \(0.757018\pi\)
\(432\) 0 0
\(433\) −38.0000 −1.82616 −0.913082 0.407777i \(-0.866304\pi\)
−0.913082 + 0.407777i \(0.866304\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 10.0000 + 17.3205i 0.478913 + 0.829502i
\(437\) 3.00000 + 5.19615i 0.143509 + 0.248566i
\(438\) 0 0
\(439\) 16.0000 27.7128i 0.763638 1.32266i −0.177325 0.984152i \(-0.556744\pi\)
0.940963 0.338508i \(-0.109922\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −80.0000 −3.80521
\(443\) −6.00000 + 10.3923i −0.285069 + 0.493753i −0.972626 0.232377i \(-0.925350\pi\)
0.687557 + 0.726130i \(0.258683\pi\)
\(444\) 0 0
\(445\) −6.00000 10.3923i −0.284427 0.492642i
\(446\) −8.00000 13.8564i −0.378811 0.656120i
\(447\) 0 0
\(448\) −12.0000 + 20.7846i −0.566947 + 0.981981i
\(449\) −4.00000 −0.188772 −0.0943858 0.995536i \(-0.530089\pi\)
−0.0943858 + 0.995536i \(0.530089\pi\)
\(450\) 0 0
\(451\) 20.0000 0.941763
\(452\) 10.0000 17.3205i 0.470360 0.814688i
\(453\) 0 0
\(454\) −10.0000 17.3205i −0.469323 0.812892i
\(455\) −7.50000 12.9904i −0.351605 0.608998i
\(456\) 0 0
\(457\) −11.0000 + 19.0526i −0.514558 + 0.891241i 0.485299 + 0.874348i \(0.338711\pi\)
−0.999857 + 0.0168929i \(0.994623\pi\)
\(458\) 12.0000 0.560723
\(459\) 0 0
\(460\) −12.0000 −0.559503
\(461\) −6.00000 + 10.3923i −0.279448 + 0.484018i −0.971248 0.238071i \(-0.923485\pi\)
0.691800 + 0.722089i \(0.256818\pi\)
\(462\) 0 0
\(463\) −16.5000 28.5788i −0.766820 1.32817i −0.939279 0.343155i \(-0.888505\pi\)
0.172459 0.985017i \(-0.444829\pi\)
\(464\) −4.00000 6.92820i −0.185695 0.321634i
\(465\) 0 0
\(466\) −24.0000 + 41.5692i −1.11178 + 1.92566i
\(467\) 28.0000 1.29569 0.647843 0.761774i \(-0.275671\pi\)
0.647843 + 0.761774i \(0.275671\pi\)
\(468\) 0 0
\(469\) 27.0000 1.24674
\(470\) 4.00000 6.92820i 0.184506 0.319574i
\(471\) 0 0
\(472\) 0 0
\(473\) −4.00000 6.92820i −0.183920 0.318559i
\(474\) 0 0
\(475\) −0.500000 + 0.866025i −0.0229416 + 0.0397360i
\(476\) −48.0000 −2.20008
\(477\) 0 0
\(478\) 52.0000 2.37842
\(479\) 3.00000 5.19615i 0.137073 0.237418i −0.789314 0.613990i \(-0.789564\pi\)
0.926388 + 0.376571i \(0.122897\pi\)
\(480\) 0 0
\(481\) 12.5000 + 21.6506i 0.569951 + 0.987184i
\(482\) −1.00000 1.73205i −0.0455488 0.0788928i
\(483\) 0 0
\(484\) 7.00000 12.1244i 0.318182 0.551107i
\(485\) −13.0000 −0.590300
\(486\) 0 0
\(487\) 5.00000 0.226572 0.113286 0.993562i \(-0.463862\pi\)
0.113286 + 0.993562i \(0.463862\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −2.00000 3.46410i −0.0903508 0.156492i
\(491\) −11.0000 19.0526i −0.496423 0.859830i 0.503568 0.863955i \(-0.332020\pi\)
−0.999991 + 0.00412539i \(0.998687\pi\)
\(492\) 0 0
\(493\) 8.00000 13.8564i 0.360302 0.624061i
\(494\) −10.0000 −0.449921
\(495\) 0 0
\(496\) 0 0
\(497\) −3.00000 + 5.19615i −0.134568 + 0.233079i
\(498\) 0 0
\(499\) −8.00000 13.8564i −0.358129 0.620298i 0.629519 0.776985i \(-0.283252\pi\)
−0.987648 + 0.156687i \(0.949919\pi\)
\(500\) −1.00000 1.73205i −0.0447214 0.0774597i
\(501\) 0 0
\(502\) 6.00000 10.3923i 0.267793 0.463831i
\(503\) −26.0000 −1.15928 −0.579641 0.814872i \(-0.696807\pi\)
−0.579641 + 0.814872i \(0.696807\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 12.0000 20.7846i 0.533465 0.923989i
\(507\) 0 0
\(508\) 8.00000 + 13.8564i 0.354943 + 0.614779i
\(509\) 17.0000 + 29.4449i 0.753512 + 1.30512i 0.946111 + 0.323843i \(0.104975\pi\)
−0.192599 + 0.981278i \(0.561692\pi\)
\(510\) 0 0
\(511\) −7.50000 + 12.9904i −0.331780 + 0.574661i
\(512\) 32.0000 1.41421
\(513\) 0 0
\(514\) 0 0
\(515\) −8.50000 + 14.7224i −0.374555 + 0.648748i
\(516\) 0 0
\(517\) 4.00000 + 6.92820i 0.175920 + 0.304702i
\(518\) 15.0000 + 25.9808i 0.659062 + 1.14153i
\(519\) 0 0
\(520\) 0 0
\(521\) −38.0000 −1.66481 −0.832405 0.554168i \(-0.813037\pi\)
−0.832405 + 0.554168i \(0.813037\pi\)
\(522\) 0 0
\(523\) 19.0000 0.830812 0.415406 0.909636i \(-0.363640\pi\)
0.415406 + 0.909636i \(0.363640\pi\)
\(524\) 12.0000 20.7846i 0.524222 0.907980i
\(525\) 0 0
\(526\) −28.0000 48.4974i −1.22086 2.11459i
\(527\) 0 0
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 4.00000 0.173749
\(531\) 0 0
\(532\) −6.00000 −0.260133
\(533\) 25.0000 43.3013i 1.08287 1.87559i
\(534\) 0 0
\(535\) 3.00000 + 5.19615i 0.129701 + 0.224649i
\(536\) 0 0
\(537\) 0 0
\(538\) 16.0000 27.7128i 0.689809 1.19478i
\(539\) 4.00000 0.172292
\(540\) 0 0
\(541\) 33.0000 1.41878 0.709390 0.704816i \(-0.248970\pi\)
0.709390 + 0.704816i \(0.248970\pi\)
\(542\) −13.0000 + 22.5167i −0.558398 + 0.967173i
\(543\) 0 0
\(544\) 32.0000 + 55.4256i 1.37199 + 2.37635i
\(545\) 5.00000 + 8.66025i 0.214176 + 0.370965i
\(546\) 0 0
\(547\) −18.5000 + 32.0429i −0.791003 + 1.37006i 0.134344 + 0.990935i \(0.457107\pi\)
−0.925347 + 0.379122i \(0.876226\pi\)
\(548\) 12.0000 0.512615
\(549\) 0 0
\(550\) 4.00000 0.170561
\(551\) 1.00000 1.73205i 0.0426014 0.0737878i
\(552\) 0 0
\(553\) −4.50000 7.79423i −0.191359 0.331444i
\(554\) 30.0000 + 51.9615i 1.27458 + 2.20763i
\(555\) 0 0
\(556\) 13.0000 22.5167i 0.551323 0.954919i
\(557\) −12.0000 −0.508456 −0.254228 0.967144i \(-0.581821\pi\)
−0.254228 + 0.967144i \(0.581821\pi\)
\(558\) 0 0
\(559\) −20.0000 −0.845910
\(560\) −6.00000 + 10.3923i −0.253546 + 0.439155i
\(561\) 0 0
\(562\) 0 0
\(563\) 18.0000 + 31.1769i 0.758610 + 1.31395i 0.943560 + 0.331202i \(0.107454\pi\)
−0.184950 + 0.982748i \(0.559212\pi\)
\(564\) 0 0
\(565\) 5.00000 8.66025i 0.210352 0.364340i
\(566\) 24.0000 1.00880
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(570\) 0 0
\(571\) −2.50000 4.33013i −0.104622 0.181210i 0.808962 0.587861i \(-0.200030\pi\)
−0.913584 + 0.406651i \(0.866697\pi\)
\(572\) 10.0000 + 17.3205i 0.418121 + 0.724207i
\(573\) 0 0
\(574\) 30.0000 51.9615i 1.25218 2.16883i
\(575\) −6.00000 −0.250217
\(576\) 0 0
\(577\) 17.0000 0.707719 0.353860 0.935299i \(-0.384869\pi\)
0.353860 + 0.935299i \(0.384869\pi\)
\(578\) −47.0000 + 81.4064i −1.95494 + 3.38606i
\(579\) 0 0
\(580\) 2.00000 + 3.46410i 0.0830455 + 0.143839i
\(581\) −9.00000 15.5885i −0.373383 0.646718i
\(582\) 0 0
\(583\) −2.00000 + 3.46410i −0.0828315 + 0.143468i
\(584\) 0 0
\(585\) 0 0
\(586\) −36.0000 −1.48715
\(587\) −9.00000 + 15.5885i −0.371470 + 0.643404i −0.989792 0.142520i \(-0.954479\pi\)
0.618322 + 0.785925i \(0.287813\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −8.00000 13.8564i −0.329355 0.570459i
\(591\) 0 0
\(592\) 10.0000 17.3205i 0.410997 0.711868i
\(593\) 22.0000 0.903432 0.451716 0.892162i \(-0.350812\pi\)
0.451716 + 0.892162i \(0.350812\pi\)
\(594\) 0 0
\(595\) −24.0000 −0.983904
\(596\) −4.00000 + 6.92820i −0.163846 + 0.283790i
\(597\) 0 0
\(598\) −30.0000 51.9615i −1.22679 2.12486i
\(599\) −5.00000 8.66025i −0.204294 0.353848i 0.745613 0.666379i \(-0.232157\pi\)
−0.949908 + 0.312531i \(0.898823\pi\)
\(600\) 0 0
\(601\) 17.0000 29.4449i 0.693444 1.20108i −0.277258 0.960796i \(-0.589426\pi\)
0.970702 0.240285i \(-0.0772411\pi\)
\(602\) −24.0000 −0.978167
\(603\) 0 0
\(604\) 2.00000 0.0813788
\(605\) 3.50000 6.06218i 0.142295 0.246463i
\(606\) 0 0
\(607\) −0.500000 0.866025i −0.0202944 0.0351509i 0.855700 0.517472i \(-0.173127\pi\)
−0.875994 + 0.482322i \(0.839794\pi\)
\(608\) 4.00000 + 6.92820i 0.162221 + 0.280976i
\(609\) 0 0
\(610\) −7.00000 + 12.1244i −0.283422 + 0.490901i
\(611\) 20.0000 0.809113
\(612\) 0 0
\(613\) 1.00000 0.0403896 0.0201948 0.999796i \(-0.493571\pi\)
0.0201948 + 0.999796i \(0.493571\pi\)
\(614\) −16.0000 + 27.7128i −0.645707 + 1.11840i
\(615\) 0 0
\(616\) 0 0
\(617\) 9.00000 + 15.5885i 0.362326 + 0.627568i 0.988343 0.152242i \(-0.0486493\pi\)
−0.626017 + 0.779809i \(0.715316\pi\)
\(618\) 0 0
\(619\) 9.50000 16.4545i 0.381837 0.661361i −0.609488 0.792796i \(-0.708625\pi\)
0.991325 + 0.131434i \(0.0419582\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 48.0000 1.92462
\(623\) 18.0000 31.1769i 0.721155 1.24908i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 7.00000 + 12.1244i 0.279776 + 0.484587i
\(627\) 0 0
\(628\) −2.00000 + 3.46410i −0.0798087 + 0.138233i
\(629\) 40.0000 1.59490
\(630\) 0 0
\(631\) −11.0000 −0.437903 −0.218952 0.975736i \(-0.570264\pi\)
−0.218952 + 0.975736i \(0.570264\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 20.0000 + 34.6410i 0.794301 + 1.37577i
\(635\) 4.00000 + 6.92820i 0.158735 + 0.274937i
\(636\) 0 0
\(637\) 5.00000 8.66025i 0.198107 0.343132i
\(638\) −8.00000 −0.316723
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(642\) 0 0
\(643\) 6.00000 + 10.3923i 0.236617 + 0.409832i 0.959741 0.280885i \(-0.0906280\pi\)
−0.723124 + 0.690718i \(0.757295\pi\)
\(644\) −18.0000 31.1769i −0.709299 1.22854i
\(645\) 0 0
\(646\) −8.00000 + 13.8564i −0.314756 + 0.545173i
\(647\) 38.0000 1.49393 0.746967 0.664861i \(-0.231509\pi\)
0.746967 + 0.664861i \(0.231509\pi\)
\(648\) 0 0
\(649\) 16.0000 0.628055
\(650\) 5.00000 8.66025i 0.196116 0.339683i
\(651\) 0 0
\(652\) 19.0000 + 32.9090i 0.744097 + 1.28881i
\(653\) −2.00000 3.46410i −0.0782660 0.135561i 0.824236 0.566247i \(-0.191605\pi\)
−0.902502 + 0.430686i \(0.858272\pi\)
\(654\) 0 0
\(655\) 6.00000 10.3923i 0.234439 0.406061i
\(656\) −40.0000 −1.56174
\(657\) 0 0
\(658\) 24.0000 0.935617
\(659\) −16.0000 + 27.7128i −0.623272 + 1.07954i 0.365601 + 0.930772i \(0.380864\pi\)
−0.988872 + 0.148766i \(0.952470\pi\)
\(660\) 0 0
\(661\) −3.50000 6.06218i −0.136134 0.235791i 0.789896 0.613241i \(-0.210135\pi\)
−0.926030 + 0.377450i \(0.876801\pi\)
\(662\) 21.0000 + 36.3731i 0.816188 + 1.41368i
\(663\) 0 0
\(664\) 0 0
\(665\) −3.00000 −0.116335
\(666\) 0 0
\(667\) 12.0000 0.464642
\(668\) −12.0000 + 20.7846i −0.464294 + 0.804181i
\(669\) 0 0
\(670\) 9.00000 + 15.5885i 0.347700 + 0.602235i
\(671\) −7.00000 12.1244i −0.270232 0.468056i
\(672\) 0 0
\(673\) −16.5000 + 28.5788i −0.636028 + 1.10163i 0.350268 + 0.936650i \(0.386091\pi\)
−0.986296 + 0.164984i \(0.947243\pi\)
\(674\) 14.0000 0.539260
\(675\) 0 0
\(676\) 24.0000 0.923077
\(677\) 6.00000 10.3923i 0.230599 0.399409i −0.727386 0.686229i \(-0.759265\pi\)
0.957984 + 0.286820i \(0.0925982\pi\)
\(678\) 0 0
\(679\) −19.5000 33.7750i −0.748341 1.29617i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 18.0000 0.688751 0.344375 0.938832i \(-0.388091\pi\)
0.344375 + 0.938832i \(0.388091\pi\)
\(684\) 0 0
\(685\) 6.00000 0.229248
\(686\) −15.0000 + 25.9808i −0.572703 + 0.991950i
\(687\) 0 0
\(688\) 8.00000 + 13.8564i 0.304997 + 0.528271i
\(689\) 5.00000 + 8.66025i 0.190485 + 0.329929i
\(690\) 0 0
\(691\) 10.0000 17.3205i 0.380418 0.658903i −0.610704 0.791859i \(-0.709113\pi\)
0.991122 + 0.132956i \(0.0424468\pi\)
\(692\) 24.0000 0.912343
\(693\) 0 0
\(694\) −20.0000 −0.759190
\(695\) 6.50000 11.2583i 0.246559 0.427053i
\(696\) 0 0
\(697\) −40.0000 69.2820i −1.51511 2.62424i
\(698\) −19.0000 32.9090i −0.719161 1.24562i
\(699\) 0 0
\(700\) 3.00000 5.19615i 0.113389 0.196396i
\(701\) 34.0000 1.28416 0.642081 0.766637i \(-0.278071\pi\)
0.642081 + 0.766637i \(0.278071\pi\)
\(702\) 0 0
\(703\) 5.00000 0.188579
\(704\) 8.00000 13.8564i 0.301511 0.522233i
\(705\) 0 0
\(706\) −12.0000 20.7846i −0.451626 0.782239i
\(707\) 0 0
\(708\) 0 0
\(709\) −12.5000 + 21.6506i −0.469447 + 0.813107i −0.999390 0.0349269i \(-0.988880\pi\)
0.529943 + 0.848034i \(0.322213\pi\)
\(710\) −4.00000 −0.150117
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 5.00000 + 8.66025i 0.186989 + 0.323875i
\(716\) 22.0000 + 38.1051i 0.822179 + 1.42406i
\(717\) 0 0
\(718\) −18.0000 + 31.1769i −0.671754 + 1.16351i
\(719\) −30.0000 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(720\) 0 0
\(721\) −51.0000 −1.89934
\(722\) 18.0000 31.1769i 0.669891 1.16028i
\(723\) 0 0
\(724\) −5.00000 8.66025i −0.185824 0.321856i
\(725\) 1.00000 + 1.73205i 0.0371391 + 0.0643268i
\(726\) 0 0
\(727\) 8.00000 13.8564i 0.296704 0.513906i −0.678676 0.734438i \(-0.737446\pi\)
0.975380 + 0.220532i \(0.0707793\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −10.0000 −0.370117
\(731\) −16.0000 + 27.7128i −0.591781 + 1.02500i
\(732\) 0 0
\(733\) 11.0000 + 19.0526i 0.406294 + 0.703722i 0.994471 0.105010i \(-0.0334875\pi\)
−0.588177 + 0.808732i \(0.700154\pi\)
\(734\) −21.0000 36.3731i −0.775124 1.34255i
\(735\) 0 0
\(736\) −24.0000 + 41.5692i −0.884652 + 1.53226i
\(737\) −18.0000 −0.663039
\(738\) 0 0
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) −5.00000 + 8.66025i −0.183804 + 0.318357i
\(741\) 0 0
\(742\) 6.00000 + 10.3923i 0.220267 + 0.381514i
\(743\) −16.0000 27.7128i −0.586983 1.01668i −0.994625 0.103543i \(-0.966982\pi\)
0.407642 0.913142i \(-0.366351\pi\)
\(744\) 0 0
\(745\) −2.00000 + 3.46410i −0.0732743 + 0.126915i
\(746\) −22.0000 −0.805477
\(747\) 0 0
\(748\) 32.0000 1.17004
\(749\) −9.00000 + 15.5885i −0.328853 + 0.569590i
\(750\) 0 0
\(751\) −12.5000 21.6506i −0.456131 0.790043i 0.542621 0.839978i \(-0.317432\pi\)
−0.998752 + 0.0499348i \(0.984099\pi\)
\(752\) −8.00000 13.8564i −0.291730 0.505291i
\(753\) 0 0
\(754\) −10.0000 + 17.3205i −0.364179 + 0.630776i
\(755\) 1.00000 0.0363937
\(756\) 0 0
\(757\) −53.0000 −1.92632 −0.963159 0.268933i \(-0.913329\pi\)
−0.963159 + 0.268933i \(0.913329\pi\)
\(758\) 11.0000 19.0526i 0.399538 0.692020i
\(759\) 0 0
\(760\) 0 0
\(761\) −9.00000 15.5885i −0.326250 0.565081i 0.655515 0.755182i \(-0.272452\pi\)
−0.981764 + 0.190101i \(0.939118\pi\)
\(762\) 0 0
\(763\) −15.0000 + 25.9808i −0.543036 + 0.940567i
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) 48.0000 1.73431
\(767\) 20.0000 34.6410i 0.722158 1.25081i
\(768\) 0 0
\(769\) 18.5000 + 32.0429i 0.667127 + 1.15550i 0.978704 + 0.205277i \(0.0658095\pi\)
−0.311577 + 0.950221i \(0.600857\pi\)
\(770\) 6.00000 + 10.3923i 0.216225 + 0.374513i
\(771\) 0 0
\(772\) −5.00000 + 8.66025i −0.179954 + 0.311689i
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 24.0000 + 41.5692i 0.860442 + 1.49033i
\(779\) −5.00000 8.66025i −0.179144 0.310286i
\(780\) 0 0
\(781\) 2.00000 3.46410i 0.0715656 0.123955i
\(782\) −96.0000 −3.43295
\(783\) 0 0
\(784\) −8.00000 −0.285714
\(785\) −1.00000 + 1.73205i −0.0356915 + 0.0618195i
\(786\) 0 0
\(787\) 20.5000 + 35.5070i 0.730746 + 1.26569i 0.956565 + 0.291520i \(0.0941610\pi\)
−0.225819 + 0.974169i \(0.572506\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 3.00000 5.19615i 0.106735 0.184871i
\(791\) 30.0000 1.06668
\(792\) 0 0
\(793\) −35.0000 −1.24289
\(794\) 2.00000 3.46410i 0.0709773 0.122936i
\(795\) 0 0
\(796\) 17.0000 + 29.4449i 0.602549 + 1.04365i
\(797\) −8.00000 13.8564i −0.283375 0.490819i 0.688839 0.724914i \(-0.258121\pi\)
−0.972214 + 0.234095i \(0.924787\pi\)
\(798\) 0 0
\(799\) 16.0000 27.7128i 0.566039 0.980409i
\(800\) −8.00000 −0.282843
\(801\) 0 0
\(802\) −12.0000 −0.423735
\(803\) 5.00000 8.66025i 0.176446 0.305614i
\(804\) 0 0
\(805\) −9.00000 15.5885i −0.317208 0.549421i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 16.0000 0.562530 0.281265 0.959630i \(-0.409246\pi\)
0.281265 + 0.959630i \(0.409246\pi\)
\(810\) 0 0
\(811\) −12.0000 −0.421377 −0.210688 0.977553i \(-0.567571\pi\)
−0.210688 + 0.977553i \(0.567571\pi\)
\(812\) −6.00000 + 10.3923i −0.210559 + 0.364698i
\(813\) 0 0
\(814\) −10.0000 17.3205i −0.350500 0.607083i
\(815\) 9.50000 + 16.4545i 0.332770 + 0.576375i
\(816\) 0 0
\(817\) −2.00000 + 3.46410i −0.0699711 + 0.121194i
\(818\) −14.0000 −0.489499
\(819\) 0 0
\(820\) 20.0000 0.698430
\(821\) 24.0000 41.5692i 0.837606 1.45078i −0.0542853 0.998525i \(-0.517288\pi\)
0.891891 0.452250i \(-0.149379\pi\)
\(822\) 0 0
\(823\) −5.50000 9.52628i −0.191718 0.332065i 0.754102 0.656758i \(-0.228073\pi\)
−0.945820 + 0.324692i \(0.894739\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 24.0000 41.5692i 0.835067 1.44638i
\(827\) −28.0000 −0.973655 −0.486828 0.873498i \(-0.661846\pi\)
−0.486828 + 0.873498i \(0.661846\pi\)
\(828\) 0 0
\(829\) −51.0000 −1.77130 −0.885652 0.464350i \(-0.846288\pi\)
−0.885652 + 0.464350i \(0.846288\pi\)
\(830\) 6.00000 10.3923i 0.208263 0.360722i
\(831\) 0 0
\(832\) −20.0000 34.6410i −0.693375 1.20096i
\(833\) −8.00000 13.8564i −0.277184 0.480096i
\(834\) 0 0
\(835\) −6.00000 + 10.3923i −0.207639 + 0.359641i
\(836\) 4.00000 0.138343
\(837\) 0 0
\(838\) −64.0000 −2.21084
\(839\) −2.00000 + 3.46410i −0.0690477 + 0.119594i −0.898482 0.439010i \(-0.855329\pi\)
0.829435 + 0.558604i \(0.188663\pi\)
\(840\) 0 0
\(841\) 12.5000 + 21.6506i 0.431034 + 0.746574i
\(842\) −1.00000 1.73205i −0.0344623 0.0596904i
\(843\) 0 0
\(844\) −23.0000 + 39.8372i −0.791693 + 1.37125i
\(845\) 12.0000 0.412813
\(846\) 0 0
\(847\) 21.0000 0.721569
\(848\) 4.00000 6.92820i 0.137361 0.237915i
\(849\) 0 0
\(850\) −8.00000 13.8564i −0.274398 0.475271i
\(851\) 15.0000 + 25.9808i 0.514193 + 0.890609i
\(852\) 0 0
\(853\) −10.5000 + 18.1865i −0.359513 + 0.622695i −0.987880 0.155222i \(-0.950391\pi\)
0.628366 + 0.777918i \(0.283724\pi\)
\(854\) −42.0000 −1.43721
\(855\) 0 0
\(856\) 0 0
\(857\) −13.0000 + 22.5167i −0.444072 + 0.769154i −0.997987 0.0634184i \(-0.979800\pi\)
0.553915 + 0.832573i \(0.313133\pi\)
\(858\) 0 0
\(859\) −3.50000 6.06218i −0.119418 0.206839i 0.800119 0.599841i \(-0.204770\pi\)
−0.919537 + 0.393003i \(0.871436\pi\)
\(860\) −4.00000 6.92820i −0.136399 0.236250i
\(861\) 0 0
\(862\) 30.0000 51.9615i 1.02180 1.76982i
\(863\) 4.00000 0.136162 0.0680808 0.997680i \(-0.478312\pi\)
0.0680808 + 0.997680i \(0.478312\pi\)
\(864\) 0 0
\(865\) 12.0000 0.408012
\(866\) 38.0000 65.8179i 1.29129 2.23658i
\(867\) 0 0
\(868\) 0 0
\(869\) 3.00000 + 5.19615i 0.101768 + 0.176267i
\(870\) 0 0
\(871\) −22.5000 + 38.9711i −0.762383 + 1.32049i
\(872\) 0 0
\(873\) 0 0
\(874\) −12.0000 −0.405906
\(875\) 1.50000 2.59808i 0.0507093 0.0878310i
\(876\) 0 0
\(877\) −4.50000 7.79423i −0.151954 0.263192i 0.779992 0.625790i \(-0.215223\pi\)
−0.931946 + 0.362598i \(0.881890\pi\)
\(878\) 32.0000 + 55.4256i 1.07995 + 1.87052i
\(879\) 0 0
\(880\) 4.00000 6.92820i 0.134840 0.233550i
\(881\) 38.0000 1.28025 0.640126 0.768270i \(-0.278882\pi\)
0.640126 + 0.768270i \(0.278882\pi\)
\(882\) 0 0
\(883\) −19.0000 −0.639401 −0.319700 0.947519i \(-0.603582\pi\)
−0.319700 + 0.947519i \(0.603582\pi\)
\(884\) 40.0000 69.2820i 1.34535 2.33021i
\(885\) 0 0
\(886\) −12.0000 20.7846i −0.403148 0.698273i
\(887\) −24.0000 41.5692i −0.805841 1.39576i −0.915722 0.401813i \(-0.868380\pi\)
0.109881 0.993945i \(-0.464953\pi\)
\(888\) 0 0
\(889\) −12.0000 + 20.7846i −0.402467 + 0.697093i
\(890\) 24.0000 0.804482
\(891\) 0 0
\(892\) 16.0000 0.535720
\(893\) 2.00000 3.46410i 0.0669274 0.115922i
\(894\) 0 0
\(895\) 11.0000 + 19.0526i 0.367689 + 0.636857i
\(896\) 0 0
\(897\) 0 0
\(898\) 4.00000 6.92820i 0.133482 0.231197i
\(899\) 0 0
\(900\) 0 0
\(901\) 16.0000 0.533037
\(902\) −20.0000 + 34.6410i −0.665927 + 1.15342i
\(903\) 0 0
\(904\) 0 0
\(905\) −2.50000 4.33013i −0.0831028 0.143938i
\(906\) 0 0
\(907\) 10.5000 18.1865i 0.348647 0.603874i −0.637363 0.770564i \(-0.719975\pi\)
0.986009 + 0.166690i \(0.0533080\pi\)
\(908\) 20.0000 0.663723
\(909\) 0 0
\(910\) 30.0000 0.994490
\(911\) 20.0000 34.6410i 0.662630 1.14771i −0.317293 0.948328i \(-0.602774\pi\)
0.979922 0.199380i \(-0.0638929\pi\)
\(912\) 0 0
\(913\) 6.00000 + 10.3923i 0.198571 + 0.343935i
\(914\) −22.0000 38.1051i −0.727695 1.26041i
\(915\) 0 0
\(916\) −6.00000 + 10.3923i −0.198246 + 0.343371i
\(917\) 36.0000 1.18882
\(918\) 0 0
\(919\) 40.0000 1.31948 0.659739 0.751495i \(-0.270667\pi\)
0.659739 + 0.751495i \(0.270667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −12.0000 20.7846i −0.395199 0.684505i
\(923\) −5.00000 8.66025i −0.164577 0.285056i
\(924\) 0 0
\(925\) −2.50000 + 4.33013i −0.0821995 + 0.142374i
\(926\) 66.0000 2.16889
\(927\) 0 0
\(928\) 16.0000 0.525226
\(929\) −17.0000 + 29.4449i −0.557752 + 0.966055i 0.439932 + 0.898031i \(0.355003\pi\)
−0.997684 + 0.0680235i \(0.978331\pi\)
\(930\) 0 0
\(931\) −1.00000 1.73205i −0.0327737 0.0567657i
\(932\) −24.0000 41.5692i −0.786146 1.36165i
\(933\) 0 0
\(934\) −28.0000 + 48.4974i −0.916188 + 1.58688i
\(935\) 16.0000 0.523256
\(936\) 0 0
\(937\) 33.0000 1.07806 0.539032 0.842286i \(-0.318790\pi\)
0.539032 + 0.842286i \(0.318790\pi\)
\(938\) −27.0000 + 46.7654i −0.881581 + 1.52694i
\(939\) 0 0
\(940\) 4.00000 + 6.92820i 0.130466 + 0.225973i
\(941\) −11.0000 19.0526i −0.358590 0.621096i 0.629136 0.777295i \(-0.283409\pi\)
−0.987725 + 0.156200i \(0.950076\pi\)
\(942\) 0 0
\(943\) 30.0000 51.9615i 0.976934 1.69210i
\(944\) −32.0000 −1.04151
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) 24.0000 41.5692i 0.779895 1.35082i −0.152106 0.988364i \(-0.548606\pi\)
0.932002 0.362454i \(-0.118061\pi\)
\(948\) 0 0
\(949\) −12.5000 21.6506i −0.405767 0.702809i
\(950\) −1.00000 1.73205i −0.0324443 0.0561951i
\(951\) 0 0
\(952\) 0 0
\(953\) −40.0000 −1.29573 −0.647864 0.761756i \(-0.724337\pi\)
−0.647864 + 0.761756i \(0.724337\pi\)
\(954\) 0 0
\(955\) 4.00000 0.129437
\(956\) −26.0000 + 45.0333i −0.840900 + 1.45648i
\(957\) 0 0
\(958\) 6.00000 + 10.3923i 0.193851 + 0.335760i
\(959\) 9.00000 + 15.5885i 0.290625 + 0.503378i
\(960\) 0 0
\(961\) 15.5000 26.8468i 0.500000 0.866025i
\(962\) −50.0000 −1.61206
\(963\) 0 0
\(964\) 2.00000 0.0644157
\(965\) −2.50000 + 4.33013i −0.0804778 + 0.139392i
\(966\) 0 0
\(967\) 6.50000 + 11.2583i 0.209026 + 0.362043i 0.951408 0.307933i \(-0.0996374\pi\)
−0.742382 + 0.669977i \(0.766304\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 13.0000 22.5167i 0.417405 0.722966i
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 0 0
\(973\) 39.0000 1.25028
\(974\) −5.00000 + 8.66025i −0.160210 + 0.277492i
\(975\) 0 0
\(976\) 14.0000 + 24.2487i 0.448129 + 0.776182i
\(977\) −31.0000 53.6936i −0.991778 1.71781i −0.606715 0.794919i \(-0.707513\pi\)
−0.385063 0.922890i \(-0.625820\pi\)
\(978\) 0 0
\(979\) −12.0000 + 20.7846i −0.383522 + 0.664279i
\(980\) 4.00000 0.127775
\(981\) 0 0
\(982\) 44.0000 1.40410
\(983\) 27.0000 46.7654i 0.861166 1.49158i −0.00963785 0.999954i \(-0.503068\pi\)
0.870804 0.491630i \(-0.163599\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 16.0000 + 27.7128i 0.509544 + 0.882556i
\(987\) 0 0
\(988\) 5.00000 8.66025i 0.159071 0.275519i
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) −25.0000 −0.794151 −0.397076 0.917786i \(-0.629975\pi\)
−0.397076 + 0.917786i \(0.629975\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −6.00000 10.3923i −0.190308 0.329624i
\(995\) 8.50000 + 14.7224i 0.269468 + 0.466732i
\(996\) 0 0
\(997\) 21.0000 36.3731i 0.665077 1.15195i −0.314188 0.949361i \(-0.601732\pi\)
0.979265 0.202586i \(-0.0649345\pi\)
\(998\) 32.0000 1.01294
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.e.b.136.1 2
3.2 odd 2 405.2.e.h.136.1 2
9.2 odd 6 135.2.a.a.1.1 1
9.4 even 3 inner 405.2.e.b.271.1 2
9.5 odd 6 405.2.e.h.271.1 2
9.7 even 3 135.2.a.b.1.1 yes 1
36.7 odd 6 2160.2.a.v.1.1 1
36.11 even 6 2160.2.a.j.1.1 1
45.2 even 12 675.2.b.a.649.1 2
45.7 odd 12 675.2.b.b.649.2 2
45.29 odd 6 675.2.a.i.1.1 1
45.34 even 6 675.2.a.a.1.1 1
45.38 even 12 675.2.b.a.649.2 2
45.43 odd 12 675.2.b.b.649.1 2
63.20 even 6 6615.2.a.a.1.1 1
63.34 odd 6 6615.2.a.j.1.1 1
72.11 even 6 8640.2.a.ce.1.1 1
72.29 odd 6 8640.2.a.bh.1.1 1
72.43 odd 6 8640.2.a.bb.1.1 1
72.61 even 6 8640.2.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.a.a.1.1 1 9.2 odd 6
135.2.a.b.1.1 yes 1 9.7 even 3
405.2.e.b.136.1 2 1.1 even 1 trivial
405.2.e.b.271.1 2 9.4 even 3 inner
405.2.e.h.136.1 2 3.2 odd 2
405.2.e.h.271.1 2 9.5 odd 6
675.2.a.a.1.1 1 45.34 even 6
675.2.a.i.1.1 1 45.29 odd 6
675.2.b.a.649.1 2 45.2 even 12
675.2.b.a.649.2 2 45.38 even 12
675.2.b.b.649.1 2 45.43 odd 12
675.2.b.b.649.2 2 45.7 odd 12
2160.2.a.j.1.1 1 36.11 even 6
2160.2.a.v.1.1 1 36.7 odd 6
6615.2.a.a.1.1 1 63.20 even 6
6615.2.a.j.1.1 1 63.34 odd 6
8640.2.a.c.1.1 1 72.61 even 6
8640.2.a.bb.1.1 1 72.43 odd 6
8640.2.a.bh.1.1 1 72.29 odd 6
8640.2.a.ce.1.1 1 72.11 even 6