Properties

Label 405.2.e
Level $405$
Weight $2$
Character orbit 405.e
Rep. character $\chi_{405}(136,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $32$
Newform subspaces $12$
Sturm bound $108$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 12 \)
Sturm bound: \(108\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(405, [\chi])\).

Total New Old
Modular forms 132 32 100
Cusp forms 84 32 52
Eisenstein series 48 0 48

Trace form

\( 32 q - 16 q^{4} + 10 q^{7} + 10 q^{13} - 16 q^{16} + 4 q^{19} - 12 q^{22} - 16 q^{25} - 80 q^{28} + 40 q^{31} + 18 q^{34} - 20 q^{37} + 30 q^{40} + 28 q^{43} - 36 q^{46} - 18 q^{49} + 4 q^{52} - 36 q^{58}+ \cdots - 26 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(405, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
405.2.e.a 405.e 9.c $2$ $3.234$ \(\Q(\sqrt{-3}) \) None 405.2.a.a \(-2\) \(0\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+2\zeta_{6})q^{2}-2\zeta_{6}q^{4}-\zeta_{6}q^{5}+\cdots\)
405.2.e.b 405.e 9.c $2$ $3.234$ \(\Q(\sqrt{-3}) \) None 135.2.a.a \(-2\) \(0\) \(-1\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+2\zeta_{6})q^{2}-2\zeta_{6}q^{4}-\zeta_{6}q^{5}+\cdots\)
405.2.e.c 405.e 9.c $2$ $3.234$ \(\Q(\sqrt{-3}) \) None 15.2.a.a \(-1\) \(0\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+\zeta_{6}q^{4}+\zeta_{6}q^{5}-3q^{8}+\cdots\)
405.2.e.d 405.e 9.c $2$ $3.234$ \(\Q(\sqrt{-3}) \) None 405.2.a.c \(0\) \(0\) \(-1\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+2\zeta_{6}q^{4}-\zeta_{6}q^{5}+(-2+2\zeta_{6})q^{7}+\cdots\)
405.2.e.e 405.e 9.c $2$ $3.234$ \(\Q(\sqrt{-3}) \) None 405.2.a.c \(0\) \(0\) \(1\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+2\zeta_{6}q^{4}+\zeta_{6}q^{5}+(-2+2\zeta_{6})q^{7}+\cdots\)
405.2.e.f 405.e 9.c $2$ $3.234$ \(\Q(\sqrt{-3}) \) None 15.2.a.a \(1\) \(0\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+\zeta_{6}q^{4}-\zeta_{6}q^{5}+3q^{8}+\cdots\)
405.2.e.g 405.e 9.c $2$ $3.234$ \(\Q(\sqrt{-3}) \) None 405.2.a.a \(2\) \(0\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\zeta_{6})q^{2}-2\zeta_{6}q^{4}+\zeta_{6}q^{5}+2q^{10}+\cdots\)
405.2.e.h 405.e 9.c $2$ $3.234$ \(\Q(\sqrt{-3}) \) None 135.2.a.a \(2\) \(0\) \(1\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\zeta_{6})q^{2}-2\zeta_{6}q^{4}+\zeta_{6}q^{5}+(3+\cdots)q^{7}+\cdots\)
405.2.e.i 405.e 9.c $4$ $3.234$ \(\Q(\zeta_{12})\) None 405.2.a.g \(-2\) \(0\) \(2\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta_{2}-\beta_1)q^{2}+(2\beta_{3}-2\beta_{2}+2\beta_1-2)q^{4}+\cdots\)
405.2.e.j 405.e 9.c $4$ $3.234$ \(\Q(\sqrt{-3}, \sqrt{13})\) None 135.2.a.c \(-1\) \(0\) \(2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(-1+\beta _{1}+\beta _{2}+\beta _{3})q^{4}+\cdots\)
405.2.e.k 405.e 9.c $4$ $3.234$ \(\Q(\sqrt{-3}, \sqrt{13})\) None 135.2.a.c \(1\) \(0\) \(-2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(-1+\beta _{1}+\beta _{2}+\beta _{3})q^{4}+\cdots\)
405.2.e.l 405.e 9.c $4$ $3.234$ \(\Q(\zeta_{12})\) None 405.2.a.g \(2\) \(0\) \(-2\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta_{2}+\beta_1)q^{2}+(2\beta_{3}-2\beta_{2}+2\beta_1-2)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(405, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(405, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 2}\)