Properties

Label 4032.3.d.c
Level $4032$
Weight $3$
Character orbit 4032.d
Analytic conductor $109.864$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4032,3,Mod(449,4032)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4032, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4032.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 4032.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,-24,0,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(109.864042590\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 8x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{5} - \beta_{3} q^{7} + ( - \beta_{2} + 2 \beta_1) q^{11} + (4 \beta_{3} - 6) q^{13} + (6 \beta_{2} + 3 \beta_1) q^{17} + ( - 10 \beta_{3} + 6) q^{19} + ( - 5 \beta_{2} - 6 \beta_1) q^{23}+ \cdots + ( - 2 \beta_{3} + 40) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 24 q^{13} + 24 q^{19} + 36 q^{25} + 152 q^{31} + 128 q^{37} + 80 q^{43} + 28 q^{49} - 152 q^{55} + 48 q^{61} - 24 q^{67} + 16 q^{73} + 88 q^{79} - 48 q^{85} - 112 q^{91} + 160 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 8x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + 5\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{2} - 5\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4032\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1793\) \(3781\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
449.1
2.57794i
1.16372i
1.16372i
2.57794i
0 0 0 5.15587i 0 2.64575 0 0 0
449.2 0 0 0 2.32744i 0 −2.64575 0 0 0
449.3 0 0 0 2.32744i 0 −2.64575 0 0 0
449.4 0 0 0 5.15587i 0 2.64575 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4032.3.d.c 4
3.b odd 2 1 inner 4032.3.d.c 4
4.b odd 2 1 4032.3.d.b 4
8.b even 2 1 1008.3.d.d 4
8.d odd 2 1 63.3.b.a 4
12.b even 2 1 4032.3.d.b 4
24.f even 2 1 63.3.b.a 4
24.h odd 2 1 1008.3.d.d 4
40.e odd 2 1 1575.3.c.a 4
40.k even 4 2 1575.3.f.a 8
56.e even 2 1 441.3.b.b 4
56.k odd 6 2 441.3.q.b 8
56.m even 6 2 441.3.q.a 8
72.l even 6 2 567.3.r.a 8
72.p odd 6 2 567.3.r.a 8
120.m even 2 1 1575.3.c.a 4
120.q odd 4 2 1575.3.f.a 8
168.e odd 2 1 441.3.b.b 4
168.v even 6 2 441.3.q.b 8
168.be odd 6 2 441.3.q.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.3.b.a 4 8.d odd 2 1
63.3.b.a 4 24.f even 2 1
441.3.b.b 4 56.e even 2 1
441.3.b.b 4 168.e odd 2 1
441.3.q.a 8 56.m even 6 2
441.3.q.a 8 168.be odd 6 2
441.3.q.b 8 56.k odd 6 2
441.3.q.b 8 168.v even 6 2
567.3.r.a 8 72.l even 6 2
567.3.r.a 8 72.p odd 6 2
1008.3.d.d 4 8.b even 2 1
1008.3.d.d 4 24.h odd 2 1
1575.3.c.a 4 40.e odd 2 1
1575.3.c.a 4 120.m even 2 1
1575.3.f.a 8 40.k even 4 2
1575.3.f.a 8 120.q odd 4 2
4032.3.d.b 4 4.b odd 2 1
4032.3.d.b 4 12.b even 2 1
4032.3.d.c 4 1.a even 1 1 trivial
4032.3.d.c 4 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(4032, [\chi])\):

\( T_{5}^{4} + 32T_{5}^{2} + 144 \) Copy content Toggle raw display
\( T_{11}^{4} + 212T_{11}^{2} + 36 \) Copy content Toggle raw display
\( T_{19}^{2} - 12T_{19} - 664 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 32T^{2} + 144 \) Copy content Toggle raw display
$7$ \( (T^{2} - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 212T^{2} + 36 \) Copy content Toggle raw display
$13$ \( (T^{2} + 12 T - 76)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 1152 T^{2} + 104976 \) Copy content Toggle raw display
$19$ \( (T^{2} - 12 T - 664)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 1332 T^{2} + 116964 \) Copy content Toggle raw display
$29$ \( T^{4} + 2228 T^{2} + 1004004 \) Copy content Toggle raw display
$31$ \( (T^{2} - 76 T + 1416)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 64 T + 912)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 4064 T^{2} + 1838736 \) Copy content Toggle raw display
$43$ \( (T^{2} - 40 T - 608)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 1584 T^{2} + 46656 \) Copy content Toggle raw display
$53$ \( T^{4} + 4068 T^{2} + 3992004 \) Copy content Toggle raw display
$59$ \( T^{4} + 6192 T^{2} + 4359744 \) Copy content Toggle raw display
$61$ \( (T^{2} - 24 T - 9964)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 12 T - 5452)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 5364 T^{2} + 2802276 \) Copy content Toggle raw display
$73$ \( (T^{2} - 8 T - 1356)^{2} \) Copy content Toggle raw display
$79$ \( (T - 22)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + 1152 T^{2} + 186624 \) Copy content Toggle raw display
$89$ \( T^{4} + 17600 T^{2} + 65610000 \) Copy content Toggle raw display
$97$ \( (T^{2} - 80 T + 1572)^{2} \) Copy content Toggle raw display
show more
show less