Properties

Label 1575.3.f.a
Level $1575$
Weight $3$
Character orbit 1575.f
Analytic conductor $42.916$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1575,3,Mod(449,1575)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1575, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1575.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1575.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.9156416367\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.157351936.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{5} q^{2} - \beta_{4} q^{4} - \beta_1 q^{7} + (\beta_{7} + 2 \beta_{5}) q^{8} + ( - 5 \beta_{6} - \beta_{2}) q^{11} + (6 \beta_{3} - 4 \beta_1) q^{13} + (2 \beta_{6} + \beta_{2}) q^{14} + (4 \beta_{4} - 9) q^{16}+ \cdots + 7 \beta_{5} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 72 q^{16} - 48 q^{19} - 304 q^{31} - 48 q^{34} + 264 q^{46} - 56 q^{49} - 96 q^{61} + 64 q^{64} - 560 q^{76} + 176 q^{79} - 224 q^{91} - 432 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + x^{4} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{4} + 1 ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} + 2\nu^{3} + \nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} + 5\nu^{2} ) / 12 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} + 3\nu^{2} ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{7} + 2\nu^{5} - 5\nu^{3} + 10\nu ) / 12 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{7} - \nu^{3} - 8\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -5\nu^{7} - 8\nu^{5} + 11\nu^{3} + 32\nu ) / 24 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} - 3\beta_{6} + 2\beta_{5} ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} + 3\beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{7} - 5\beta_{5} + 3\beta_{2} ) / 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 3\beta _1 - 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -5\beta_{7} + 3\beta_{6} + 8\beta_{5} + 6\beta_{2} ) / 6 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -5\beta_{4} + 9\beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -10\beta_{7} - 24\beta_{6} - 11\beta_{5} - 3\beta_{2} ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(1226\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
449.1
0.581861 1.28897i
0.581861 + 1.28897i
1.28897 + 0.581861i
1.28897 0.581861i
−1.28897 0.581861i
−1.28897 + 0.581861i
−0.581861 + 1.28897i
−0.581861 1.28897i
−2.57794 0 2.64575 0 0 2.64575i 3.49117 0 0
449.2 −2.57794 0 2.64575 0 0 2.64575i 3.49117 0 0
449.3 −1.16372 0 −2.64575 0 0 2.64575i 7.73381 0 0
449.4 −1.16372 0 −2.64575 0 0 2.64575i 7.73381 0 0
449.5 1.16372 0 −2.64575 0 0 2.64575i −7.73381 0 0
449.6 1.16372 0 −2.64575 0 0 2.64575i −7.73381 0 0
449.7 2.57794 0 2.64575 0 0 2.64575i −3.49117 0 0
449.8 2.57794 0 2.64575 0 0 2.64575i −3.49117 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 449.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1575.3.f.a 8
3.b odd 2 1 inner 1575.3.f.a 8
5.b even 2 1 inner 1575.3.f.a 8
5.c odd 4 1 63.3.b.a 4
5.c odd 4 1 1575.3.c.a 4
15.d odd 2 1 inner 1575.3.f.a 8
15.e even 4 1 63.3.b.a 4
15.e even 4 1 1575.3.c.a 4
20.e even 4 1 1008.3.d.d 4
35.f even 4 1 441.3.b.b 4
35.k even 12 2 441.3.q.a 8
35.l odd 12 2 441.3.q.b 8
40.i odd 4 1 4032.3.d.b 4
40.k even 4 1 4032.3.d.c 4
45.k odd 12 2 567.3.r.a 8
45.l even 12 2 567.3.r.a 8
60.l odd 4 1 1008.3.d.d 4
105.k odd 4 1 441.3.b.b 4
105.w odd 12 2 441.3.q.a 8
105.x even 12 2 441.3.q.b 8
120.q odd 4 1 4032.3.d.c 4
120.w even 4 1 4032.3.d.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.3.b.a 4 5.c odd 4 1
63.3.b.a 4 15.e even 4 1
441.3.b.b 4 35.f even 4 1
441.3.b.b 4 105.k odd 4 1
441.3.q.a 8 35.k even 12 2
441.3.q.a 8 105.w odd 12 2
441.3.q.b 8 35.l odd 12 2
441.3.q.b 8 105.x even 12 2
567.3.r.a 8 45.k odd 12 2
567.3.r.a 8 45.l even 12 2
1008.3.d.d 4 20.e even 4 1
1008.3.d.d 4 60.l odd 4 1
1575.3.c.a 4 5.c odd 4 1
1575.3.c.a 4 15.e even 4 1
1575.3.f.a 8 1.a even 1 1 trivial
1575.3.f.a 8 3.b odd 2 1 inner
1575.3.f.a 8 5.b even 2 1 inner
1575.3.f.a 8 15.d odd 2 1 inner
4032.3.d.b 4 40.i odd 4 1
4032.3.d.b 4 120.w even 4 1
4032.3.d.c 4 40.k even 4 1
4032.3.d.c 4 120.q odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 8T_{2}^{2} + 9 \) acting on \(S_{3}^{\mathrm{new}}(1575, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - 8 T^{2} + 9)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{2} + 7)^{4} \) Copy content Toggle raw display
$11$ \( (T^{4} + 212 T^{2} + 36)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 296 T^{2} + 5776)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} - 1152 T^{2} + 104976)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 12 T - 664)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} - 1332 T^{2} + 116964)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 2228 T^{2} + 1004004)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 76 T + 1416)^{4} \) Copy content Toggle raw display
$37$ \( (T^{4} + 2272 T^{2} + 831744)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + 4064 T^{2} + 1838736)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 2816 T^{2} + 369664)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} - 1584 T^{2} + 46656)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 4068 T^{2} + 3992004)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 6192 T^{2} + 4359744)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 24 T - 9964)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 11048 T^{2} + 29724304)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 5364 T^{2} + 2802276)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 2776 T^{2} + 1838736)^{2} \) Copy content Toggle raw display
$79$ \( (T - 22)^{8} \) Copy content Toggle raw display
$83$ \( (T^{4} - 1152 T^{2} + 186624)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 17600 T^{2} + 65610000)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 3256 T^{2} + 2471184)^{2} \) Copy content Toggle raw display
show more
show less