Defining parameters
Level: | \( N \) | \(=\) | \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4032.j (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 24 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(1536\) | ||
Trace bound: | \(43\) | ||
Distinguishing \(T_p\): | \(5\), \(19\), \(43\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4032, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 816 | 48 | 768 |
Cusp forms | 720 | 48 | 672 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(4032, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
4032.2.j.a | $4$ | $32.196$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2\beta_{3} q^{5}-\beta_1 q^{7}-\beta_{2} q^{11}-2\beta_1 q^{13}+\cdots\) |
4032.2.j.b | $4$ | $32.196$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta_1 q^{7}-\beta_{2} q^{11}-6\beta_1 q^{13}-\beta_{3} q^{23}+\cdots\) |
4032.2.j.c | $4$ | $32.196$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta_1 q^{7}+\beta_{2} q^{11}+6\beta_1 q^{13}-\beta_{3} q^{23}+\cdots\) |
4032.2.j.d | $4$ | $32.196$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2\beta_{3} q^{5}-\beta_1 q^{7}-\beta_{2} q^{11}+2\beta_1 q^{13}+\cdots\) |
4032.2.j.e | $16$ | $32.196$ | 16.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{13}q^{5}+\beta _{1}q^{7}+\beta _{9}q^{11}-\beta _{5}q^{13}+\cdots\) |
4032.2.j.f | $16$ | $32.196$ | 16.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{12}q^{5}+\beta _{8}q^{7}+(-\beta _{11}-\beta _{13}+\cdots)q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(4032, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4032, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(672, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1344, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2016, [\chi])\)\(^{\oplus 2}\)